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A Topological Characterization of Pseudo-Harmonic
Functions

By Yukinari TOKI

Introduction. M. Morse and M. Heins! studied the relations
among the zeros, poles and branch points of the * pseudo-harmonic”
functions defined as follows:

Let u(x, y) be a function which is harmonic and not identically
constant in the neighbourhood N of a point (%,, ¥,) in z(=a+iy)-
plane. Let the points of N be subjected to an arbitrary homeomor-
phism T in which N corresponds to another neighbourhood N’ of
(%5, ¥,) and the point («, y) on N corresponds to a point (', y') on
N'.

Under T set

uwx, y)=U, ¢) .

Then the function U(a', y') is called pseudo-harmonic on: N'.

A function U(x, y) is called pseudo-harmonic on. a domain D, if:
U(z, y) is pseudo-harmonic in some neighbourhood of each point of D.

We shall slightly extend the definition of the 'pseudo- harmomc
function as follows:

Let F be a surface, i.e., a 2- dlmensmnal and separable mamfold
Let U(p) be a real-valued function in the neighbourhood: N of a point
p on F, where N corresponds to w2+J2<1 in the z- plane by a homeo-
morphism T(z, y).

Set

U(p)=ULT(x, y)]=u(=, y).

Then U(p) is called pseudo-harmonic in N, if w(x, y) is harmonic and
not identically constant. A function U(p) is called pseudo harmonic
on F, if U(p) is pseudo-harmonic in some neighbourhood of each
point of F'.

1) M. Morse, The topology of pseudo-harmonic functions, Duke Math. Jour. 13 (1947)
pp. 21-42. M. Morse and M. Heins, Topological methods in the theory of functions of a
single complex variable, Annals of Math. 46 (1945), pp. 600-666, 47 (1946), pp. 233-274.
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We study in §1 the topological characterization of the pseudo-
harmonic functions, in § 2 conjugate pseudo-harmonic functions, toge-
ther with their relations to interior transformations.

It is convenient to 'introduce here some notations and terminolo-
gies which we use in the following.

S,+S,, S;+8S, denote the meet and join of two point sets S, and
S, respectively, and S,—S, the meet of S; and the complymentary set
of S,. D denotes the closure of a point set D and BD its boundary.

We understand by a neighbourhood N, of a point p on F a neigh-
bourhood, whose closure N, is homeomorphic to |2|<1 in the z-
plane.

If ¢ is a real number, the set of all points with U = ¢ will be called
the level ¢, and denoted by L,:

L.={p: Up)=c} .

Points of F at which U>>¢ or U< ¢ will said the points above ¢ or
below ¢ respectevely. Further we call the family of levels

{L.} c¢: parameter

equi-locally-conneted at a point
"p€F, when for any N, on F there
exists another N;CN,, so that any
pair of points of each level L. in
N} can be joined by a connected
subset of L. in the interior of N,.
When {L.} is equi-locally-connec-
ted at all points of F, {L. is
equi-locally-connected on F'.

§ 1. The topological characterization
of the pseudo-harmonic func-
tions

From the preceding definition
follows directly :

If the family of levels {L,} is
equi-locally-connected on F, each level L, is locally connected.

Let u(p) be a one valued real function, satisfying the following
conditions :

Fig. 1

(1) ‘u(p) is continuous.
(2) wu(p) is an open transformation.
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Then we obtain the following lemmas.

Lemma 1. wu(p) never attains its relative extremum on F.

Lemma 2. Fach neighbourhood of p contains both points above u(p)
as well as below wu(p).

This is evident from the condition (2) and Lemma 1.

Lemma 3. N,—L,,, and F—L,,, are open sets.

For L,,, is a closed set.

Each component of N,—L,,, or N,—L,,, is evidently a domain
by Lemma 3.

Lemma 4. FEach domain Q of N,—Ny,, and F—L,,, consists of
points above (below) u(p) only. )

If q,€Q is above u(p), q,€Q below u(p), we can join these two
points with a Jordan arc C within Q. Then there must exist at least
one point of L,,, on C [(1)], which contradicts the definition of Q.
Such Q is called the domain above or below wu(p).

Lemma 5. Any component of F—L, is not compact with respect to
F. ‘

Let Q be a component of F—L, then Q is a domain above or
below ¢ [Lemma 4]. If a domain Q above (below) ¢ is compact with
respect to F, there exists at least such a point ¢ on Q that u(p) at-
tains the maximal (minimal) value there. Since BQCL,, ¢ must be a
point of Q, which contradicts Lemma 1.

Lemma 6. Any component of the level ¢ is not entirely confined
in any neighbourhood N.

If LN it is possible to enclose L, with a Jordan curve C lying
inside N and C.L,=0, since each component of N—L, constitutes a
domain above and below ¢ [Lemma 4], if
a point on C is above (below) ¢, all the
points of C are also above (below) c¢. But
in any neighbourhood of a point on L,
there necessarily exist points below (above)
¢ [Lemma 2]. Therefore there must exist
a (with respect to F') compact domain below
(above) ¢ in the interior of C, which is
contrary to Lemma 5. )

Now we have the following theorem
which plays the most important role in this
paper.

