

Title	酸化物系人エシナプス素子におけるドナー欠陥挙動の 第一原理理論解析
Author(s)	藤平, 哲也
Citation	サイバーメディアHPCジャーナル. 2024, 14, p. 66- 69
Version Type	VoR
URL	https://doi.org/10.18910/96527
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

酸化物系人エシナプス素子におけるドナー欠陥挙動の第一原理理論解析

藤平 哲也 大阪大学 大学院基礎工学研究科

1. はじめに

近年、ニューラルネットワークのソフトウェア 実装にもとづく人工知能 (AI) 技術が著しい進展 を見せる一方で、脳の構造と機能を直接的に模倣 したニューロモルフィックコンピューティング・ ハードウェアの開発が期待されている。その基幹 素子 (人工シナプス)として、印加電圧の履歴に 応じて不揮発的な抵抗変化を示す新規の受動素 子であるメモリスタが注目されている⁽¹⁾。

当グループでは、電界誘起の局所酸化還元にも とづく抵抗変化現象を示す酸化チタンに着目し、 ルチル型 TiO2 単結晶基板上に独自の平面 4 端子 型素子を作製して、酸素空孔分布状態と抵抗変化 特性の相関を評価してきた。この系において、還 元 TiO2-x 結晶中の酸素空孔が n 形ドーパント(ド ナー)として機能し、その挙動が不揮発抵抗変化 の発現に本質的な役割を果たす。これまでに酸素 空孔の再分布や抵抗変化の挙動が顕著な結晶方 位依存性を示すことや(図1)、酸素空孔が凝集し て形成される剪断面(面欠陥)が、不可逆性の原 因となり電気特性に影響することを見出してき た(2)。抵抗変化の素過程はドナー欠陥である酸素 空孔の電界下でのドリフト・拡散による再分布で あり、そのメカニズムを理解することが高機能の メモリスタ (人工シナプス)素子を設計する上で 不可欠である。特にメモリスタの動作環境である 外部電場下における酸素空孔の挙動を把握する ことが重要である。我々はバイアス印加その場透 過電子顕微鏡 (TEM) 観察などにより抵抗変化と その起源となる微細構造をリアルタイムで解析 する実験を行ってきているが、酸素空孔の原子ス ケールでの挙動を知ることは困難である。一方、 第一原理計算を用いることで原子スケールでの 酸素空孔の挙動を解析することが可能となる。し

かし、剪断面を再現した大規模モデルを取り扱う 計算コストや外部電場存在下での電子状態を計 算する技術的な困難から、剪断面近傍での酸素空 孔挙動や外部電場下における酸素空孔の挙動は これまで理論的に明らかになっていない。

本研究では、TiO_{2-x}系人工シナプス素子のドナ 一欠陥である酸素空孔の形成および移動の挙動 に関して、外部電場の効果を含めた第一原理計算 により理論的な解析を行うことを目的とした。ス ラブモデルを用いた dipole-sheet 法を用いること により外部電場を再現し、ルチル型 TiO₂の表面 と酸素空孔に対する外部電場の影響を評価した。 また、酸素空孔の集積により生じる拡張欠陥であ る剪断面構造を包含するスーパーセルモデルを 構築し、剪断面の近傍サイトにおける酸素空孔の 挙動を調べた。これらの第一原理計算の結果とル チル型 TiO_{2-x}系メモリスタ素子の実験結果を合 わせて、ドナー欠陥である酸素空孔の挙動と抵抗 変化特性の関連を議論した。

図1:TiO_{2-x}平面4端子型メモリスタにお ける酸素空孔分布(着色領域)の面方位依 存性⁽²⁾.

2. スーパーセルモデルおよび計算方法

ルチル型 TiO2の(001)および(100)表面を有する スーパーセルモデルを作成し、次節で述べる dipole-sheet 法を用いて表面エネルギーと酸素空 孔形成エネルギーの外部電場依存性を評価した。 さらに、酸素空孔の規則的集積により形成される 拡張欠陥である剪断面構造を含むスーパーセル モデルを構築し(詳細は4節で記述)、剪断面近 傍における酸素空孔エネルギーのサイト依存性 を評価した。構造最適化および全エネルギーの計 算は平面波基底 PAW 法にもとづく VASP code⁽³⁾ を用いて行なった。交換相関ポテンシャルは一般 化勾配近似(GGA-PBE)を用い、平面波基底のカッ トオフエネルギーは 400 eV に設定した。k 点は Monkhorst-Pack の方法にもとづいて逆格子空間 での間隔が 0.4 Å-1 以下となるようサンプリング した。これらの計算条件により、全エネルギーの 値が 1meV/atom 以下の精度で収束していること を確認した。

