

Title	高分子のトポロジーに由来する特異な動的相関に関す る理論・シミュレーション研究
Author(s)	後藤, 頌太
Citation	サイバーメディアHPCジャーナル. 2024, 14, p. 74- 78
Version Type	VoR
URL	https://doi.org/10.18910/96529
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

高分子のトポロジーに由来する

特異な動的相関に関する理論・シミュレーション研究

後藤 頌太

大阪大学 大学院基礎工学研究科 物質創成専攻 化学工学領域

1. はじめに

高分子はその化学組成だけでなく、鎖長や大域 的構造(トポロジー)といった鎖1本の構造特性 によっても物性を大きく変化させる材料物質で ある。特に、トポロジーに由来する絡み合いや、 もつれのような相互作用をトポロジー制約と呼 び、その動的性質との関係性に注目が集まってい る。最もよく知られているトポロジー制約は直線 状の高分子集合系における「絡み合い」であり、 確立した理論が存在し、これは実験事実と矛盾の ない結果を与える。これは、周囲の多数の直鎖状 高分子どうしの絡み合いを菅の中への閉じ込め として平均場近似し、その中での一次元拡散を考 えることで動的性質を説明する。この描像では直 鎖状高分子の末端の運動によって拡散するため、 末端の存在しない環状高分子には適用できない。 そこで、直鎖状高分子の「絡み合い」に対して、 環状高分子では一方の「穴」を他方が貫通するよ うな構造が重要なトポロジー制約と考えられて いる。しかしながら、このような環状高分子のト ポロジー制約やその動的性質との関係性に関す る理論はまだ十分に確立されておらず、計算機シ ミュレーションによる解析が重要となっている。

Michieletto らは直鎖状高分子と環状高分子の 集合系それぞれにおいて、割合 c の高分子を凍 結させ、残りの (1-c) の高分子のみ時間発展さ せるピン留め分子動力学シミュレーションを行 った[1]。その結果、環状高分子のみがガラスのよ うに拡散が完全に凍結することを報告した。この ことから、環状高分子のトポロジー制約は直鎖状 高分子のそれと本質的に異なるものであり、ガラ ス形成物質との類似性に注目が集まっている。た だし、平衡状態の分子動力学シミュレーションで は、拡散の凍結は観測されておらず、ガラス形成 物質との類似性も仮説の域をでない。

そこで本研究では、動的不均一性によって環状 高分子の動的性質を特徴づけることを目指した。 特に、鎖の硬さを変化させ、生成される「穴」が 動的性質に与える影響を明らかにすること目的 とした。ここで動的不均一性とは、ガラス形成物 質の遅いダイナミクスを特徴づける中心的な概 念であり、動きやすい粒子と動きづらい粒子の空 間的に不均一な分布を意味する。

2. 計算条件

Kremer–Grest バネ・ビーズモデルを用いて環 状高分子の粗視化分子動力学シミュレーション を行った[2]。高分子の繰り返し単位である単量 体をビーズとして粗視化し、その質量と直径をそ れぞれmとσとする。ビーズ間には Lennard-Jones ポテンシャル

$$U_{\rm LJ}(r) = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^6 \right]$$

における $r < r_c = 2^{1/6} \sigma$ の斥力部分がはたらく。 さらに隣接ビーズ間には伸び切り長を考慮した 結合ポテンシャル

$$U_{\text{bond}}(r) = -\frac{1}{2}KR_0^2 \ln\left[1 - \left(\frac{r}{R_0}\right)^2\right]$$

 $が r < R_0 の範囲ではたらく。ここで<math>K = 30 \varepsilon / \sigma^2 b$ $R_0 = 1.5 \sigma b \cup \tau v a$ 。 $U_{LJ}(r) b U_{bond}(r) b b b b d$ τ finitely extensible nonlinear elastic(FENE)ポテ $ンシャル b 呼ばれる。 さらに連続する 3 つのビ
<math>
 - ズで定義される結合角<math>\theta$ に対して曲げ弾性ポテ ンシャル

図1:分子動力学シミュレーションの結果から抽出した柔軟な環状高分子(左)と硬い環状高分子(右)の典型的な構造。柔軟な鎖は小さく丸まった糸まり状の構造をとり、貫通構造を形成しない。それに対して、硬い環状高分子は大きく拡がってできた「穴」を互いに貫通する。

$$U_{\text{bend}}(\theta) = \varepsilon_{\theta}(1 - \cos \theta)$$

を課した。エネルギースケールを $\epsilon_{\theta}/\epsilon = 1.5,5$ と変化させ、鎖の硬さを変化させた。以降では、それぞれ柔軟な鎖および硬い鎖と呼ぶ。図1に示すように、柔軟な鎖はくしゃくしゃに丸まった球状の構造をとり、貫通構造を形成するだけの「穴」を持たない。一方、硬い鎖は大きく拡がって貫通構造を形成する。