Theorem 1. For o one-valued real function u(p) to be pseudo-har-
monic on F, it is necessary and sufficient that
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(1) w(p) is continuous,

(2) u(p) is an open transformation,

(3) the family of levels {L,} is equi-locally-connected on F
with possible exception of a discontinuum K.

We first derive some properties from the conditions (1), (2) and
(3).

i) Each L, is locally connected.

Suppose that L. is not locally connected at p€L,. Then since
each component of L, is not entirely contained in any neighhourhood
N we can choose a suitable neighbourhood N, with the following pro-
perty : :

In N, there are at least a countable number of components §{L‘'}
(t=1,2,...) of L,N,, which do not contain. p but possess it as an
accumulating point. Since each L’ has point
in common with 8N, [(Lemma 67, {L'} (i=
1, 2,...) accumulates to a continuum K con-
taining » and having a point in common
with BN,. Consider a point ¢ on K not
belonging to £ and BN,, then the family
of levels {L.} is not equi-locally-connected
at q, while the family of levels L.} is by
condition (3) equi-locally-connected at gq,
which is a contradiction.

ii) Ewven though N,—L,,, consists of Fig. 3
an infinity of its components §{D,} (n=1,2,...), any sequence of points
{oa} (D, €D, n=1,3,...) has no accumulating point in N,.

If p, € N, is an accumulating point of {p,}, we can choose a sub-
sequence of {pnvi converging to p,,
which we will denote again by {p,}
for the sake of convenience. Let
C be a Jordan arc possessing P,
and p, as end points and passing
through all », (n=2,3,...). Since
each component of F—L,,, inter-
sects BN, [Lemma 5], we can join
p, and a point ¢, suitably chosen
on BN, with a Jordan arc C, in
the interior of D,, so that C.C,
=1,. The sequence of points {q,}
has at least one accumulating point ‘ * Fig. 4
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¢, then there is a certain subsequence {¢. } of {¢.}, so that it con-
verges along BN, in positive or negative sense; we may once more
write it by i{g,}. For fixed n, four kinds of Jordan arcs:

- ,
I) subarc p,p.., of C,

II) Cp.ys
IITI) subarc ¢.9,.., of BN, that excludes the point ¢,..,
Iv) C,

bound a domain A,, and we have
A,A;=0 (i,7=1,2,...; i==)).
Then there exists in A, a subcontinuum X, of level ¢ which attains

a point q,’,eq:;],m from p,’.ep:;vm. {K,} (n=1,2,...) converges, how-
ever, to a subcontinuum K of level ¢ containing p, and q. This con-
tradicts i). :

iii)  pe L, is, in any neighbourhood N,, o common boundary point
of at least one domain wobove as well as below ¢, and yet of at most
finite number of them.

If p does not belong to the boundary of any domain above ¢, N,
must have the common parts with infinite number of domains £, above
¢ (n=1,2,...) (Lemma 2]. Suitable choice of p, € Q, causes p,—p for
n—co, hence {p,} becomes compact. This is impossible. Therefore p
is a boundary point of a certain domain above ¢. It i8 the same with
the domain below ¢. While, if » is a common boundary point of an
infinite number of domains Q, (=1,2,...) above (below) ¢, we can
choose p, € Q, so that {p,} may converge to », which is also contrary
to ii).. , v

Definition: In case pe L, is a common boundary point of the
sole domain above ¢ and a domain below ¢, it will be called an ordi-.
nary point, otherwise a saddle point.

iv) Let Q denote one of the domains above (below) ¢. Then every
point of BQ is accessible from the interior of Q.

Suppose that p€ 8Q is an inaccessible
boundary point of © and the decomposition Lec

QU,=30,

were possible for any N,. Suitably chosen
partial sequence of {p,} (p,€Q,n=12,...)
will converge to p. Join all these points in
succession with a Jordan arc C ending at
p, and we shall be lead to a contradiction
in the same way as in ii).

v) The set S, of all saddle points on Fig. 5
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L. has 70 accumlatmg point on L,.

Let {Qz} denote the family above and
blow ¢ lying inside an arbttrary neighbour-
hood N, of peL, and having p as their
boundary point, the number of which must
be finite, say » [(iii)]. Let p be a saddle
point, n==3 results. Let Q/.Q", Q'" be any
triple of members belonging to {Q,} (i=1,
2,...,n). Suppose that they have another
boundary point p, in common inside N,.
Then it will be possible to join 9, p, with
certain Jordan arcs C’, C”, C!" respectively in the interior of Q', O,

o [1v)] One of these arcs, say C’, is enclosed by the others except.
for both end points. ~ C’ consists, however, only of the points belonging

to O except the both ends p, »,, while C”, C"' contain no points of
Q'. Therefore Q' must be .compact with respect to. F, which is con-
trary to Lemma 5. This shows that three domains can posses only
one common, boundary point. Since  number m of domains above or
below. ¢ on F, which intersect the neighbourhood N,, is finite [ii)], the
number of the saddle points inside N, does not exceed ,H;.

vi) . Every component of L,—S, is’ homeo-
morphic to an open interval or closed Jordan
curve.

