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A Topological Characterization of Pseudo-Harmonic
Functions

By Yukinari Tόκi

Introduction. M. Morse and M. Heins n studied the relations
among the zeros, poles and branch points of the " pseudo-harmonic "
functions defined as follows:

Let u(x, y) be a function which is harmonic and not identically
constant in the neighbourhood N of a point (x0, y0) in z ( = x+iy)-
plane. Let the points of N be subjected to an arbitrary homeomor-
phism T in which N corresponds to another neighbourhood Nr of
Oo> Vo) and the point (#, y) on N corresponds to a point (V, yf) on
N'.

Under T set

u{x, y)=U{x't y') .

Then the function U(x\ yf) is called pseudo-harmonic on N'.
A function U(x, y) is called pseudo-harmonic on a domain D, if

U(x, y) is pseudo-harmonic in some neighbourhood of each point of D.
We shall slightly extend the definition of the pseudo-harmonic

function as follows:
Let F be a surface, i.e., a 2-dimensional and separable manifold.

Let U(p) be a real-valued function in the neighbourhood N of a point
p on F, where N corresponds to x2 + y2<Λ in the z-plane by a homeo-
morphism T(x, y).

Set

= < ^ 2/).

Then U(p) is called pseudo-harmonic in N, if u(x, y) is harmonic and
not identically constant. A function U(p) is called pseudo-harmonic
on Ft if U(p) is pseudo-harmonic in some neighbourhood of each
point of F.

ϊ) M. Morse, The topology of pseudo-harmonic functions, Duke Math. Jour. 13 £1947}
pp. 21-42. M. Morse and M. Heins, Topological methods in the theory of functions of a
single complex variable, Annals of Math. 46 C1945), pp. 600-666, 47 (^46), pp. 233-274.
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We study in § 1 the topological characterization of the pseudo-
harmonic functions, in §2 conjugate pseudo-harmonic functions, toge-
ther with their relations to interior transformations.

It is convenient to ' introduce here some notations and terminolo-
gies which we use in the following.

S^Sz, S1+S2 denote the meet and join of two point sets Sλ and
S2 respectively, and S^—S2 the meet of S1 and the complymentary set
of S2. D denotes the closure of a point set D and βD its boundary.

We understand by a neighbourhood Np of a point p on F a neigh-
bourhood, whose closure Np is homeomorphic to \z\<^l in the z-
plane.

If c is a real number, the set of all points with C/ = c will be called
the level c, and denoted by Lc:

Le=\p: U(p) = c] .

Points of F at which U^>c or U<^c will said the points above c or
below c respectevely. Further we call the family of levels

\LC\ c: parameter

equi-locally-conneted at a point
peF, when for any Np on F there
exists another N'P(ZNP, so that any
pair of points of each level Lc in
Np can be joined by a connected
subset of Lc in the interior of Np.
When \LC\ is equi-locally-connec-
ted at all points of Ft \LC\ is
equivocally-connected on F.

§ 1. The topological characterization
of the pseudo-harmonic func-
tions

From the preceding definition
follows directly:

// the family of levels \LC\ is
equi-locally-connected on F, each level Lc is locally connected.

Let u(p) be a one valued real function, satisfying the following
conditions:

(1) u{p) is continuous.

(2) u(jp) is an open transformation.

Fig. 1
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Then we obtain the following lemmas.
Lemma 1. u(p) never attains its relative extremum on F.

Lemma 2. Each neighbourhood of p contains both points above u(p)
as well as below u(p).

This is evident from the condition (2) and Lemma 1.

Lemma 3. Np — Lu^p^ and F—Luίp^ are open sets.
For LuCpj is a closed set.
Each component of Np—LuίP) or Np—Lu(p) is evidently a domain

by Lemma 3.

Lemma 4. Each domain Ω, of Np—Nu{p:> and F—LuCpj consists of
points above (below) u(p) only.

If q1en is above u(p), q2£Ω> below u(p), we can join these two
points with a Jordan arc C within ί2. Then there must exist at least
one point of Luίp) on C C(1)H> which contradicts the definition of 12.
Such ί2 is called the domain above or below u(p).

Lemma 5. Any component of F — Lc is not compact with respect to
F.

Let ί2 be a component of F—Le, then O is a domain above or
below c [Lemma 4]. If a domain ί2 above (below) c is compact with
respect to F, there exists at least such a point q on 12 that u(p) at-
tains the maximal (minimal) value there. Since βΩ(ZLc, q must be a
point of 12, which contradicts Lemma 1.

Lemma 6. Any component of the level c is not entirely confined
in any neighbourhood N.

If LCC^N it is possible to enclose Lc with a Jordan curve C lying
inside N and C LC=O, since each component of N—Lc constitutes a
domain above and below c [Lemma 4], if
a point on C is above (below) c, all the

points of C are also above (below) c. But / x^^^\
in any neighbourhood of a point on Lc

there necessarily exist points below (above)
c [Lemma 2J. Therefore there must exist
a (with respect to F) compact domain below
(above) c in the interior of C, which is
contrary to Lemma 5.

