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深層学習を活用したガラスの構造緩和を決定する 

特徴量を抽出する技術の開発 

金 鋼 

大阪大学 大学院基礎工学研究科 

 

1．はじめに 

多数の分子が集合した複雑分子系、柔らかな分

子系、ソフトマターなどと称される物質は高分

子・液晶・ガラスなどを含みさらに水そのものや

生体膜まで対象を拡大したものを総称しており

物理、化学、生物、工学を幅広く跨る学際領域を

形成している。特に、分子が凝縮することによっ

てガラス転移で見られる遅いダイナミクスを示

す共通性質に着目し、遅いダイナミクスの本質を

理解することを基礎的問題として捉え、ソフトマ

ターにおける協調運動や自己組織化の統合的な

解明に注力している。そこで、ガラスの遅いダイ

ナミクスに対する分子動力学(MD)シミュレーシ

ョンによる研究をおこない深層学習の融合研究

を実施した。 

 

2．研究内容 

2.1 説明可能な深層学習による反応座標探索 

タンパク質の構造変化などの複雑分子系にお

いて、安定状態をつなぐ遷移経路を特徴づけるこ

とは遅いダイナミクスの時定数を特定する上で

重要課題である。そのため原子位置に関する高次

元の配置座標から決まる集団変数𝑄に関する確

率分布関数𝑃ሺ𝑄ሻをサンプリングし、その対数を

取ることで平均力ポテンシャル(potential of mean 

force; PMF)𝐹ሺ𝑄ሻ ൌ െ𝑘஻𝑇 ln𝑃ሺ𝑄ሻが計算される。

PMF は自由エネルギー地形とも呼ばれ、安定状

態は鞍点により区別され、さらに実際の経路が鞍

点を通過するとき、変数𝑄は構造変化を特徴付け

る反応座標といえる。本研究ではアラニンジペプ

チドの立体配座が変化する異性化過程に着目す

る。真空中ではエネルギー的に安定な 2 状態であ

る β シート構造(状態 A)と α ヘリックス構造(状

態 B)が存在することが知られ、遷移状態(TS)を特

徴付ける候補変数として二面角(φ, ψ)が重要視さ

れてきた(Fig. 1)。先行研究では MD 計算と機械

学習を用いた二面角の系統だった探索方法が提

案されている。さらに原子間距離も集団変数とな

り得ることを考慮すると、異性化過程のより精緻

な記述が期待できる。そこで、原子間距離を候補

変数として説明可能な深層学習を行うことでど

の原子間距離が適切な反応座標となり得るかを

明らかにすることを目的とした。 

2.2 深層学習によるガラス形成液体の温度変化

に伴う構造変化の解明 

(b) 

Fig 1. (a) Alanine dipeptide molecule and 
number of each atom. (b) PMF with dihedral 
angles 𝜙,𝜓  as variables. Committor 𝑝஻  is 
widely distributed and the dividing line is not 
clear. 
  

(a) 
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液体を冷却しても結晶化が阻害されると、融点

以下の液体状態が維持されガラスになる。ガラス

形成液体の構造緩和時間は温度の低下とともに

急激に遅くなりガラス転移温度で非晶質構造が

凍結する。このガラス転移現象をもたらす何らか

の特徴的な静的構造があるかという点について

は多くの研究がされている。近年、機械学習を用

いてガラス形成液体の構造における特徴量を抽

出する研究が多数報告されている。注目すべきは、

畳み込みニューラルネットワーク(CNN)やグラ

フニューラルネットワーク(GNN)といった最新

の深層学習技術が応用されていることである。例

えば、GNN を用いればガラス形成液体の構造と

動力学を学習し、従来の機械学習手法より高い性

能予測を示すことが報告されている。さらに

CNN による画像認識を応用すると、ガラスと液

体の構造分類とその分類根拠となる特徴的構造

が抽出されることも報告された。本研究では

GNN によって異なる 2 つ温度のガラス形成液体

の構造を分類することを目指した。 

 