Let peL,—S; be an ordinary paint, p
becomes the common boundary point of the
sole domain Q* above ¢ and the sole domain
Q- below ¢. Then-we can properly choose N,
so that L.-N, may contain no boundary points
of domains other than Q* and Q- [v)]. There-
fore every point of L,-N, is the accessible
boundary point of Q- and *Q [iv)]. Thus we know in vertue of
Schénflies” theorem that L.-N, is a Jordan arc. Owing to Lindelof’s
covering theorem L.—S, can be covered by at most a countable number

of neighbourhoods, i.e. it is a union of a countable number of open
Jordan arcs.

Definition : If every components of N,—L,,, have the point p as
their common boundary point, N, is called a simple neighbourhood of.
the point p.

vii) There exists a simple meighbourhood N, for any point p.on
F, and each component of N,—L,,, i o Jordan domain. Moreover
any two domains above (below) u(p) do not neighbour one another.

Fig. 6

. Fig. 7
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There exists a neighbourhood N; for the
point p such that N, does not contain ‘any
saddle point on the level «(p) with possible
exception of p itself [v)]. Each component of
N;«Lyp,—p, which we denote by C, (i=1,2,
..., #), is homeomorphic to an open interval
(vi)] and L,.,, is locally connected [i)], so C,
is a Jordan arc and the number of C, having
p as its end point is finite, which we denote
by C,, C,, ..., C, in the order of positive sense.

Let p, be a point of C;,, Then we can join the points p; and p,.,
(i=1,2,..., n; Dy, =0p;) with a Jordan arc C; in the domain above

Fig. 8

or below u(p). Let the domain enclosed by the Jordan curve éC{, be
i=1

the neighbourhood N, of p. Then N, is a simple neighbourhood of p.

Next if two domains above (below) ¢ have an arc in common on
their boundary, «w(p) must take the relative minimum (maximum) on
it. This is impossible, i.e., the same kinds of the domains cannot
neighbour each other.

Definition. When N,—L,.,, contains » domains above %(p) holding
p in common, (n—1) iS called the order of the saddle point ».

viii) The set S of all saddle points on F has mo accumulating
point.

Suppose the set S has a point
p on F' as an accumulating point,
to which a certain sequence {p,}
(v=1, 2, ...) of saddle points
converges. Let N, be any one of
neighbourhoods of p, p, (v=n) are
all contained in its interior so far as -
n is taken sufficiently large. From
each point p, issue at least four
subarcs of the level «(p,) arriving
at AN,, which we denote by Cvl’
Cvz, Cv3, C\,‘l respectively, and their Fig 8
end points on BN, we denote by
»}, 05, Dy, Dy respectively.

The set {pi} (»=1,2,...;1=1,2,3,4) has at most two accumulating
points »’ and »” on BN,. Then we can choose a subsequence {C\"}ji
i=1,2,..;i=1,2,3,4) of C?,j, so that at least two arcs among
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Cy, Cij, C3, and C3, converge to the arc C of the level. u(p) frpm P
to p' or p" with j—oo. Let ¢ be an inner point on C not belonging
to E. It is evident that the family u(p,,) (/=1,2,...) is not equi-
locally-connected at q. This is a contradiction.

ix) The family {L.} of levels is : 5
equi-locally-connected on F except for ‘ : '
the saddle points. ‘(’P, P\Z
Let S be the set of all saddle points = # : g y
on F. If {L} is not equi-locally-con- i *

nected at p€ F—S, there exists a neigh- , =
bourhood N, of p which has the d » ol
following property :

It contains two sequences of points
{o,}, $p/} converging to p and satisfy-
ing the relation u(p,) = u(p{)=c,, while
they are not connected by L. in N,.

Take a simple neighbourhood as N,, and 8N, intersects each L%'
[Lemma 6], from which L., is divided into at least two Jordan arcs..
Each of them, that contains p,, ,, shall be denoted by K,, K, respec-
tively. Then {K,§ accumulates to the subarc K of the level «(p), which
contains p and has two end points on BN,. For if the sequences of
two end points p; and ¢, of K, converge to one point on. BN,, there
exists a point ¢ on K—FE, with respect to which {K,} is not equi-
locally-connected, but this contradicts the condition (3). Hence K must
be a cross-cut of N,. It is the same with K’ derived from {K;}, and
yet these two have no common point except for p. For if they have
a common point ¢'==p, K must coinside with K’ [Lemma 5], this con-
tradicts the condition (3). Hence p must be a saddle point, which is
a contradiction. )

Definition : Let N, be the neighbourhood of a point »p on F. When
the neighbourhood A, of p satisfies the following property :

Let q, and ¢, be any two points of the level u(p) in Q:N,, where
Q is the domain above or below u(p), then ¢, can be connected with
q. along L,,, in N,.

