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射影法を用いて保存則を発見するニューラル常微分方程式 

 

松原 崇 

大阪大学 大学院基礎工学研究科 

 

1．はじめに 

ニューラルネットワークは画像や自然言語の

処理で目覚ましい成果を上げているが、力学系の

モデル化にも盛んに研究されている。対象となる

のは、物理シミュレーションにおける化学的ダイ

ナミクス、気候変動予測や天気予報のための気候

ダイナミクス、自動車やロボットの物理的ダイナ

ミクスなどがある。その歴史は少なくとも 1990

年代に遡り、多くのアプローチが提案されてきた。

近年提案された、ニューラル常微分方程式

(NODE)は、連続時間ダイナミクスのためのニュ

ーラルネットワークを再定義した。対象となるシ

ステムはシステムの状態を用いた常微分方程式

(ODE)で記述できる。NODE はベクトル場をニュ

ーラルネットワークに置き換え、数値積分を用い

て解を求める。 

実世界のほとんどのシステムには、時間の経過

とともに変化しない量である「保存量」が存在す

る。あるシステムが保存量を持つとき、初期値に

対して、解は保存量の等高線に留まる。これまで、

保存量に関する事前知識を取り入れることで、対

象システムを正確に学習することが試みられて

きた。Greydanus らは、ハミルトン方程式をニュ

ーラルネットワークで近似し、ハミルトニアンと

呼ばれるシステムのエネルギーを保存するハミ

ルトニアンニューラルネットワーク(HNN)を提

案した(1)。Finzi らはグラフニューラルネットワ

ーク等を利用して線形運動量と角運動量を保存

するアーキテクチャを提案し(2)、また HNN を拡

張してホロノミック制約を持つシステムを扱え

るようにした(3)。松原らは、離散化された偏微分

方程式(PDE)の質量を保存するモデルを提案した

(4)。これらの研究によって、ニューラルネットワ

ークは対象システムの保存量に関する事前知識

をより取り入れることで、ダイナミクスをより正

確にモデル化できることが証明された。 

これまでの研究では、主に既知の保存量を保存

することが目的であった。しかし、ニューラルネ

ットワークが未知の対象システムを学習する状

況では、対象システムの保存量も未知であること

が予想され、上記のどの手法が有効であるかは明

らかでない。そこで本稿では、データから保存量

を発見し保存する手法を提案する。この手法は、

データから様々な種類の保存量を同じ枠組みで

発見し、保存しつつ予測できる。また、HNN の

ような既知の保存量を保存するように設計され

たニューラルネットワークと組み合わせること

が可能である。 

 

2．手法 

2.1 準備 

システム
𝑑

𝑑𝑡
= 𝑓(𝑢)を考える。𝑢 ∈ ℝ𝑁は𝑁次元

の状態、𝑓はベクトル場である。ある量𝑉(𝑢)が

補 z ン料であるとは、任意の解𝑢(𝑡)についてそ

の値が一定であることである。つまり
𝑑

𝑑𝑡
𝑉(𝑢) =

0である。システムが少なくとも𝐾個の局所的に

線形独立な保存量𝑉1, … , 𝑉𝐾を持つとき、初期値

𝑢0から得られる解𝑢(𝑡)は(𝑁 − 𝐾)部分多様体 

ℳ = {𝑢 ∈ ℝ𝑁: 𝑉𝑘(𝑢) = 𝑉𝑘(𝑢0) for 𝑘 = 1, … , 𝐾} 

上に存在する。よって、点𝑢において、ベクトル

場𝑓はこの部分多様体の接空間 

𝑇𝑢ℳ = {𝑤 ∈ ℝ𝑁: ∇𝑉𝑘(𝑢)⊤𝑤 = 0 for 𝑘 = 1, … , 𝐾} 

上にある。このとき 

𝑑

𝑑𝑡
𝑉𝑘(𝑢) = ∇𝑉𝑘(𝑢)⊤ 𝑑

𝑑𝑡
𝑢 = ∇𝑉𝑘(𝑢)⊤𝑓(𝑢) = 0  

なので、量𝑉𝑘が保存されることがわかる。 

NODE や HNN のような、ニューラルネット

ワーク等で実装された基盤となるモデル
𝑑

𝑑𝑡
𝑢 =

𝑔(𝑢)を想定する。対象システム
𝑑

𝑑𝑡
= 𝑓(𝑢)の観測 
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データを用いて、この基盤となるモデルを訓