Now we have the following theorem
which plays the most important role in this Fig. 2
paper.

Theorem 1. For a one-valued real function u{p) to be pseudo-har-
monic on F, it is necessary and sufficient that
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(1) u(p) is continuouSy
(2) u(p) is an open transformation,
(3) the family of levels \LC\ is equi-locally-connected on F

with possible exception of a discontinuum E.
We first derive some properties from the conditions (1), (2) and

(3).
i) Each Lc is locally connected.
Suppose that Le is not locally connected at p e Lc. Then since

each component of Lc is not entirely contained in any neighbourhood
N we can choose a suitable neighbourhood Np with the following pro-
perty :

In Np there are at least a countable number of components \Lι\
(i=l, 2,...) of LC NP, which do not contain p but possess it as an
accumulating point. Since each V has point
in common with βNp [Lemma 6J, jl/j (i =
1,2,...) accumulates to acontitiuum K con-
taining p and having a point in common
with βNp. Consider a point q on K not
belonging to E and βNp, then the family
of levels \LC\ is not equi-locally-connected
at q, while the family of levels \LC\ is by
condition (3) equi-locally-connected at q,
which is a contradiction.

ii) Even though Np—Lu(ip^ consists of
an infinity of its components \Dn\ (n= 1, 2,...), any sequence of poi?ιts
\Pn\ (Pn € Dn n = 1, 3,...) has no accumulating point in Np.

If poeNp is an accumulating point of \ρn\; we can choose a sub-
sequence of \pn \ converging to pot

which we will denote again by \pn\
for the sake of convenience. Let
C be a Jordan arc possessing pτ

and p0 as end points and passing
through all pn (n = 2,3,...). Since
each component of F—Lup^ inter-
sects βNp [Lemma 5], we can join
pn and a point qn suitably chosen
on βNp with a Jordan arc Cn in
the interior of Du, so that C Cn

=-pn The sequence of points \qn\
has at least one accumulating point Fig.

Fig. 3
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q, then there is a certain subsequence \qnj of \qn\t so that it con-
verges along βNp in positive or negative sense we may otice more
write it by \qn\. For fixed n, four kinds of Jordan arcs:

I) subarc pnpn+i of C,
Π ) Cn+1,

III) subarc QnQn+i of /3JVp.that excludes the point qn+2,
IV) Cn

bound a domain Δn> and we have
Δ t.Δ, = 0 (if / = 1, 2,... i=*=ί)-

Then there exists in Δw a subcontimium Kn of levpl c which attains

a point ?£€9»9»+i from pή€pnpn+i \Kn] (?& = 1, 2,...) converges, how-
ever, to a subcontinuum K of level c containing p0 and g. This con-
tradicts i).

iii) peLc is, in any neighbourhood Np, a common boundary point
of at least one domain above as well as below c, and yet of at most
finite number of them.

If p does not belong to the boundary of any domain above c, Np

must have the common parts with infinite number of domains Ωn above
c (n = l,2,...) CLemma 2). Suitable choice oϊ pn€Ωn causes pn~-*p for
n-+oo, hence {pn\ becomes compact. This is impossible* Therefore p
is a boundary point of a certain domain above c. It is the same with
the domain below c. While, if p is a common boundary point of an
infinite number of domains Ωn (n = lt 2,...) above (below) c, we can
choose pneΩn so that \pn\ may converge to p, which is also contrary
to ii).

Definition: In case p € Lc is a common boundary point of the
sole domain above c and a domain below c, it will be called an ordi-
nary point, otherwise a saddle point.

iv) Let Ω denote one of the domains above (below) c. Then every
point of βΩ is accessible from the interior of Ω.

Suppose that p£ βΩ is an inaccessible
boundary point of Ω and the decomposition Lc

wer.e possible for any Np. Suitably chosen
partial sequence of \pn\ (pn£Ω, n = 1, 2,...)
will converge to p. Join all these points in
succession with a Jordan arc C ending at
p, and we shall be lead to a contradiction
in the same way as in ii).

v) The set Sc of all saddle points on Fig. 5
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Lc has no accumlatίng point on Lc.
Let {Ωt ]' denote the fapily above and,

blow c lying inside an arbitrary neighbour-
hood Np of p e Lc and having p as their
boundary point, the number of which must
be finite, say n C(ϋi)D Let p be a saddle
point, n'^>3 results. Let .X2', ί2", Ωm be any
triple of members belonging to \Ωt} ( i = l ,
2, ...,w). Suppose that they have another
boundary point px in common inside Np.
Then it will be possible to join p, p1 with
certain Jordan arcs C, C", C " respectively in the interior of ί2', Ω",
Ωtft OV)D One of these arcs, say C", is enclosed by the others except
for both end points. C consists, however, only of the points belonging
to Ω except the both ends p, plr while Clf

t. C"! contain no points of
Ωr. Therefore Ωτ must be compact with respect to F, which is con-
trary to Lemma 5. This shows that three domains can posses only
one common* boundary point. Since number m of domains above or
below c on F, which intersect the neighbourhood Np, is finite [ji)D>
number of the saddle points inside Np does not exceed ^H3.

vi) Every component of Lc—Sc is homeo-
morphic to an open interval or closed Jordkin
curve.