A, is then called an admissible neighbourhood of N,.

x) If N, is a neighbourhood of an arbitrary point p on F, there
exists an admissible neighbourhood of N,.

When p» is an ordinary point, the family of levels is equi-locally-
connected at p [ix)]. Therefore there exists an admissible neighbour-
hood A4, of N,.

Fig. 10
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When p is a saddle point, suppose
that there exists no admissible neigh-
‘bourhood of N,. - Then there exist
sequences of points {p;}, {g;} in the
domain of above (below) u(p), where
w(p;)=wu(q;) (i=1,2,...) and p; is not
connected with ¢, along the level «(p,)
in N,. We see easily in the same way
as in ix) that this is a contradiction.

Lemma 7. Let F be the Gaussion
plane and let q be an arbitrary point of
the admissible neighbourhood A, of N, Fig. 11
different from p. Then there exists o chain

(p, pl: pzy soey pn=Q)ENp

satisfying the following properties :

D ulp) <ulpy) <o < UPDu-1) < u(Pa)

or u(p) > u(pl) > cee > u(pn—l) > u(pn)’
II) for any given positive number &
lps—pi—llge (i=1, 2: seey 1’&).
Proof. Let C be a Jordan arc joining » and q (for example u(p)<

u(q)):

C: p=p(t) (0<tL1), p(0)=p, p(1)=gq.
Set
t'=sup {t: u(p(t))=u(p)t
'=p(t').
Then the following four cases
are possible :

a) |q—p <+, p=1p

o D™

b) [g—p'|<

|
S
i
'8\

=
! 8 !
c) lg—0|>%, p=*+p
4 8 — !
d) |g—9p'|>5, p=0p

In the case a), the chain (p,
q) satisfies the conditions I, II.
In the case b), p is connected Fig. 12
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with »' along the level u(p) in N,. Let p be the distance between
~ ~
BN, and the subarc pp' of the level u(p). Arc pp' is covered with a

finite number of open disks, K,, K,, ..., K,,, whose diameters are less
than }both -j’;— and p, and K,-K,,,=-0 (:1=1,2,...,m—1), peK,, p' €K,
~N
p ' - K=-0.

Set

¢ = min [max u(p), max u(p), ..., max u(p), u(q)] .
pe Ks peKs pPe Ky

Then we can choose points p,, D2, ..., Dn, Where D, € K and u(p,) = u(p)
+Z*———(“—;‘&(p)) (i=1,2,...,m). Therefore the chain (p, , ..., Pm, @) Satis-

fies the conditions I, II.
In the case c), let »” be such a point on C

that |p”—p’l§§ .

Set p" = p(t"),

b= min u(p(¢)),
<t<1

£ =sup (£ u(p(t)) = (b+u® ).

Then |p”’—-—p’|<%. Fig. 13
Therefore we can reduce our case to the case b) for the subarc

N N
pp"" of C and to the case d) or a) for the subarc p"’ p of C.
In the case d), let »” be such a
&

point on C that |p”—p|=7. Then
the following two cases are possible :
d") u(p") = u(q),

a”) u(p") < u(q)-

In the case d’) we can choose the
required chain in the same way as in
the case b).

In the case d”) repeat the above

process about the subarc zﬂ of C in-
stead of C. After a finite number of Fig. 4
times we can get the required chain.

Lemma 8. Let q be an arbitrary point of an admissible neighbour-
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hood A, of N} different from p and NjC N, Then there exisls a
Jordan - arc from p to q which intersects each level at most once in N,.

Proof. Let D; be the open disk with radius » and centre p, A4}
be the maximal open disk which is an admissible neighbourhood of D;,.

. . ;s b
- .Without loss of generality we suppose that N, is D; and Nj is Dj,
‘Therefore by Lemma 7 there exists a chain

(p’ pl’ ceey pn=q)ED1§; '

satisfying the following property ;

I _ u(p) < u(py) < .o < ulpn) -
) Ipz--p,_ll/é‘(l) where e(i)= inf (radius of A})
~ 4 ’ 4 pE D%

Apply Lemma 7 to the pairs of points p,-, and p;,, and we have
the chain
L : o 3
(P=10', DI, D5 Dy s De= D1, D1y +ens D5 =D, Dhets oo, D= @) €D}

satisfying the following properties;

1) u(p) < up) < .. < u(a) -
") |pi—pi.|< 8(l> where 6(i> — inf (radius of 4%) .
' 8 ’ 8 PG D”.?-l-%

If we continue this process indefinitely, we have a countable number
of points whose closure C is homeomorphic to the interval («(p), u(q))
by the function #(p). Then C
is the required Jordan arc.