練し、数理モデルを得ることが可能である。し

かし、その結果は常にモデル化誤差を含む。

NODE は一切の保存量を仮定しておらず、HNN

もエネルギー保存則しか仮定していない。よっ

て、実際に予測に使うと、モデル化誤差が蓄積

し、短期間で全く異なる無意味な結果を導いて

しまう。 

2.2 提案手法 

そこで、ニューラルネットワークによって、

データから保存量を同定し、それを保存しつつ

予測を行うことを考える。なお、簡単禍のため

2.1 節と同じ変数を用いるが、ここからは対象シ

ステムではなくニューラルネットワークについ

て議論することに注意されたい。 

𝐾個の出力を持つニューラルネットワークを

導入し、各出力が１つの保存量𝑉𝑘 ∶ ℝ𝑁 →

ℝ (𝑘 =  1, . . . , 𝐾) を学習すると想定する。保存量

の集まりをベクトル 

𝑽(𝑢) = (𝑉1(𝑢), 𝑉2(𝑢), . . . , 𝑉𝐾 (𝑢))
⊤

で表現する。提案手法が作るベクトル場を𝑓とす

る。𝑉𝑘は保存量なので、𝑀(𝑢) =
∂V(u)

𝜕𝑢
とすると 

𝟎 =
𝑑

𝑑𝑡
𝑽(𝑢(𝑡)) = 𝑀(𝑢)

𝑑

𝑑𝑡
𝑢(𝑡) = 𝑀(𝑢)𝑓(𝑢) 

が拘束条件となる。また、𝑓(𝑢)は𝑔(𝑢)に近いこ

とが望ましい。つまり 

min𝑓‖𝑓(𝑢) − 𝑔(𝑢)‖2

 𝑠. 𝑡.  𝑀(𝑢)𝑓(𝑢) = 0 

なる最適化問題を解きたい。ラグランジュの未

定乗数𝜆 ∈ ℝ𝐾を用いて

𝜕

𝜕𝑓
(‖𝑓(𝑢) − 𝑔(𝑢)‖2 + 𝜆⊤𝑀(𝑢)𝑓(𝑢)) = 0 

より、 

𝑓(𝑢) = 𝑔(𝑢) − 𝑀(𝑢)⊤𝜆

であり、これを解くと 

𝑓(𝑢) = 𝑃(𝑢)𝑔(𝑢), 

𝑃(𝑢) = 𝐼 − 𝑀(𝑢)⊤(𝑀(𝑢)𝑀(𝑢)⊤)−1𝑀(𝑢)

を得る。これは一種の射影法であり、ベクトル

場を射影することで保存量が保存されることを

保証する。 

 基盤となるモデル𝑔の訓練と同じように、提

案手法𝑓を訓練できる。𝑓は𝑔と𝑽の組み合わせで

できているため、２つのニューラルネットワー

クを同時に訓練すると考えることができる。も

しくは、𝑓という非常に特殊な構造をした１つの

ニューラルネットワークを訓練すると考えても

よい。いずれにせよ、自動微分を用いることで

簡単に勾配を計算することができ、確率的勾配

降下法によって訓練できる。 

 無論、学習された保存量𝑉𝑘が対象システムの

真の保存量と一致するとは限らず、少なくとも

モデル化誤差を含む。しかし、保存量が存在す

るという仮定によって、より精度の高いモデル

化が可能であると予想される。 

3．実験 

3.1 実験設定 

表 1 にある保存量を持つシステムを用いて、

提案手法と基盤となるモデルの比較評価を行っ

た．2 次元配置空間上の重力二体問題は、正準

形式の典型的なハミルトン系である。全エネル

ギーに加えて、空間の対称性に関係する保存

量、つまり𝑥方向と𝑦方向の線形運動量と角運動

量を持っている。二重振り子は、極座標におい

てハミルトン系である。しかし、それを直交座

標に変換すると、ハミルトン系ではなくポアソ

ン系になる。二本の振り子の長さと二つの重り

の移動方向がホロノミック制約となり、それぞ

れが対応する保存量を持つ。エネルギーを含め

て５つの保存量がある。フィッツフュー＝南雲

モデルは、生物の神経細胞を電気回路としてモ

対象システム ダイナミクスの分類 次元数𝑁 保存量 

重力二体問題 正準形式のハミルトン系 8 エネルギー、線形運動量、角運動量

二重振り子 ポアソン系 8 エネルギー、ホロノミック制約 

フィッツフュー=南雲モデル ディラック構造 4 キルヒホッフの法則 

表1：検証データセット 
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デル化したもので、スパイクと呼ばれる急激な