Let peLc^Sc be an ordinary paint, p
becomes the common boundary point of the
sole domain ί2+ above c and the sole domain
Ω~ below c. Then we can properly choose Npt

so that LC N-P may contain no boundary points
of domains other than Ω+ and Γ2~ CV)D There-
fore every point of LC NP

boundary point of ί2~ and
Schόnflies'

is the accessible
+Ω Civ)]. Thus we

is a Jordan arc.

Fig. 7

know in vertue of
Owing to Lindelόf stheorem that LC NP

covering theorem Lc—Sc can be covέred by at most a countable number
of neighbourhoods, i. e. it is a union of a countable number of open
Jordan arcs.

Definition: If every components of Np—LuCpj have the point p as
their common boundary point, Np is called a simple neighbourhood of
the point p.

vii) There exists a simple neighbourhood Np for any point p on
Ff and each component of NP~LUPJ is a Jordan domain. Moreover
any two domains above (below) u(p) do not neighbour one another.
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There exists a neighbourhood NP for the
point p such that Np does not contain any
saddle point on the level u(p) with possible
exception of p itself CV)D Each component of
N'p LurP:>—pf which we denote by C , ( i = 1,2,
..., n), is homeomorphic to an open interval
Cvi)J and L t t : j 0 is locally connected £i)3, so Ct

is a Jordan arc and the number of C€ having
p as its end point is finite, which we denote
by Clf C2, ..., Cn in the order of positive sense.

Let Pi be a point of Ct. Then we can join the points pt and
( i = l , 2,..., n; pn+ι — Pi) with a Jordan arc Cf

t in the domain above
n

or below u(p). Let the domain enclosed by the Jordan curve

the neighbourhood Np of p. Then Np is a simple neighbourhood of p.
Next if two domains above (below) c have an arc in common on

their boundary, u(p) must take the relative minimum (maximum) on
it. This is impossible, i. e., the same kinds of the domains cannot
neighbour each other.

Definition. When Np — Lupy contains n domains above u(p) holding
p in common, (w —1) is called the order of the saddle point p.

viii) The set S of all saddle points on F has no accumulating
point.

Suppose the set S has a point
p on F as an accumulating point,
to which a certain sequence \pΊ\
(v = 1, 2, ...) of saddle points
converges. Let Np be any one of
neighbourhoods of p, pΊ (v^ri) are
all contained in its interior so far as
n is taken sufficiently large. From
each point pv issue at least four
subarcs of the level w(pv) arriving
at βNp, which we denote by C ,

Fig.CV2, CV3, CV4 respectively, and their
end points on βNp we denote by
Pi, p3, P?, Pv respectively.

The set \pi\ (z/=i,2,... i =1,2,3,4-)'has at most two accumulating
points p' and py/ on βNp. Then we can choose a subsequence {Cί̂ j
; = 1, 2, ... i = l, 2, 3, 4) of C*Ίj9 so that at least two arcs among
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Ch., Cij9 Cl. and Cί. converge to the arc C of the level u(p) from p
to pf or pίf with j—*°o. Let # be an inner point on C not belonging
to E. It is evident that the family u(pΊj) (; = 1, 2,...) is not equi-
locally-connected at q. This is a contradiction.

ix) The family [Lc\ of levels is
equivocally-connected on F except for
the saddle points.

Let S be the set of all saddle points
on F. If \LC\ i s not equi-locally-con-
nected at peF—S, there exists a neigh-
bourhood Np of p which has the
following property:

It contains two sequences of points
\Pt}> \Pt\ converging to p and satisfy-
ing the relation u{pi) = u(j[)'i) — ct, while
they are not connected by hh in Np.

 F l g *

Take a simple neighbourhood as Np, and βNp intersects each Lc.
(Xemma 6J, from which LCi is divided into at least two Jordan arcs.
Each of them, that contains pί9 p't, shall be denoted by Kif K't respec-
tively. Then \Kt\ accumulates to the subarc K of the level u(p), which
contains p and has two end points on βNp. For if the sequences of
two end points pϊ and qt of Kt converge to one point on βNp, there
exists a point q on K—E, with respect to which {JSΓ,} is not equi-
locally-connected, but this contradicts the condition (3). Hence K must
be a cross-cut of Np. It is the same with Kf derived from [Ki], and
yet these two have no common point except for p. For if they have
a common point q'Φp, K must coinside with Kr [Lemma 5 ] , this con-
tradicts the condition (3). Hence p must be a saddle point, which is
a contradiction.