Lemma 9. Let Q be one
of the domains above (below)
¢, possessing p, as & boundary
point. Then it is possible to
choose the subdomain D of Q
satisfying the following con-
ditions :

D can be mapped by some
homeomorphism onto the rec-
tangle R in the z-plane bound-
ed by x ==x1, y=2¢', so that
each level L, contained in D
corresponds to the segment
y=c cut off by v = *1. Fig. 15
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Proof. Let N, be a simple neighbourhood of p,. Without loss of
generality we can suppose that N,,o is an open disk in the z-plane.
Let »’ and ¢’ be points of BQ in N,,o. Two Jordan arcs C,, C, (C,-C,
=0) can be drawn from »' and ¢’ so that they intersect each level at
most once respectively [Lemma 8]. Let L, be one of the levels in-
tersecting C, and C,. Then the domain D bounded by L., C,, C; and
L, will be the required one. Let L{» = L.-D.

We shall show that L’ converges to L:”» with ¢’>c¢ in the sense
of Fréchet 2.

Let & be an arbitrary positive number. L{” is covered by a finite
€ \
number of {A%}, where p¢€ L{™.
Set

L?:p=0pt) 0t 1.
Let Ait be an admissible neighbourhood of D‘g;,i (i=1,..., n), where
v, = p. (t.), such that 0<¢,<...<t,=1.
There exist points »,=». (f;) and admissible neighbourhoods
A;‘,l of Df,i satisfying the following conditions :

1. 0=t < ty< . < ty=1.

2. peds  (i=12,..,0-1).

Let Ci{ be the subarc possessing p, of C, in Afs,l, C; the sub:irc
€ € €
possessing p, of C, in Ajf,n. Let D, be Agi . Ai,m (i=2,..,n-1).

There exists a positive number & such that the arc Ly intersects

i Ci and all D, (i=2,...,n—1) for |c—c'|< 8.
Let p;=p, (t,), »i=p, (1) and p;=p,, (t;) be the point on Cj,
C; and D, (i=2,...,n—1) respectively such that 0= ¢,<t,<...<t,=1.

~\
Then there exists a homeomorphism 7 such that subarcs p,0;..

2) It means that Fréchet distance between Lf_/’” and L.P’ tends to zero with ¢’—c,

where the Fréchet distance is defined as follow: Let T be a homeomorphism between

L?) and L,”’. Then inf (max (distance between p’==T'(p) and p)] is called the Fréchet
T per(®

distance between LY’ and L{?°.

M. Morse, A special parametrization of curves, Bull. Amer. Math. Soc, 42 (1936),
915-922,



A Topoiogical Characterization of Pseudo-tarmonic Functions 113

~
(i=1,2,...,n—1) of L{” correspond to subarcs p;p{,, (i=1, 2, ..., n
—1) of Lif” respectively.

o O : . .
Since p,p;., and p;p;,, are contained in C‘;;,t whose diameter is &,
the Fréchet distance ? between Li» and Lif” is less than & Therefore
L” converges to L™ with ¢’—c in the sense of Fréchet.

Let x be the p-length?® of subarc 51_:1 of L, and q(u, ¢) be the
function corresponding the point ¢ on F and the point x+%c on the
z-plane. ' Then ¢(y, ¢) is continuous.®

Setting #*=2(%—%), where pu, denote the u-length of L,

a(x*, ¢) maps D onto the rectangle R.
Thus our conclusion has been verified.
Proof of Theorem 1. Since the necessity of the conditions (1), (2)

and (3) is evident, we shall show that they are sufficient. First let

p be an ordinary point. There exists a simple neighbourhood N, as

follows :

above

Q—I-
}, the sole domain of 5{
Q- below

| upy=cin N,

R+
is mapped topologically onto the rectangle { R—} in the z-plane bound-

cl
ed by z=+1, y=c and y = gc”} (¢! <e< ¢, so that the level

(e<co=c")
{(c” <c,Zc¢)
Furthermore, R = R+*+ R~ becomes a topological image of the
whole N,. '
Let p =T(z) denote this homeomorphism, and we have in N,, i.e.
in R

% may correspond to y =c¢, [Lemma 97.

3) Let a curve C have a representation »(#), (0<¢<1). Let 7;0<t), <to<...<t,<1
be a set of values of £ on the interval (0, 1). We introduce the number

mp=max [ min (dist. p(Z;)p(t.+1))] .
T l<i<n-1

Set

o M2y M3 May
u 2+4+8+ ,

We call » the u-length of the curve C.
H. Whitney, Regular families of curves, Annals of Math. 34 (1933), pp. 244-270.
M. Morse, A special parameterization of curves, l.c.
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u(p) =u(T(2)) =U(2) =Jz .
Second, let p be a saddle point of order (n—1), N, be a simple
neighbourhood of p.
Then
N,— Ly =Z;.:(Q§+ﬂ{)

where Q* and Q- denote respectively domains above and below ¢
possessing the sole point p as a common boundary point, and situated

cyclically in the order Qf, Q7, Q5, Q;, ..., Q+, Q.. The subdomain
ID;I, of IQ{} is mapped topologically onto the rectangle {R+} in ¢
lD{l ]Q{ PD DPOLOgL y on s g R- n ¢-

!
plane ({ =§&+1iy) bounded by s = £1, y=c¢ and y = {c”} (e"<ec"),
c

(e=c,=c")
(e"<Ley<Le)

U(x)=Rz"+c¢ is the harmonic function with a saddle point
of order (n—1) at z=0. The niveau curve U=c divides any
circle |z|<p (for sufficiently large p) into = sectors above c¢ ;
oi, 03, ..., on and n sectors below ¢; o, o3, ..., oa alternately. The

so that the level ¢, % may correspond to ¥y = ¢, [Lemma 97.

o . R*’l .
} topologically onto the rectangle { PRI the

o;

. D;

subdomain {D'} of §
i

!