3．計算手法 

3.1 説明可能な深層学習による反応座標探索 

真空中のアラニンジペプチドの異性化過程に

ついて MD 計算を行い、TS 近傍の分子構造 2000

点をサンプリングした。それぞれを初期状態とし

1 ps の MD 計算を 100 回実施し、状態 A に辿り

着く前に状態 B に遷移する確率をコミッター𝑝஻

として定量化した。入力変数として初期状態の化

学結合を除いた原子間距離を用い、コミッター𝑝஻

を出力変数として、シグモイド関数𝑝Bሺ𝑞ሻ ൌ ሾ1 ൅

tanhሺ𝑞ሻሿ/2に回帰することで適切な反応座標 q
の学習を行った。なお用いたニューラルネットワ

ークは 5 つの隠れ層から構成され、奇数層、偶数

層それぞれが 400 ノード、200 ノードを持ってい

る。 

3.2 深層学習によるガラス形成液体の温度変化

に伴う構造変化の解明 

ガラス形成液体のモデルとして 3 次元 2 成分

soft-sphere モデルを採用し、MD シミュレーショ

ンをおこなった。GNN はグラフを扱うための深

層学習手法であり、グラフとは、要素をノード、

要素間の関係をエッジとして構成されたデータ

構造である。GNN はグラフデータを入力とする

ことを活かし、入力グラフのノードとエッジの情

報の更新を繰り返し、自ら特徴量を作り出すこと

ができる。得られた粒子配置について、粒子をノ

ード、第一配位圏以下の粒子間のつながりをエッ

ジとしてモデル化したグラフ構造を構築した

(Fig. 2）。粒子の種類と粒子間の相対座標をグラフ

に符号化することで、異なる 2 つの温度の構造分

類(二値分類)をおこなった。 

 

4．結果 

4.1 説明可能な深層学習による反応座標探索 

深層学習による𝑝஻のシグモイド関数への回帰

結果を Fig. 3(a)に示す。相関係数 0.903 となり、

反応座標𝑞を獲得できたことを意味する。ただし

深層学習モデルにおいて複数回の非線形結合が

行われていることから、入力変数の𝑞への寄与を

直接的に求めることは困難である。そこで深層学

習に対して解釈性を与えることのできる「説明可

能な AI 」 (XAI) の一手法である LIME(local 

interpretable model-agnostic explanations)を適用し

た。その結果、最も寄与の大きい入力変数として

原子 6 –10 間の距離 𝑟଺ିଵ଴、二番目に寄与が大き

い入力変数として𝑟଺ିଵଵが得られた。特定された 2

つの変数を用いて PMF を描画すると、遷移状態

Fig 2.  Particle configurations and 
corresponding graph structure. 
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をあらわす𝑝஻~0.5が状態 A と状態 B を適切に区

別する分割線をなすことがわかった(Fig. 3(b)) [1]。 

 

4.2 深層学習によるガラス形成液体の温度変化

に伴う構造変化の解明 

GNN は，ガラス転移温度近傍の構造と温度の

高い液体構造の違いを 100 %識別できることが

わかった。ただし、一方で高温の液体構造同士は

識別できないことがわかった。このことは温度の

変化にしたがって、ガラスと液体とで微細な構造

変化を GNN は学習していることを示唆する。ま

た Attention により算出された粒子間の重要度に

ついて高温では粒子間の重要度にばらつきが見

られ，低温になるにつれてその重要度が概ね均一

になることがわかった。さらに Attention により

抽出された寄与度が高い粒子は、ボンド秩序変数

𝑄6が小さい傾向にあることを見出した。以上のこ

とから，GNN はガラス形成液体の温度の違いを

𝑄6 が小さく局所的に結晶秩序の度合いが小さい

粒子を根拠に分類していると考えられる [2]。 

 

5．おわりに 

本研究課題では、ソフトマターに対する MD シ

ミュレーションに深層学習を応用する融合研究

を展開した。それぞれの研究テーマは個別的であ

るが、MD シミュレーションによる時間変化する

原子配置データセットから次元削減による物性

の説明を目指す高度化された研究になりえるも

のと考えている。 
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Fig 3. (a) Regression results from deep learning (b) 
PMF of interatomic distance 𝑟଺ିଵ଴,
𝑟଺ିଵଵ  indicated by XAI. We can distinguish 
between states A and B and see that the saddle point 
is bounded by a structure in the transition state 
𝑝஻~0.5. 

(b) 

(a) 
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