Definition: Let Np be the neighbourhood of a point p on F. When
the neighbourhood Ap of p satisfies the following property:

Let q1 and q2 be any two points of the level u{p) in Ω, NP, where
ίl is the domain above or below u(p), then q1 can be connected with
q2 along Lw C ί 0 in Np.

Ap is then called an admissible neighbourhood of Np.
x) // Np is a neighbourhood of an arbitrary point p on F, there

exists an admissible neighbourhood of Np.
When p is an ordinary point, the family of levels is equi-locally-

connected at p [Ίx)3 Therefore there exists an admissible neighbour-
hood Ap of NP.
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When p is a saddle point, suppose
that there exists no admissible neigh-
bourhood of Np. Then there exist
sequences of points \Pi\, {<&} in the
domain of above (below) u(p), where
u{pί)=^u{qί) ( i = l , 2,...) and pt is not
connected with qt along the level u(pt)
in Np. We see easily in the same way
as in ix) that this is a contradiction.

Lemma 7. Let F be the Gaussian
plane and let q be an arbitrary point of
the admissible neighbourhood Ap of Np

different from p. Then there exists a chain

(p, Pi, P 2 , ..., Pn = q)£Np

satisfying the following properties :

I) u(p)<^ wCPiX...
or M ( P ) > M ( P I ) > . . .

II) for any given positive number 6

|P»—Pί-i|^θ ( i = l , 2, ..., w).

Proo/. Let C be a Jordan arc joining p and <? (for example

u{pn)

C: p=p(t) (O^ί^l
Set

ί' = sup | t : 1
fpf = p(tf}.

Then the following four cases
are possible:

a)

b)

- c #

s τr> P ^ P

c) |9-J>Ί>|-, PΦ2>'

d) 2 '
> = p '

In the case a), the chain (p,
q) satisfies the conditions I, II.

In the case b), p is connected Fig. 12
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with p' along the level u(p) in Np. Let p be the distance between

βΛ/̂  and the subarc ppr of the level w(p). Arc ppf is covered with a
finite number of open disks, Klf K2, ..., # m , whose diameters are less

than both -j and p, and Z,.ϋΓ i + 1Φ0 (i = 1, 2,..., m - 1 ) , peKl9 p'eKm,

Set
), max ..., max

Then we can choose points p1 # p2> • ••> Pm? where p<

+ t (α-^(p)) (i = l92,mm., m). Therefore the chain

Ύϊh

fies the conditions I, II.
In the case c), let p" be such a point on C

that | p " - p Ί ^ 4 - .

and M(P<) =

satis-

Set

b = min w(p(ί)),
l

Then | ^ - ^ | < | ~ . Fig. is

Therefore we can reduce our case to the case b) for the subarc

ppfn of C and to the case d) or a) for the subarc p'" p of C.
In the case d), let p'f be such a

point on C that |p"-^p |=- |- . Then
Δ

the following two cases are possible:

d') <vtt ) = <<!),

In the case d') we can choose the
required chain in the same way as in
the case b).

In the case d/7) repeat the above

process about the subarc pff q of C in-

stead of C. After a finite number of Fig. u

times we can get the required chain.

Lemma 8. Let q be an arbitrary point of an admissible neighbour-
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hood Ap of Np different from p and NPC^NP. Then there exists a

Jordan arc from p to q which intersects each level at most once in Np.

Proof. Let Dr

p be the open disk with radius r and centre p, Ap

be the maximal open disk which is an admissible neighbourhood of Dr

p.

Without loss of generality we suppose that Np is D\ and Nί is Dp.

Therefore by Lemma 7 there exists a chain

(p, Pi, ...> Pn = q)£Dί

satisfying the following property

Γ) Φ)<ΦiX,:.<*J. :

II') \Pi-Pt-i\<ε(i) w h e r e 6 d ) = i n f ( r a d ί ? 8 o f

Apply Lemma 7 to the pairs of points pt-x and pί9 and we have

the chain

( p = p ' , p[, p'2, p, . . . , pa — pl9 p i+ii '..., Pp = P2> Pp+i> •• > Pμ = = 9) £ ^ P

satisfying the following properties;

II") \Pί"Pί-i\<C€C¥) where δ(~\ = inf (radius of A*) .

If we continue this process indefinitely, we have a countable number
of points whose closure C is homeomorphic to the interval
by the function w(p). Then C
is the required Jordan arc.

Lemma 9. Let Ω, be one
of the domains above {below)
c0 possessing p 0 as a boundary
point. Then it is possible to
choose the subdomaίn D of Ω
satisfying the following con-
ditions :

D can be mapped by some
homeomorphism onto the rec-
tangle R in the z-plane bound-
ed by x = ± 1, y = &, so that
each level Lc contained in D
corresponds to the segment
y = c cut off by x = ± 1.
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Proof. Let NPQ be a simple neighbourhood of ρ0. Without loss of

generality we can suppose that NPQ is an open disk in the z-plane.

