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高分子のトポロジーに由来する 

特異な動的相関に関する理論・シミュレーション研究 
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大阪大学 大学院基礎工学研究科 物質創成専攻 化学工学領域 

 

1．はじめに 

 高分子はその化学組成だけでなく、鎖長や大域

的構造（トポロジー）といった鎖 1 本の構造特性

によっても物性を大きく変化させる材料物質で

ある。特に、トポロジーに由来する絡み合いや、

もつれのような相互作用をトポロジー制約と呼

び、その動的性質との関係性に注目が集まってい

る。最もよく知られているトポロジー制約は直線

状の高分子集合系における「絡み合い」であり、

確立した理論が存在し、これは実験事実と矛盾の

ない結果を与える。これは、周囲の多数の直鎖状

高分子どうしの絡み合いを菅の中への閉じ込め

として平均場近似し、その中での一次元拡散を考

えることで動的性質を説明する。この描像では直

鎖状高分子の末端の運動によって拡散するため、

末端の存在しない環状高分子には適用できない。

そこで、直鎖状高分子の「絡み合い」に対して、

環状高分子では一方の「穴」を他方が貫通するよ

うな構造が重要なトポロジー制約と考えられて

いる。しかしながら、このような環状高分子のト

ポロジー制約やその動的性質との関係性に関す

る理論はまだ十分に確立されておらず、計算機シ

ミュレーションによる解析が重要となっている。 

 Michieletto らは直鎖状高分子と環状高分子の

集合系それぞれにおいて、割合 c の高分子を凍

結させ、残りの (1 – c) の高分子のみ時間発展さ

せるピン留め分子動力学シミュレーションを行

った[1]。その結果、環状高分子のみがガラスのよ

うに拡散が完全に凍結することを報告した。この

ことから、環状高分子のトポロジー制約は直鎖状

高分子のそれと本質的に異なるものであり、ガラ

ス形成物質との類似性に注目が集まっている。た

だし、平衡状態の分子動力学シミュレーションで

は、拡散の凍結は観測されておらず、ガラス形成

物質との類似性も仮説の域をでない。 

 そこで本研究では、動的不均一性によって環状

高分子の動的性質を特徴づけることを目指した。

特に、鎖の硬さを変化させ、生成される「穴」が

動的性質に与える影響を明らかにすること目的

とした。ここで動的不均一性とは、ガラス形成物

質の遅いダイナミクスを特徴づける中心的な概

念であり、動きやすい粒子と動きづらい粒子の空

間的に不均一な分布を意味する。 

 

2．計算条件 

 Kremer–Grest バネ・ビーズモデルを用いて環

状高分子の粗視化分子動力学シミュレーション

を行った[2]。高分子の繰り返し単位である単量

体をビーズとして粗視化し、その質量と直径をそ

れぞれ𝑚と𝜎とする。ビーズ間には Lennard-Jones

ポテンシャル 
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さらに隣接ビーズ間には伸び切り長を考慮した

結合ポテンシャル 

𝑈ୠ୭୬ୢሺ𝑟ሻ ൌ െ
1
2
𝐾𝑅଴

ଶ 𝑙𝑛 ቈ1 െ ൬
𝑟
𝑅଴
൰
ଶ

቉ 

が𝑟 ൏ 𝑅଴の範囲ではたらく。ここで𝐾 ൌ 30𝜀/𝜎ଶと 

𝑅଴ ൌ 1.5𝜎としている。𝑈୐୎ሺ𝑟ሻと𝑈ୠ୭୬ୢሺ𝑟ሻをあわせ

て finitely extensible nonlinear elastic(FENE)ポテ

ンシャルと呼ばれる。さらに連続する 3 つのビ

ーズで定義される結合角θに対して曲げ弾性ポテ

ンシャル 
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𝑈ୠୣ୬ୢሺθሻ ൌ ε஘ሺ1 െ cos θሻ 

を課した。エネルギースケールを𝜀஘/ε ൌ 1.5, 5と

変化させ、鎖の硬さを変化させた。以降では、そ

れぞれ柔軟な鎖および硬い鎖と呼ぶ。図 1 に示す

ように、柔軟な鎖はくしゃくしゃに丸まった球状

の構造をとり、貫通構造を形成するだけの「穴」

を持たない。一方、硬い鎖は大きく拡がって貫通

構造を形成する。 

 以下、ビーズ質量𝑚、ビーズ直径σ、Lennard-

Jones エネルギースケールεを用いた単位系で無

次元化して示す。鎖長 𝑁 ൌ  400 とし、𝑀 ൌ  100 

本の鎖からなる 4 万ビーズ系とし、数密度ρ ൌ

 0.1, 0.3, 0.4, 0.5, 0.55  と変化させて、それぞれで

温度を𝑇 ൌ  1.0とした定温定積のシミュレーシ

ョンを実施した。さらにε஘ ൌ 1.5において、柔軟

な直鎖状および環状高分子集合系における一般

的な設定であるより濃厚な𝜌 ൌ  0.85でも計算し

た。 

 分子動力学シミュレーションには、Large-scale 

Atomic/Molecular Massively Parallel Simulator 

(LAMMPS) を使用した[3]。SQUID において 64

コアを用いた MPI 並列計算で平衡化および本計

算に、それぞれ 190 時間を要した。 

 