¢_plane bounded by & ==+1, y=c and y — gc } ("< e<¢"), so that the

C”
(e=<c,=c')
(¢"<cy=c)

Hence there exists a topological transformation p = T'(z) from the
subdomain |z|<p’' (p'<p) of |z|<p to the subdomain N/ of N,, so
that the level ¢, with respect to U(z) in |z|<p’ may correspond to
the level ¢, with respect to #(p) in N,. Then wu(p)=u(T(z))=U(z).
Thus the proof is completed.

We see that we can replace the condition (3) in Theorem 1 by

the following weaker condition (3) :

(3) There is mo pair of sequences of continua {C;} and {C;}
converging to a continuum, where C, and C{ are subcontinua
of the same level ¢, having common point each other.

Theorem 1'. In order that a real function u(p) on F is pseudo-har-

monic it is necessary and sufficient that w(p) satisfies the conditions
(1), (2) and (3)'.

level c, { } may correspond to ¥y = ¢, [Lemma 97.
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§2. The conjugate pseudo-harmonic functions and its applications.

Let u(p) be a pseudo-harmonic function on F and »(p) be a real
valued function on F. When, for a neighbourhood of any point on F,
there exists a homeomorphism T' by which N corresponds to a%+y*1
in the z-plane, and V(z) =v(T(z)) is the conjugate harmonic function
of U(z)=u(T(z)), the function »(p) is called the conjugate pseudo-
harmonic function of u(p).

Theorem 2. Let u(p) be ¢ pseudo-harmonic function on F. For
a real valued function v(p) to be a conjugate pseudo-harmonic function
of u(p) on F it is necessary and sufficient that

a) o(p) is continuous,

b) w(p) is an open transformation,

c) any continuum on each level of wu(p) does mot correspond to

one value by v(p).

Proof. Since the conditions a), b) and c) are evidently necessary,
we shall show that they are sufficient.

Let us denote by L* and L? the levels ¢ of u(p) and v(p) respecti-
vely.

i) Let p be ¢ point on F and N, be a
neighbourhood of p. Each component of LI
in the domain above (below) wu(p) in N,
intersects every component of §L¥} at most
once.

Suppose that a component of L? inter-
sects a component of LY at two points p
and ¢q. There exists at least an open arc

C on the subarc p/:z of LY such that any
point on C is not on L? [c)]. Then there
exists a domain D bounded by C and L.

Put w(p) = u(p) + tv(p) . v

Then w(p) is a continuous function on D, therefore w(p) is bound-
ed in D. On the other hand D must be mapped onto the domain
bounded by # =¢’ and v =c¢ by w(p), so that w(p) is not bounded in
D, which is impossible.

ii) Any component C of LP in a suitable neighbourhood N, of an
ordinary point p of u(p) consists of a Jordan arc with its two end

points on BN,.
We may suppose that {L:‘,} are parallel lines in N, [Lemma 9].
C is distinct from a point [Lemma 6]. Then owing to i) C is a Jor-
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dan arc. Moreover C separates at least two domain above ¢ and
below ¢ [Lemma 27, so that two end points of C is on BN,.

iii) Any component Ct of L7, in a simple neighbourhood N, of an
ordinary point p with respect to w(p) intersects at most one component
of L.

Suppose that C? intersects
two components C} and C} of
L?. Since there is no saddle

point of u(p) in N,, there v
exists such a subarc Cy of L”,
near C* that CY intersects CY wsc’ w=C
and Ci.
Fig. 17

Put w(p) = u(p)+7iv(p).

Let D be the domain bounded by C%, C%, C} and C:. W(p) is con-
tinuous on D. On the other hand D is mapped by w(p) onto the
domain bounded by u =¢’, u =c¢”, and v = ¢, so that w(p) is not boun-
ded in D, which is impossible.

iv) The family of levels {L}} is equi-locally-connected at an ordi-
nary point p of u(p). .

Suppose that the family of levels {L:} is not equi-locally-connected
at an ordinary poinl p of «(p). If we choose a suitable neighbourhood
N, of p, there exist two sequences of points {p,} and {p;} (n=1,2,
...), such that v(p,) =v(p,), C,+C;, =0 where C, and C] are the subarcs
of Ly,~ and Lj.,~ containing p, and p; respectively, and {C,} and
{C:} converge to the subarc of the level v(p) containing p. Let q be
an inner point of C. Then the Jordan arc of L%, containing ¢ must
intersects C, and C} for sufficiently large number n. This contradicts
iii).

: v) v(p) is pseudo-harmonic on F.