Let pf and q' be points of βίl in NPQ. TWO Jordan arcs Cl9'C2 (C^C2

— 0) can be drawn from pf and qr so that they intersect each level at

most once respectively [Lemma 8]. Let LPi be one of the levels in-

tersecting CΊ and C2. Then the domain D bounded by LβQ, Cl9 C2 and

LCi will be the required one. Let LC

D" — LC D.

We shall show that LC?J converges to Lr

c

D> with &^>c in the sense
c

of Frechet2).
Let 6 be an arbitrary positive number. UD) is covered by a finite

ε

number of \A\], where peLc

e

D\
Set

ε E

Let A?p be an admissible neighbourhood of D% ( i = 1,..., n), where

= Pβ (*.), such that 0<*i< ••<*»= !•
There exist points pt = pc (««) and admissible neighbourhoods

ε ε

| of Z>̂  satisfying the following conditions :

2.

ε

Let Cί be the subarc possessing px of CΊ in A% , C'2 the subarc

possessing pn of C2 in A\ . Let Z?, be A\ Λ|. (i = 2,..., w—1).

There exists a positive number δ such that the arc Lcf
J intersects

Cί, C'2 and all Dt (< = 2, . . . ,n- l ) for | c - c ' | < δ .
Let p£ = pβ,(ί!)» pί = Pe,(*«) a n d Pί = Pβ/(*0 be the point on Cί,

C$ and A (i = 2, . , ,w-l) respectively such that 0 = ί 1 < ί 2 < . . . < t n = l .

Then there exists a homeomorphism T7 such that subarcs ptpi+i

2) It means that Frechet distance between Lc^ } and Lr

e

Dj tends to zero with cr~*c,

where the Frechet distance is defined as follow: Let T be a homeomorphism between

ISJP and Le

D). Then inf fmax Cdistance between p'^Tζp") and f)'} is called the Frechet
τ ' per"*

distance between !<$> and L:

e

D\

M. Morse, A special parametπzation of curves, Bull. Amer. Math. Soc, 42 ζ!936),
915-922,
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(i = 1, 2,..., n — 1) of LC

C

D) correspond to subarcs pίpί+1 (i = l, 2, ..., n
— 1) of L^J respectively.

Since p<pί+1 and p/p,'+i are contained in C| whose diameter is £,

the Frechet distance2) between L^D) and I£° is less than 6. Therefore

L( ^ converges to L-D) with &-+c in the sense of Frechet.

Let μ be the ^-length3) of subarc pλ q of Lc and q(μ, c) be the
function corresponding the point q on F and the point /̂ -f ic on the
^-plane. Then q(μf c) is continuous.3)

Setting μ* = 2(ίt-~\ where /̂ c denote the μ-length of Lc

e

D\
\μc Δ I

q(μ*, c) maps D onto the rectangle R.
Thus our conclusion has been verified.
Proof of Theorem 1. Since the necessity of the conditions (1), (2)

and (3) is evident, we shall show that they are sufficient. First let
p be an ordinary point. There exists a simple neighbourhood Np as
follows:

a-y

(abovβ)
the sole domain of \m , [ u{p) = c in Np,cbelow)

cR+Ί

is mapped topologically onto the rectangle ]„_[ in the z-plane bound-

ed by x=±l, y = c and y= \ \ (cf/ < c < V ) , so that the

'cf/)

level

l\ correspond to y = c0 [Lemma

Furthermore, R = R* + R~ becomes a topological image of the
whole Np.

Let 2? = Γ(z) denote this homeomorphism, and we have in Np, i. e.
in R

3) Let a curve C have a representation XO, (fi^t^X). Let r O^^
be a set of values of t on the interval ζp, 1). We introduce the number

«n—max C
r i

Set

We call μ the μ-length of the curve C.
H. Whitney, Regular families of curves, Annals of Math. 34 0^33), pp. 244-270.
M. Morse, A special parameterization of curves, I.e.
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Second, let p be a saddle point of order (n—1), Np be a simple
neighbourhood of p.

Then

where 12+ and X2~ denote respectively domains above and below c
possessing the sole point p as a common boundary point, and situated
cyclically in the order Ωϊ, Of, X2J, Og, ..., Ω£, Ωί. The subdomain

of _> is mapped topologically onto the rectangle \nΛ in

plane (£ = £• +£17) bounded by x= ± 1 , # = c and 2/ = "] > (c"<c<

so that the level c0 5 = 0 = m a y c o r r e spond to 2/ = c0 [Lemma 91.

= ς5ϊzn + c is the harmonic function with a saddle point
of order O—1) at z = 0. The niveau curve U = c divides any
circle \z\<^p (for sufficiently large p) into n sectors above c
σϊ", σ J, ..., σί and w sectors below c; o-̂ , σ g, ..., <r» alternately. The

subdomain { [ of < J topologically onto the rectangle ] \ in the
*Di) ί-cΓ^) (jit )

ί
cf)

> (c ; /<c<c f), so that the
cf/)

level c0 \ = 0 = =

 N[ may correspond to 2/ = c0 CLemma 9].