3. TiO2表面および酸素空孔エネルギーの外部 電場依存性

本研究では外部電界の効果を導入する方法と して、Feibelman らによって提案された dipolesheet 法⁽⁴⁾を用いた。この方法では真空層の中央に ダイポールシートを配置することで、スラブに垂 直な方向に一様な電場を導入する(図 2)。このモ デルの真空領域の電位分布はポアソン方程式を 用いて導ける。

$$\nabla^2 \phi = -\frac{\rho}{\varepsilon_0} \tag{3.1}$$

$$F = -\nabla\phi \tag{3.2}$$

$$F_{surface} = -\frac{\sigma}{\varepsilon_0} \tag{3.3}$$

ここで、φは電位、ρは電荷密度、ε₀は真空中の 誘電率、Fは電場、Fsurfaceは表面における電場の 値、σは表面電荷密度である。外部電場の方向は 下向きを正としている。印加された外部電場によ りエネルギー準位が分裂する現象をシュタルク 効果と呼ぶ。シュタルク効果による系の全エネル ギーは次のように表される。

図 2: Dipole-sheet 法による外部電場印 加の模式図.

図 3:(100)および(001)表面モデルのエネ ルギーの電場依存性.

$$E(F) = E(0) - \mu F - \frac{1}{2}\alpha F^2 + O(F^3)$$
(3.4)

ここでµは双極子モーメント、αは分極率である。 図3に、ルチル型TiO2の(100)および(001)表面 モデルにおけるエネルギーの外部電場依存性の 計算結果を示す(零電場におけるエネルギーを0 とする)。各表面のエネルギーの電場依存性は、 零電場付近を頂点とする二次関数的な傾向を示 しており、シュタルク効果を再現している。また、 (100)面のエネルギー曲線は対称に近いが、(001) 面では非対称性が大きくなっている。シュタルク 効果の式(3.4)を用いてエネルギーをフィッティ ングすることにより、(100)および(001)表面モデ

ルの双極子モーメント μ と分極率 α はそれぞれ 5.6×10⁻⁴, 3.6×10⁻³ (eÅ/atom) および 5.7×10⁻², 5.6×10⁻² (eÅ²/V· atom)と算出された。分極率の差 は僅かである一方、双極子モーメントの値は (001) 面が(100) 面と比べて大きくなっている。双 極子モーメントはシュタルク効果の式(3.4)にお ける電場の一次の係数であり、大きな双極子モー メントが(001)面のエネルギー曲線の非対称性の 要因になっていると考えられる。双極子モーメン トの違いは結晶構造に由来していると考えられ、 ルチル型 TiO2 の(001)の表面構造が不安定である ことが関係していると考えられる。構造最適化に より得られた表面モデルの最表面の酸素原子のz 座標の変位量を調べると、(001)面で酸素原子が 外部電場の影響を大きく受けていることが分か った。つまり電場下での原子変位量の違いが、こ れらの面方位によるダイポールモーメントの違 いに関係していると考えられる。

図4にTiO2表面近傍サイトにおける酸素空孔 形成エネルギーの電場依存性の計算結果を示す。 縦軸は外部電場の値が-0.4 eV のときのエネルギ ーを基準とした相対エネルギーとした。(100)と (001)いずれの面方位においても、表面下部の s2s4 サイトの酸素空孔と比べて、表面の s1 サイト で大きな電場依存性が見られた。この結果から、 TiO₂の最表面の酸素空孔は電場により形成エネ ルギーが変化しやすい傾向があることが示唆さ れた。つまり、電界の印加により表面近傍の酸素 空孔濃度が変化しやすい可能性がある。また、 (100)面と(001)面を比較すると、(100)面の酸素空 孔形成エネルギーは電界に対する依存性が大き いことが分かった。実験的には、図1に示すTiO2 メモリスタの光学顕微鏡像のように、(100)面デ バイスは(001)面デバイスよりも電圧印加による 酸素空孔のコントラスト (濃度)変化が強いこと が観測されている。これは、(100)面の酸素空孔形 成の電界依存性が大きいことが関係している可 能性がある。本解析では表面近傍サイトの酸素空 孔の移動過程の計算も行い、一部の不安定な酸素 空孔サイトで電場により移動エネルギー障壁が

図 4:(a)(100)および (b)(001)表面近傍サイトにおける酸素空孔エネルギーの外部電場依存性.