The family of levels {L?} is equi-locally-connected on F except
for the saddle points of %(p) on F [iv)]. Therefore v(p) is pseudo-
harmonic on F' [Theorem 1]. Then we can see easily that a compact
domain D, bounded by levels v =¢,, u =¢,, v =¢} and v =¢} and con-
taining no saddle point of «(p) and v(p), are mapped topologically onto
the rectangle R on the z-plane bounded by x =¢,, + =¢,, y=c{ and
y = ¢}, such that the levels # =¢ and v =¢' correspond to 2 = ¢ and
y =-¢' respectively. Let » be an arbitrary point on . As in Theorem 1
there exists such a homeomorphism »=7T(z) in a certain N, that
v(T(z)) is a conjugate harmonic function of #(7(z)) in N,. Thus the
proof is completed,
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Definition : Let p, and p, be two points on F' and let Np, and Np.
be neighbourhoods with Njp,-Np,=1-0. Let u,(p) and u,(p) be pseudo-
harmonic in N, and in N, respectively. When u,(p) = u,(p) in Ny,
Np., uy(p) will be called a direct pseudo-harmonic continuation of
uy(p).

Let p,, Dy, ..., P, be the points on F and Np,, Nps, ..., Np, be
such neighbourhoods that Np;Np., =0 (i=1, 2, ..., n—1). Let
u,(p) be pseudo-harmonic in Np, (i=1, 2, ..., n) respectively and let
u,..(p) be a direct pseudo-harmonic continuation of u,(p).

Set
uy(p) in Np,
uy(p) in Np,
U(z) = . .
un(fp) in an

(U(z) is pseudo-harmonic in ﬁ] N 5, but not always one valued.) Then
=1

U(z) will be called a pseudo-harmonic continuation of u,(p).

Theorem 3. Let u(p) be pseudo-harmonic on F. Then there exists
always a conjugate pseudo-harmonic function.

Proof.

I) There exists a family of curves {C} satisfying the following
conditions :

a) On the ordinary point of u(p) they do not intersect each other,
and on the saddle woint of w(p) with order n—1 just n curves of them
intersect each ether.

b) Fach of them is not compact with respect to F and intersects
each level of u(p) at most once.

c) They cover every points on F.

Let a countable number of points p,, 9, ..., D, ... be dense on F,
There exist a countable number of neighbourhoods {Ng,} (i=1, 2, ...)
such that the levels of #(p) in Ng, correspond to the levels of Rz™
(1=m<o0) in |2|< 1 by homeomorphism T, [Proof of Theorem 17, and

oo k
>INg,=F, but >INg,=+F (k< 20). Let pIENqil. We can draw from
i=1 i=1

p, a Jordan arc with two end points on ,(:’Nq,1 such that it intersects
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each level of u(p) at most once. Let one of end points be contained
in Ng,,. Then we can extend its Jordan arc as far as a point of BNy,
If we continue this process indefinitely, we can get a curve C,
satisfying the condition b).
Let C,, C,, ..., C, be curves satisfying the conditions a) and b).

Let p,, s, ..., »; be points on >'C, and p,,, be not on >)C..
i=1 i=1

We can draw such a Jordan arc that it intersects each level of
u(p) at most once and does not intersect C, (1<i<n). Therefore we
can get the curve C,,, containing p;,, such that it satisfies the condi-
tion b) and does not intersect C, (1<i<n). Then we can draw a coun
table number of curves {C,} (i=1, 2, ...) such that they are dense on
F and satisfy the conditions a) and b).

There exist consequently a family of curves satisfying the condi-
tions a), b) and c).

II) There exists a continuous real function v(p) on F such that
its levels coincide with the family of curves {C} and v(p) is monotone
on each level of u(p).

When we can not draw any closed curve intersecting the family
of levels of u(p) at most once, let L° be a component of one of the
levels of u(p). We can define a continuous and monotone real bounded
function v(p) on L°. Let us extend v(p) to the curves of {C} intersecting
L° such that each value v(p) on C is the same value of v(p) on the
point of intersection L°:C. Let D be the domain on which »(p) was
defined. Let C,, C,, ... be all boundary curves of D and let L, I3, ...
components of levels of u(p) intersecting C,, C,, ... respectively. Then
be the we can extend a continuous and monotone real bounded function
v(p) to the parts L' contained in the complementary set of D. Let us
extend v(p) to the curves of {C} intersecting L' such that each value
v(p) on C is the same as v(p) on the point of intersection L’-C.

If we continue this process indefinitely, we can define »(p) on every
point of F.

When we can draw a closed curve intersecting the family of levels
of u(p) at most once, let F’ be the universal covering surface of F.
If we define U(p') on F' at p’ covering p€F by U(p') = u(p), we can
not draw any closed curves on F' intersecting the family of levels of
U(p') at most once.

We can define a continuous monotone real function V(p’) on F'
such that, if Np; and Np; are the neighbourhoods on F’ covering the
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neighbourhood of N, of a point p on F and have no branch point,
V(q;)—V(q}) = const., where q1€Npy, q;€ Np; and they ‘cover ¢ €N,.
Then we can define the required function v(p), which is many valued
on F.