Hence there exists a topological transformation p = 5Γ(«) from the
subdomain |s |<j° ' (Pr<CP) of |̂ |<C/° to the subdomain N'p of ΛΓ̂ , so
that the level c0 with respect to Z7(z) in | ̂  |<I/°' may correspond to
the level c0 with respect to u(p) in N'p. Then w(p) = u{T{z)) = U(z).
Thus the proof is completed.

We see that we can replace the condition (3) in Theorem 1 by
the following weaker condition (3)':

(3)' There is no pair of sequences of continua {Ci} and {Cί\
converging to a continuum, where Ct and Cl are subcontinua
of the same level ct having common point each other.

Theorem V. In order that a real function u(p) on F is pseudo-har-
monic it is necessary and sufficient that u(p) satisfies the conditions
(1), (2) and (3)'.'
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§ 2. The conjugate pseudo-harmonic functions and its applications.

Let u(p) be a pseudo-harmonic function on F and v(p) be a real
valued function on F. When, for a neighbourhood of any point on F,
there exists a homeomorphism T by which N corresponds to x2 + # 2 < 1
in the z-plane, and V(z) = v(T(z)) is the conjugate harmonic function
of U(z) = u(T(z)), the function v(p) is called the conjugate pseudo-
harmonic function of u(p).

Theorem 2. Lei w(p) be a pseudo-harmonic function on F. For
a real valued function v(p) to be a conjugate pseudo-harmonic function
of u(p) on F it is necessary and sufficient that

a) v(p) is continuous,
b) v(p) is an open transformation,
c) any continuum on each level of u(p) does not correspond to

one value by v(p).
Proof. Since the conditions a), b) and c) are evidently necessary,

we shall show that they are sufficient.

Let us denote by L? and LI the levels c of u(p) and v(p) respecti-

vely.

i) Let p be a point on F and Np be a

neighbourhood of p. Each component of LI

in the domain above (below) u(p) in Np

intersects every component of \Lc\ at most

once.

Suppose that a component of LJ inter-

sects a component of L", at two points p

and q. There exists at least an open arc

C on the subarc p q of L", such that any

point on C is not on L°c [c)]. Then there

exists a domain D bounded by C and Lv

c.

Put w(p) = u(p) + ίv(p) .

Then w(p) is a continuous.function on D, therefore w(p) is bound-
ed in D. On the other hand D must be mapped onto the domain
bounded by u — cf and v = c by w(p), so that w(p) is not bounded in
Ό, which is impossible.

ii) Any component C of LV

G in a suitable neighbourhood Np of an
ordinary point p of u(p) consists of a Jordan arc with its two end
points on βNp.

We may suppose that {££,} are parallel lines in NP [Lemma 9J.

C is distinct from a point [Lemma 6]. Then owing to i) C is a Jor-

Fig. 16
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v-c

dan arc. Moreover C separates at least two domain above c and

below c CLemma 2], so that two end points of C is on βNp.

iii) Any component CU

L of IS, in a simple neighbourhood Np of an

ordinary point p with respect to u(p) intersects at most one component

of LI

Suppose that Cf intersects
two components C\ and C\ of
L°c. Since there is no saddle
point of u{p) in NP9 there
exists such a subarc C? of L",
near Cf that C2

W intersects C\
and C\.

Put w(p) = u(p) + iv(p). F i g 1 7

Let D be the domain bounded by Cf, C£, CJ and C£. FF(p) is con-
tinuous on Zλ On the other hand D is mapped by w(p) onto the
domain bounded by u = cf, u = c", and v = c, so that w(p) is not boun-
ded in D, which is impossible.

iv) The family of levels \L°C\ is equi-locally-connected at an ordi-
nary point p of u(p).

Suppose that the family of levels {Ll\ is not equi-locally-connected
at an ordinary poinl p of u(p). If we choose a suitable neighbourhood
Np of p, there exist two sequences of points \pn] and \pή\ O = l, 2,
...), such that v(pn) = v(pή), Cn C'n = 0 where Cn and C'n are the subarcs
of L^p^ and Lv

u^p^ containing pn and pή respectively, and \Cn\ and
\C'n} converge to the subarc of the level v(p) containing p. Let q be
an inner point of C. Then the Jordan arc of Z ĈQ) containing q must
intersects Cn and C'n for sufficiently large number n. This contradicts
iii).