変化することが観察されたが、全体として顕著な 電界の効果は見られなかった。酸素空孔を含むモ デルへの適切な外部電場の印加方法に関して、引 き続き検討が必要であると考えている。

9. 剪断面構造のモデリングと近傍サイト酸素空 孔挙動の評価

酸素空孔の集積により生じる剪断面構造近傍 での空孔挙動を解析するため、ルチル型 TiO₂の ユニットセルに対する剪断面ベクトル⁽⁵⁾を用い た操作にもとづき酸素欠損を有するマグネリ相 Ti_nO_{2n-1}の構造を作成し、剪断面を包含するスー パーセルモデルを構築した。以下に(121)剪断面 (n=4)の場合についてその詳細を示す。まず、 以下の式を用いてルチル型 TiO₂のユニットセル を変形し、(121)剪断面に平行な構造に分割する。

$$\begin{bmatrix} a_M^{(n)} \\ b_M^{(n)} \\ c_M^{(n)} \end{bmatrix} = \begin{bmatrix} -1 & 0 & 1 \\ 1 & -1 & 1 \\ 0 & 0 & 2n-1 \end{bmatrix} \begin{bmatrix} a_r \\ b_r \\ c_r \end{bmatrix}$$
(4.1)

ここで、 $a_M^{(n)}$ 、 $b_M^{(n)}$ 、 $c_M^{(n)}$ はマグネリ相 Ti₄O₇の

ユニットセルベクトル、*a*_r, *b*_r, *c*_rはルチル型 TiO₂ のユニットセルベクトルである。 (121)剪断面 モデルはすべり面とすべり方向の関係性から次 のように表記される。

$(121)\frac{1}{2}[0\overline{1}1]$

(4.1)の操作で母体構造が(121)剪断面によりn面 ごとに周期的なブロックに分割されており(す なわちnが剪断面間の距離を調整)、続いてブロ ックを剪断ベクトル1/2[011]に平行に移動させ る。最後に重なり合った原子を取り除くことで 剪断面構造モデルが得られる(図5)。本研究で は、TiO2四端子型メモリスタのバイアス印加実 験で観察された(121)および(132)面剪断面構造に ついてスーパーセルモデルを構築し、第一原理 計算による解析を行った。剪断面近傍サイトの 酸素空孔形成エネルギーの計算結果から、剪断 面近傍では空孔形成エネルギーが増大し、酸素 空孔は不安定であることが示された(図5)。ま た、酸素空孔移動過程の計算の結果から、(121) 剪断面に沿う方向の酸素空孔の移動エネルギー

図 5:酸化チタン(121)剪断面構造のスーパ ーセルモデルと剪断面近傍サイトの酸素 空孔エネルギーの計算結果.

は非常に大きく、酸素空孔が移動しにくいこと が分かった。一方で、(132)剪断面近傍では移動 エネルギー障壁が小さく、酸素空孔が移動しや すいことが示唆された。これらの結果はバイア ス印加その場 TEM 実験による剪断面生成・成長 の観察結果と整合する部分もあり、剪断面の種 類によりその近傍での酸素空孔の形成と移動の 挙動が異なり、剪断面の伸縮や不可逆性に対し て異なる影響を与える可能性が示唆された。

5. おわりに

本研究では人工シナプス素子として期待され るルチル型 TiO2系メモリスタのドナー欠陥であ る酸素空孔の挙動に関して、特に外部電場およ び剪断面構造の効果に着目して第一原理計算に よる解析を行った。計算により得られた酸素空 孔の形成エネルギーは、ルチル型 TiO2 メモリス タ素子のバイアス印加実験の結果と整合する傾 向がみられた。今後、外部電場印加の方法を再 検討し、剪断面構造モデルに関する系統的な計 算を進めると共に、有限要素法等と連携したマ ルチスケールシミュレーションにより、デバイ ス特性のより直接的な議論を行っていきたいと 考えている。本研究の遂行にあたっては大阪大 学サイバーメディアセンター大規模計算機シス テムのご支援と、大阪大学の酒井朗先生、大学 院生の二宮雅輝さん、小泉優紀さんのご協力を 頂きました。ここに深く感謝申し上げます。

参考文献

- (1) D. B. Strukov et al., Nature. 453, 80 (2008).
- (2) S.Takeuchi et al., Sci. Rep. 9, 2601 (2019).
- (3) G. Kresse and J. Hafner, Phys. Rev. B, 47, 558 (1993).
- (4) J. P. Feibelman et al., Phys. Rev. B 64, 125403 (2001).
- (5) G. J. Woodet et al., Proc. R. Soc. A 375, 105 (1981).