IIT) o(p) is the conjugate pseudo-harmonic function of u(p) on F.

Since »(p) is evidently an open transformation, v(p) satisfies the
conditions a), b) and c). Therefore v(p) is the conjugate pseudo-
harmonic function of u(p) [Theorem 2.].

Remark : When the function v(p) is a many valued function, let
v,(p) and v,(p) be two branchs of v(p). We can always choose v(p)
such that v,(p)—v,(») = const., so in this paper the conjugate pseudo-
harmonic function of #(p) means such a function v(p). '

Theorem 4. When u(p) is a pseudo-harmonic function on F, we
can choose local parameters such that F becomes o Riemann surface
and such that u(p) is harmonic on F.

Proof. Let v(p) be the conjugate pseudo-harmonic function of
u(p) on F. Then there exists a homeomorphism 7T, between N, of
each point p on F and |z|<1 on the z-plane such that u(T,(z)) and
v(T»(2)) are conjugate harmonic function in |z|<1.

Set

Wi(z) =u(Ty(2)) + Tv(Ty(2)).

Then W(z) is analytic in |z|<1.
Let Np, and Np, be neighbourhoods of p, and p, respectively such
that NPI.NPZZ‘:O'

7— -/ __ -7
2 (Tp,(2) Ve (Wp,(Z) +const. )
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" Then Wp,(2) +const. = Wp,(2) [Remark), if v»(p) is one valued
" function the const. = 0. Let Tp, and Wpi(¢) be the inverse functions
T p, and W py(z) respectively, where ¢ = u+iv.

Then Tpx(T5,(2)) = Wps(W p,(2)+const.) and W p(W p,(z)+const.) is
analytic. Hence if we choose {T,} as the local parameters on F, F
becomes a Riemann surface, and u(p) is harmonic on the Riemann
surface F. o

Now we shall study the relations between the pseudo-harmonic
functions and the interior transformations defined as follows:

The transformation I(p) from the surface F to the surface F'/ is
called an interior transformation, when I(p) satisfies the following con-

" ditions :

1. I(p) is continuous on F'.

2. I(p) is an open transformation.

3. I(p) does mot transform any continuum on F to one point on
F,

Theorem 5. In order that the complex valued function I(p) is an
interior transformation it is necessary and sufficient that RI(p) and
JI(p) are the conjugate pseudo-harmonic functions of each other.

Proof. Since the sufficiency of the condition is evident, we shall
show that it is necessary. It is evident the RI(p) and JI(p) satisfy
the conditions (1) and (2) in Theorem 1.

Suppose that RI(p) does not satisfy the condition (3) in Theorem
1.

Then there exist a pair of sequences of continua {C,} and {C{}
converging to a continuum C, where C, and C; are subcontinua of
of the level ¢, of RI(p) having no common point each other and C, is
a subcontinuum of the level ¢, of RI(p). '

Let p, and g, be points on C, in a neighbourhood of p € C, such
that JI(p)=+=JI(q). We may suppose for the sake of convenience that
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C
{C,} and {C;} are in N,. Let {p’} and 3'qi} be points on { ’} res-
q C;

b, i
. pﬂ qt . .
pectively such that %p,]; — P, and {q’ —q, with i—co.
(4 1

Let C be a Jordan arc such that C passes through all points p,

and p{, and that any subarc gﬂ; of C has a point p, on it. Let C’
be a Jordan are such that it passes through all points ¢, and ¢; and

that any subarc p:\p; of it has a point gq,.
We can choose the neighbourhoods Np, and Ny, such that

)~ 1) < [ I0)~K@)| DN,
| )~ 1) | < 1 (p)—1(@)] a € N,

For sufficiently large number % the images of arc p, p, and arc

¢ ¢; by I(p) are in the circles
|0—1(90)| <5 1100}~ F(a)|
and
| X(go)| <5 | (P)~1(40)]

respectively. Therefore I(p) are unbounded in the compact domain

bounded by the subcontinua of C, and C/, arc p,,,\p,’,, and arc q,,,q\;,, which
contradicts the condition 1. Since RI(p) satisfies the condition (3'),
it is a pseudo-harmonic function. By the condition 3 JI(p) satisfies
the condition (c¢) in Theorem 2. Therefore II(p) is a conjugate pseudo-
harmonic function of RI(p).

Then we can easily proof the following Stoilow’s theorems.”

Theorem I. Let I(p) be an interior transformation from F to F,,
and let q be a point on F such that q=I(p,). There exist neighbour-
hoods N p, and Ng such that N p, corresponds by I(p) topologically to Ngq
or the island (Insel) on Ng consisting of a finite number of sheets with
only one branch point.

For we can apply Theorem 5, if we map topologically Ng to
|z]<1 in the z-plane.
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Theorem II. Let I(p) be an interior transformation from F to
the Gaussian plane. Then there exists a transformation T from F to
o Riemann surface R' such that I(T(p')), p' € F, is analytic.

This is evident from Theorem 5 and Theorem 4.
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