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Machine learning study of single-atom platinum supported on graphene
nanostructures (SAC Pt-G)

Beatriz Andrea C. Tan, Yuji Hamamoto, Yoshitada Morikawa

Osaka University Graduate School of Engineering

1. Introduction

Platinum (Pt) supported on graphene is an
established catalyst for CO oxidation, oxygen
reduction, and other fuel cell reactions, but the cost and
rarity of platinum necessitates further research into
reducing Pt loading. The single-atom catalyst
configuration stabilized on a support, namely,
graphene, maximizes catalyst surface area and
minimizes catalyst loading, but faces issues related to
low reactivity and instability due to sintering or
poisoning [1-3]. Single atom catalyst Pt on graphene
(SAC Pt-G) has been successfully synthesized through
various methods, and SAC Pt-G synthesized through
atomic layer deposition has exhibited a reduced
overpotential and resistance to catalyst deactivation
compared to commercially available Pt-C [4,5].

SAC Pt-G favors edge adsorption, as Pt terminates
dangling C bonds in vacancies and edges, based on the
observed experimental structures and overlapping
local density of states (LDOS) [6]. DFT studies by
Wella et al. employed density functional theory (DFT)
to determine Pt-SAC adsorption sites and stability on
zigzag and graphene nanoribbons, also confirming the
preferential edge adsorption of Pt, as opposed to
vacancy substitution within the graphene plane [7].
Adsorption studies also show enhanced performance
compared to pure Pt(111) [8].

However, single atoms tend to cluster or sinter in
situ and Pt-SAC is difficult to stabilize, thus, we aim
to identify viable structures for synthesis and factors
that enhance the stability of these structures. While
DFT-based computational approaches can accurately
model the structural properties and adsorption

behavior of SAC-Pt G, this is executed at great

computational cost. To speed up the individual energy
and force calculations in structural optimization,
machine learning (ML) techniques can be
implemented to reduce the number of first-principles
(FP) calculations.

In particular, we use the GOFEE algorithm, or
Global Optimization with First-principles Energy
Expression [9,10] to identify stable and metastable
structures of SAC Pt-G on the hydrogenated graphene
edge of nanoflake graphene, armchair graphene
nanoribbon (AGNR), and zigzag graphene nanoribbon
(ZGNR) structures.

Additionally, we also investigate the effect of
nitrogen doping on the stability and reactivity of SAC
Pt-G and its reactivity. Experimental studies have
shown that N adsorbed adjacent to SAC Pt increases
the stability of Pt by increasing the population of the
Pt 5dy, orbital, allowing for stronger Pt-C binding [11].
However, a more detailed analysis, assessing several
possible atomic arrangements, is required to determine

the dominant structures of N-doped SAC Pt-G and

their behaviors in adsorption studies.

2. Computational Details
2.1. The GOFEE algorithm

To determine the structure with the lowest energy,
known as the global minimum, GOFEE uses a
combination of Gaussian process regression and FP
calculations to train a surrogate model on the fly, rather
than using a predetermined training database. The
surrogate model speeds up the relaxation steps by
using Gaussian process regression to relax new
candidate structures instead of FP calculations. This is

performed by executing several steps, where each step
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consists of 1) mutating the population, 2) relaxing the
system via a surrogate model, producing the surrogate
energy (Eg,-), 3) selecting the best candidate using
f(x), 4) evaluating the candidate using FP, then 5)
training the surrogate model to improve the accuracy
of the structure search towards finding the GM. This
training data is used to update the population and
surrogate model. The acquisition function f(x) in
Step 3 depends on minimizing the surrogate energy
while encouraging exploration, determined by the
parameter k and the uncertainty o,
f(x) = Equr (X)) — k0O (%) Eq. 1

The candidate with the minimum f(x) is evaluated
in Step 4 using two single-point FP calculations, one
of which is slightly perturbed to calculate atomic
forces.

For this study, 30 independent runs of 300 steps
were performed, employing the Generalized Projector
Augmented Wave (GPAW) method [12,13] to evaluate
the total energy using the Linear Combination of
Atomic Orbitals (LCAO) method with a Perdue-
Burke-Erzerhof (PBE) atomic setup [14,15]

The ability of the structure search to identify the
global minimum is quantified by the success curve,
which is the fraction of independent runs that have
identified the global minimum structure and energy as
a function of the number of FP calculations.
Candidates with a final success rate of at least 15% are
selected from the search, then evaluated for stability

and reactivity using DFT.

2.2. Structure search

To evaluate graphene nanoribbon systems using
GOFEE, armchair and zigzag nanoribbon starting
scaffolds with monohydrogenated bottom edges were
prepared according to Figure 1, and free C, H, N, and
Pt atoms were allowed to move freely within the
boundary indicated. For the armchair and zigzag
nanoribbon structure searches, the set of free atoms

contain combinations of 5-8 C atoms, 0-8 H atoms,

and 1 Pt atom. However, the experimental graphene
edge is more closely approximated by a flake graphene
model containing both armchair and zigzag edges, as
opposed to a nanoribbon. The starting scaffold
approximates half of a coronene molecule (C;oHg)
fixed in place, with additional 10-14 C, 5-8 H, and 1
Pt atoms allowed to move freely within the boundary
indicated in Figure 1. In all cases, the effect of N
doping was also investigated by adding 1-2 N atoms to

the set of free atoms.

_9880A

Figure 1. Scaffolds used in the SAC Pt-G structure

search with boundaries outlined.

2.3. Structure Evaluation

Selected candidates produced by the structure
search were evaluated using FP DFT calculations to
assess their stability and reactivity, indicated by the
binding energy of Pt and the adsorption energy of
reaction intermediates. Candidates with the lowest
energy within 0.2 eV of the GM and a success rate of
at least 15% were further optimized using DFT to
accurately assess the stability. Geometric optimization
was performed, employing ultrasoft pseudopotentials
and rev-vdW-DF2 corrections in the Quantum

Espresso 7.2 software package [16,17].

3. Results

A comparison of sample ZGNR, AGNR, and flake
structures alongside their success rates is presented in
Figure 2 and Figure 3. The structure search easily
identifies the GM at low degrees of freedom, but is still
successful at identifying the GM even with many free
C atoms. However, increasing H tends to decrease the

success rate of the search on the same scaffold.
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Figure 2. Global minimum and success rates of selected

SAC Pt-G structures.
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Figure 3. Global minimum and success rate of selected

N-doped SAC Pt-G structures.

The results confirm the preferential adsorption of
Pt on the graphene edge, where Pt tends to be
incorporated within 5- and 6-membered rings. N-
doped structures are more difficult to model versus

their counterparts, exhibiting lower success rates due

to the increased degree of freedom, but in agreement
with prior findings, N tends to adsorb adjacent to

Pt[11].

4. Conclusion

The machine learning-based GOFEE algorithm
was implemented to perform a structure search on
SAC Pt-G systems, including armchair nanoribbons,
zigzag nanoribbons, and flake graphene resembling
coronene. The results exhibit a high success rate,
indicating the successful identification of the global
minima across different independent runs and confirm
the preferential edge adsorption of Pt, forming 5- and
6-membered rings on the graphene edge.

Further improvements to the GOFEE code may be
implemented to optimize the acquisition function for
increased accuracy and lower computational cost.
Future work on this study includes examining the
adsorption of intermediates involved in oxygen
reduction and carbon monoxide electrooxidation to

assess the catalyst reactivity.
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