電圧変化を示す。電気回路はその回路のトポロ

ジーとキルヒホッフの電流・電圧則によって拘

束されたシステムとみなすことができる。イン

ダクタとコンデンサに流れる電流と印加される

電圧を状態とすると、４つの状態に対して２つ

の拘束があり、二つの保存量がある。抵抗器に

おけるエネルギー散逸のため、ポアソン系では

なく、ディラック構造を持つとみなされる。た

だ、ページ数の都合で詳細は省略する。 

数値積分は Dormand–Prince 法(dopri5)を用い

た。保存量𝑽、NODE、HNN を隠れ層二層の全

結合ニューラルネットワークで実装した。各隠

れ層は 200 ユニットで構成され、tanh 関数を活

性化関数として持つ。重みは直交行列として初

期化した。二重振り子は二次の常微分方程式で

あり、位置の時間微分は状態の一部である速度

として既知であるため、加速度のみをニューラ

ルネットワークの出力として扱った。

また、最小化する損失関数として、１ステッ

プ誤差を用いた。具体的には、真の状態と前の

ステップから予測した状態の平均二乗誤差

(MSE)である。学習には Adam を用い、バッチ

サイズ 200、学習率は10−3に初期化し、コサイ

ン波に従ってゼロまで減衰させた(5)。

評価指標として、損失関数と同じ１ステップ

誤差を用いた。まとめる際に見やすいよう 109

倍した。状態やエネルギーの予測誤差は、状態

が発散した場合に非常に大きくなってしまった

り、位相のずれに鈍感であったりするので、代

わりに valid prediction time (VPT)を用いた(6)。こ

れは初期値問題において、予測状態の MSE が閾

値を初めて超えるまでの時間を、時系列長 𝑆 で

割ったものである。VPT を求める前に、状態の

各要素を学習用データセットで平均 0、分散 1 

となるように正規化し，閾値を 0.01 とした。 

3.2 ハミルトン系からの学習 

基盤となるモデルとして HNN を用い、提案

手法を二体問題データセットからの学習で評価

した。予備実験で、提案手法は HNN のハミル

トニアン𝐻を保存量𝑉𝑘の一つとして扱わない方

が良い性能を得られることがわかった。5 回の

試行の中央値と標準偏差を表 2 左端にまとめ

た。提案手法は𝐾 = 1～2で単なる HNN より優

れた VPT を達成し、𝐾 = 3で急に性能が低下し

た。提案手法が、HNN のハミルトニアン𝐻に加

え、２つの保存量を発見したことを示唆してい

る。二体問題はハミルトン系であり、HNN で学

習可能なはずであるが、ハミルトニアン𝐻以外

の保存量が存在するという事前知識が、より良

い学習を導くことが分かる。提案手法を用いる

と 1 ステップ誤差が悪化したことから、提案手

法を用いない HNN は短期的な変化に過適合し

重力二体問題 二重振り子 フィッツフュー=南雲モデル

K MSE VPT MSE VPT MSE VPT 

 基盤 0 5.17 0.362 0.82 0.110 73.66 0.236 

 提案手法 1 7.10 0.374 0.75 0.156 54.18 0.127 

2 7.78 0.450 0.73 0.198 37.03 0.437 

3 >1000 0.147 0.69 0.411 >1000000 0.007 

4 >1000 0.101 0.77 0.395 

5 >1000 0.080 0.80 0.585 

6 >1000 0.070 12.53 0.005 

表 2：実験結果 
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ており、長期的なダイナミクスを予測すること

が困難であることが示唆される。 

 

3.3 未知のシステムからの学習 

その他のデータセットに対し、基盤となるモ

デルを NODE とした結果も表 2 にまとめた。二

重振り子データセットにおいて、提案手法は𝐾=

1から5の範囲で 1 ステップ誤差と VPT を改善し

た。特に、𝐾 = 5では、VPT がベースラインの 5

倍以上となった。二重振り子では、システムエ

ネルギーに加えて、位置に２つのホロノミック

制約があり、速度を含む２つの制約を導く。従

って、提案手法が𝐾 = 5で最良の VPT を得、

𝐾 > 5で破綻するのは理に適っている。フィッツ

フュー＝南雲モデルはエネルギー保存系ではな

いが、キルヒホッフの電流・電圧則が状態を拘

束し、二つの保存量を導く。𝐾 = 2で 1 ステップ

誤差と VPT が非常に良くなった。二重振り子の

場合は𝐾 = 5、フィッツフュー＝南雲の場合は

𝐾 = 2と、提案手法はすべての保存量を見つける

ことができたと言える。 

 

4．まとめ 

 本稿では、ニューラルネットワークを用いて

対象システムの保存量を同定し、それを用いる

ことでより良いモデル化と予測を実現する手法

について紹介した。提案手法は、ニューラルネ

ットワークが保存量を学習すると仮定し、時間

発展を定義した部分多様体に射影することで、

データから保存量を発見し保存できる。適切な

数の保存量の存在を仮定すると、基盤となるモ

デルよりもはるかに長い時間、将来の状態を正

確に予測できる。提案手法は、システムのエネ

ルギー、運動量、制約に関する保存量を全く同

じアプローチで発見し保存できる。そのため、

提案手法は未知の力学系の性質を明らかにし、

科学的な発見に貢献することが期待される。 
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