以下、ビーズ質量*m*、ビーズ直径 σ 、Lennard-Jones エネルギースケール ϵ を用いた単位系で無 次元化して示す。 鎖長 *N* = 400 とし、*M* = 100 本の鎖からなる 4 万ビーズ系とし、数密度 ρ = 0.1,0.3,0.4,0.5,0.55 と変化させて、それぞれで 温度を*T* = 1.0とした定温定積のシミュレーシ ョンを実施した。さらに ϵ_{θ} = 1.5において、柔軟 な直鎖状および環状高分子集合系における一般 的な設定であるより濃厚な ρ = 0.85でも計算し た。

分子動力学シミュレーションには、Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) を使用した[3]。SQUID において 64 コアを用いた MPI 並列計算で平衡化および本計 算に、それぞれ 190 時間を要した。

3. 結果

3.1 重心の並進運動と変位分布

平均 2 乗変位 (Mean Square Displacement, MSD)

は粒子の拡散特性を特徴づけるのによく用いら れる物理量である。高分子の重心を r_i とすると、 その MSD は、

 $\langle \Delta r^2(t) \rangle = \langle [r_i(t+t_0) - r_i(t_0)]^2 \rangle$ で定義される。ここで、それぞれ to は初期時刻、 tは時刻差、(·) はアンサンブル平均を表す。短時 間領域ではビーズが弾道運動しているため、 MSD はt²に比例し、長時間領域では自由拡散に 至りtに比例することが知られる。長時間領域に おける傾きから拡散係数Dが得られる。図2(a,b) に、それぞれ柔軟な環状高分子と硬い環状高分子 の MSD を示した。いずれの硬さにおいても、中 間時間領域に sub-diffusion が見られた。このこと は、硬さによらず高分子間に拡散を阻害する絡み 合いのような相互作用が存在することを示唆す る。また、柔軟な環状高分子は密度が最も高い $\rho = 0.85$ でその傾きがおよそ 3/4 になっている のに対して、硬い環状高分子はより小さな傾きを 持ち、より強い相互作用を持つと考えられる。実 際にこのことは、挿入図に示した拡散係数 D の 密度依存性にも矛盾しない。

さらに、重心の変位分布の非ガウス性を特徴づ ける non-Gaussian parameter (NGP)

$$\alpha_2(t) = \frac{3\langle \Delta r^4(t) \rangle}{5\langle \Delta r^2(t) \rangle^2} - 1$$

を計算した。NGPは、変位分布がガウシアンに従う自由拡散領域で0となり、その値が大きいほど

非ガウス性が大きいことを表す。ガラス形成物質 においてパッキング効果により生じる空間不均 ーなダイナミクスを定量化する典型的な物理量 として知られるが、高分子の絡み合い効果の定量 化にも用いられている[4,5]。図2(c,d) に示した NGP の結果によると、柔軟な環状高分子では非 ガウス性が極めて小さく、平均場的な相互作用を していることを示唆している。それに対して硬い 環状高分子は密度と共に NGP のピークが大きく なり、直鎖状高分子の「絡み合い」やガラス形成 物質のパッキングと同様の振る舞いを示してい る。図2(a, b)の MSD の結果は硬さによらず高 分子間相互作用の存在を指し示すものであった ことから、鎖の硬さによって、環状高分子間相互 作用が本質的に変化することが示唆される。

3.2 重心間の仮想結合とその切断ダイナミクス

環状高分子の硬さによる相互作用の変化と構 造との関係を明らかにするため、重心間に仮想的 な結合を定義し、その切断ダイナミクスを解析し た[6]。環状高分子iとjの重心間距離r_{ii}が

$r_{ij} < \left< R_g^2 \right>^{0.5}$

のとき、仮想的に結合状態にあると定義する。図 3に仮想結合ネットワークの可視化図を示す。柔 軟な環状高分子の場合、疎に結合が分布している のに対して、硬い環状高分子は密でパーコレート したネットワーク構造が見られた。