v) v(p) is pseudo-harmonic on F.
The family of levels \L°C\ is equi-locally-connected on F except

for the saddle points of u(p) on F [iv)^. Therefore v(p) is pseudo-
harmonic on F [Theorem 1]. Then we can see easily that a compact
domain D, bounded by levels u = c l f .u = c2, v = c[ and v = c'2 and con-
taining no saddle point of u(p) and v(p), are mapped topologically onto
the rectangle R on the z-plane bounded by x — clt χ — c2, y = c[ and
y = c.J, such that the levels u = c and v — cf correspond to x = c and
y = cf respectively. Let p be an arbitrary point on F. As in Theorem 1
there exists such a homeomorphism p — T(z) in a certain Np that
^(^C^)) is a conjugate harmonic function of u(T(z)) in ΛΓP. Thus the
proof is completed.
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Definition: Let pτ and p2 be two points on F and let NpΎ and Np2

be neighbourhoods with Np1>Np2Φθ. Let uλ(p) and u2{p) be pseudo-
harmonic in Npλ and in Λ/>2 respectively. When ux(p) = w2(p) in 2V/>i,

2̂ (P) will be called a direct pseudo-harmonic continuation of

Let plt p2, ..., pw be the points on F and Nplf Np2, ..., Λ7>w be
such neighbourhoods that NPi-NPi+1φ0 (t = l, 2, ..., n - 1). Let
w,(p) be pseudo-harmonic in Npt (i.= 1, 2, ..., n) respectively and let
ui+1(p) be a direct pseudo-harmonic continuation of u^p).

Set

X(p) in

u2(p) in Np2

U(z) = -

•
un(p) in Npn

(U(z) is pseudo-harmonic in _Σ Npιt but not always one valued.) Then

U(z) will be called a pseudo-harmonic continuation of uλ(p).
Theorem 3. Let u(p) be pseudo-harmonic on F. Then there exists

always a conjugate pseudo-harmonic function.
Proof.

I) There exists a family of curves \C\ satisfying the following
conditions:

a) On the ordinary point of u(p) they do not intersect each other,
and on the saddle point of u(p) with order n — 1 just n curves of them
intersect each either.

b) Each of them is not compact with respect to F and intersects
each level of u(p) at most once.

c) They cover every points on F.

Let a countable number of points p19 p2, ..., pn, ... be dense on F.
There exist a countable number of neighbourhoods \Nqt] (i = l, 2,',..)
such that the levels of u{p) in Nqt correspond to the levels of ϊRzm

(l^m<^co) in |z |<O by homeomorphism Tt CProof of Theorem Γ), and

Σtffc = jF, but ΣΛ^Φ^(fc<°°) . Let p1eNqii. We can draw from

Pj a Jordan arc with two end points on βNqt such that it intersects
1
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each level of u(p) at most once. Let one of end points be contained
in Nqt . Then we can extend its Jordan arc as far as a point of βNqi2

If we continue this process indefinitely, we can get a curve Cx

satisfying the condition b).
Let C19 C2, ..., Cn be curves satisfying the conditions a) and b).

n n

Let p19 p2, ..., pj be points on Σ<7, and pι+1 be not on Σ C , .

We can draw such a Jordan arc that it intersects each level of
u(p) at most once and does not intersect Ct (l<Z>i<Ln). Therefore we
can get the curve Cn+1 containing pJ+1 such that it satisfies the condi-
tion b) and does not intersect C% (l<£i<£n). Then we can draw a coun
table number of curves [Ct] (i = l, 2, ...) such that they are dense on
F and satisfy the conditions a) and b).

There exist consequently a family of curves satisfying the condi-
tions a), b) and c).

II) There exists a continuous real function v(p) on F such that
its levels coincide with the family of curves \C) and v(p) is monotone
on each level of u(p).

When we can not draw any closed curve intersecting the family
of levels of u(p) at most once, let L° be a component of one of the
levels of u(p). We can define a continuous and monotone real bounded
function v(p) on L°. Let us extend v(p) to the curves of {C\ intersecting
L° such that each value v(p) on C is the same value of v(p) on the
point of intersection L° C Let D be the domain on which v(p) was
defined. Let C19 C2, ... be all boundary curves of D and let L1, L2, ...
components of levels of u(p) intersecting Clt C2, ... respectively. Then
be the we can extend a continuous and monotone real bounded function
v(p) to the parts V contained in the complementary set of D. Let us
extend v(p) to the curves of {C} intersecting V such that each value
v(p) on C is the same as v(j>) on the point of intersection Ώ*C.

If we continue this process indefinitely, we can define v(p) on every
point of F.

When we can draw a closed curve intersecting the family of levels
of u(p) at most once, let Ff be the universal covering surface of F.
If we define U(pf) on F1 at pf covering peF by U(p') = u(p), we can
not draw any closed curves on Fr intersecting the family of levels of
V(j>f) at most once.

We can define a continuous monotone real function F(p') on Fr

such that, if Npy and Np^ are the neighbourhoods on Fr covering the
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neighbourhood of Np of a point p on F and have no branch point,
V(qD — V(q£ = const., where q{eNp{, qieNpζ and they cover qβNp.
Then we can define the required function v(p), which is many valued
on F.

Ill) v(p) is the conjugate pseudo-harmonic function of wθ>) on F.
Since v(p) is evidently an open transformation, v(jp) satisfies the

conditions a), b) and c). Therefore v(p) is the conjugate pseudo-
harmonic function of u(p) [Theorem 20-

Remark: When the function v(py is a many valued function, let
vx(p) and ^2(P) ^ e t w 0 branchs of v(p}. We can always choose v(p)
such that ^iθ>)—^2(P) — const., so in this paper the conjugate pseudo-
harmonic function of u(p) means such a function Kp).

Theorem 4. When u(p) is a pseudo-harmonic function on F, we
can choose local parameters such that F becomes a Rίemann surface
and such that u(p) is harmonic on F.

Proof. Let v(jp} be the conjugate pseudo-harmonic function of
w(2>) on F. Then there exists a homeomorphism Tp between NP of
each point p on F and |z|<Cl on the z-plane such that u(Tp(z)') and
v(Tp(z)) are conjugate harmonic function in |z|<^l.

Set

Wp{z) = u{TP{z)) + iv{TP(z)).

Then W(z) is analytic in | z | < l .
Let Npλ and Np2 be neighbourhoods of p1 and p2 respectively such

that

const.)

Fig. 1 8
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' Then Wpλ(z) + const. = Wpz(z) [Remark^, if v(p) is one valued
function the const. = 0. Let Tp\ and Wpl(ζ) be the inverse functions
Tp2 and Wp2(z) respectively, where ξ = u + iv.

Then T~p\{TPι(z)) = W~p\(Wpι{z) + const.) and W~p\(Wpλ{z) + const.) is

analytic. Hence if we choose \TP\ as the local parameters on F, F
becomes a Riemann surface, and u(p) is harmonic on the Riemann
surface F.

Now we shall study the relations between the pseudo-harmonic
functions and the interior transformations defined as follows:

The transformation I(p) from the surface F to the surface Ff is
called an interior transformation, when I(p) satisfies the following con-
ditions :

1. I(p) is continuous on F.
2. I(p) is an open transformation.
3. I(p) does not transform any continuum on F to one point on

Fr.
Theorem 5. In order that the complex valued function I(p) is an

interior transformation it is necessary and sufficient that 3ΐ/(p) and
^I(p) are the conjugate pseudo-harmonic functions of each other.

Proof. Since the sufficiency of the condition is evident, we shall
show that it is necessary. It is evident the 5RJ(p) and $/(p) satisfy
the conditions (1) and (2) in Theorem 1.

Suppose that 9t/(p) does not satisfy the condition (3)' in Theorem
V.

Then there exist a pair of sequences of continua {Ĉ } and [Cί]
converging to a continuum Co where Ct and C[ are subcontinua of
of the level ct of 9ϊ/(p) having no common point each other and Co is
a subcontinuum of the level c0 of fRl(p).

Let pQ and q0 be points on Co in a neighbourhood of peC0 such
that 3ί/(ϊ>)=H3f/(<z). We may suppose for the sake of convenience that

Fig. 19



A Topological Characterization of Pseudo-Harmonic Functions 121

{Ci} and \Cί\ are in Np. Let \ \ and \ * I be points on \ *\ res-
tpp lq'tS ICl)

pectively such that \ ι[ ->p0 and \ ][ -»q0 with i-*oo.
ιPί> Wi>

Let C be a Jordan arc such that C passes through all points pt

and p<, and that any subarc pt p[ of C has a point p0 on it. Let C
be a Jordan are such that it passes through all points qt and q{ and

that any subarc pt pi of it has a point #0

We can choose the neighbourhoods Np0 and Nq0 such that

For sufficiently large number n the images of arc pn pή and arc

Qn Qή by J(p) are in the circles

and

respectively. Therefore /(p) are unbounded in the compact domain

bounded by the subcontinua of Cn and C'n9 arc pw p^ and arc qn q'n9 which

contradicts the condition 1. Since Sl/(p) satisfies the condition (3'),

it is a pseudo -harmonic function. By the condition 3 $/(p) satisfies

the condition (c) in Theorem 2. Therefore 3f/(p) is a conjugate pseudo-

harmonic function of 9W(p).

Then we can easily proof the following Stoϊlow's theorems.0

Theorem I. Let /(p) 6e α^ interior transformation from F to Fo,

and let q be a point on Fo such that q = /(po) There exist neighbour-

hoods Np0 and Nq such that Np0 corresponds by 7(p) topologically to Nq

or the island (Insel) on Nq consisting of a finite number of sheets with

only one branch point.

For we can apply Theorem 5, if we map topologically Nq to

in the 2-ρlane.
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Theorem II. Let I(p) be an interior transformation from F to
the Gaussian plane. Then there exists a transformation T from F to
a Riemann surface R' such that I{T{pr))y ?/£F, is analytic.

This is evident from Theorem 5 and Theorem 4.

(Received January 26, 1951)
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