また、*t* = 0において結合状態にあった(*i*,*j*)ペ アが、時刻*t* において、

$r_{ii}(t) > A \left\langle R_g^2 \right\rangle^{0.5}$

であれば、その結合が切断されたとする。ここで、

図 2:重心の平均 2 乗変位(MSD)〈 $\Delta r^2(t)$ 〉と non-Gaussian parameter (NGP) $\alpha_2(t)$ の密度依存性。MSD は平均 2 乗慣性半径($R_g^2(\rho)$)で規格化している。それぞれ、(a, c)が $\epsilon_{\theta} = 1.5$ の柔軟な環状高分子、(b, d)が $\epsilon_{\theta} = 5$ の硬い環状高分子の結果。(a, b)では、弾道運動、sub-diffusion、自由拡散領域を示すため、〈 $\Delta r^2(t)$ 〉 ~ t^{α} を黒の実線でプロットした。それぞれ、 $\alpha = 2,3/4,1$ である。また、(a, b)の挿入図は拡散係数Dの密度依存性の片対数プロットである。 $\rho = 0.85$ は $\epsilon_{\theta} = 1.5$ でのみ計算している。

揺らぎによる瞬間的な結合破断を排除するため A = 1.2 とした。このとき、時刻差tにおける仮 想結合の切断本数 B_i の空間的な不均一性は、結合 切断の動的感受率 $\chi_b(t)$ によって特徴づけられる。

$$\chi_b(t) = \frac{1}{M} \langle \sum_{i=1}^M \sum_{j=1}^M \delta B_i(t) \delta B_j(t) \rangle$$

ここで、 $\delta B_i(t) = B_i(t)/2 - \langle B(t) \rangle$ は切断された 結合の平均本数からの揺らぎを表す。図4に動的 感受率 $\chi_b(t)$ の結果を示す。柔軟な環状高分子の 動的感受率 $\chi_b(t)$ はどの時間領域においても比較 的小さな値しか取らず、動的不均一性が小さいこ とがわかる。一方で、硬い環状高分子の場合、動 的感受率 $\chi_b(t)$ のピークは密度の増加とともに大 きくなる。これらの結果は、図2に示した NGP の結果と整合しており、環状高分子間の相互作用 が慣性半径によって本質的に変化しうることを 示唆する。

4. おわりに

本課題では、Kremer-Grest バネ・ビーズモデル を用いて環状高分子集合系の粗視化分子動力学 シミュレーションに基づいた解析を行った。特に、 しばしば指摘されていた環状高分子間相互作用 のガラス形成物質との類似性について、動的不均 一性の観点から検証を行った。その結果、鎖が比 較的硬く、大きく広がって「穴」を形成するよう な環状鎖はガラス形成物質とよく似た遅いダイ ナミクスを示すのに対して、鎖が十分に柔らかく、 球状に丸まった糸まりのような構造をとる環状 高分子の場合には動的不均一性や非ガウス性が 極めて小さいにも関わらず、sub-diffusion など遅 いダイナミクスを示すことがわかった。このこと から、環状高分子は鎖が硬くなることで大きく広 がり、それに伴って「穴」を生成することで相互 作用が本質的に変化すると考えられる[7]。

図 3: それぞれ、(左図) $\epsilon_{\theta} = 1.5$, $\rho = 0.5$ の柔軟な環状高分子、(右図) $\epsilon_{\theta} = 5$, $\rho = 0.5$ の硬 い環状高分子における仮想結合ネットワークの可視化図。青色の球は重心を、オレンジ色の 線は結合を表す。

図 4: $\varepsilon_{\theta} = 1.5$ および $\varepsilon_{\theta} = 5$ の環状高分子の仮想結合切断数の動的感受率 $\chi_{b}(t)$ の密度 ρ 依存性。

参考文献

- D. Michieletto, and M. S. Turner, Proc. Natl. Acad. Sci. U.S.A., 113, 5195–5200 (2016).
- (2) K. Kremer, and G. S. Grest, The Journal of Chemical Physics, 92, 5057 (1998).
- (3) S. Plimpton, J. Comput. Phys., 117,1-19 (1995).
- (4) D. Pan and Z.-Y. Sun, Chin. J. Polym. Sci., 36, 1187–1194 (2018).
- (5) S. Goto, K. Kim, and N. Matubayasi, J. Chem. Phys. 155, 124901 (2021).
- (6) H. Shiba, T. Kawasaki, and A. Onuki, Phys. Rev. E 86, 041504 (2012).
- (7) S. Goto, K. Kim, and N. Matubayasi, ACS Polym. Au 3, 437 (2023).