3．結果 

3.1 重心の並進運動と変位分布  

 平均 2 乗変位（Mean Square Displacement, MSD）

は粒子の拡散特性を特徴づけるのによく用いら

れる物理量である。高分子の重心を ri とすると、

その MSD は、 

⟨Δ𝑟ଶሺ𝑡ሻ⟩ ൌ ⟨ሾ𝑟௜ሺ𝑡 ൅ 𝑡଴ሻ െ  𝑟௜ሺ𝑡଴ሻሿଶ⟩ 

で定義される。ここで、それぞれ t0 は初期時刻、

𝑡は時刻差、⟨⋅⟩ はアンサンブル平均を表す。短時

間領域ではビーズが弾道運動しているため、

MSD は𝑡ଶに比例し、長時間領域では自由拡散に

至り𝑡に比例することが知られる。長時間領域に

おける傾きから拡散係数𝐷が得られる。図 2 (a, b)

に、それぞれ柔軟な環状高分子と硬い環状高分子

の MSD を示した。いずれの硬さにおいても、中

間時間領域に sub-diffusion が見られた。このこと

は、硬さによらず高分子間に拡散を阻害する絡み

合いのような相互作用が存在することを示唆す

る。また、柔軟な環状高分子は密度が最も高い

𝜌 ൌ  0.85でその傾きがおよそ 3/4 になっている

のに対して、硬い環状高分子はより小さな傾きを

持ち、より強い相互作用を持つと考えられる。実

際にこのことは、挿入図に示した拡散係数 D の

密度依存性にも矛盾しない。 

 さらに、重心の変位分布の非ガウス性を特徴づ

ける non-Gaussian parameter (NGP) 

𝛼ଶሺ𝑡ሻ ൌ  
3⟨Δ𝑟ସሺ𝑡ሻ⟩

5⟨Δ𝑟ଶሺ𝑡ሻ⟩ଶ
െ 1 

を計算した。NGP は、変位分布がガウシアンに従

う自由拡散領域で 0 となり、その値が大きいほど

図 1：分子動力学シミュレーションの結果から抽出した柔軟な環状高分子（左）と硬い環状高分

子（右）の典型的な構造。柔軟な鎖は小さく丸まった糸まり状の構造をとり、貫通構造を形成し

ない。それに対して、硬い環状高分子は大きく拡がってできた「穴」を互いに貫通する。 
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非ガウス性が大きいことを表す。ガラス形成物質

においてパッキング効果により生じる空間不均

一なダイナミクスを定量化する典型的な物理量

として知られるが、高分子の絡み合い効果の定量

化にも用いられている[4, 5]。図 2 (c, d) に示した

NGP の結果によると、柔軟な環状高分子では非

ガウス性が極めて小さく、平均場的な相互作用を

していることを示唆している。それに対して硬い

環状高分子は密度と共に NGP のピークが大きく

なり、直鎖状高分子の「絡み合い」やガラス形成

物質のパッキングと同様の振る舞いを示してい

る。図 2 (a, b) の MSD の結果は硬さによらず高

分子間相互作用の存在を指し示すものであった

ことから、鎖の硬さによって、環状高分子間相互

作用が本質的に変化することが示唆される。 

3.2 重心間の仮想結合とその切断ダイナミクス  

 環状高分子の硬さによる相互作用の変化と構

造との関係を明らかにするため、重心間に仮想的

な結合を定義し、その切断ダイナミクスを解析し

た[6]。環状高分子𝑖と𝑗の重心間距離𝑟௜௝が 

𝑟௜௝ ൏ ൻ𝑅௚ଶൿ
଴.ହ

 

のとき、仮想的に結合状態にあると定義する。図

3 に仮想結合ネットワークの可視化図を示す。柔

軟な環状高分子の場合、疎に結合が分布している

のに対して、硬い環状高分子は密でパーコレート

したネットワーク構造が見られた。 

また、𝑡 ൌ  0において結合状態にあったሺ𝑖, 𝑗ሻペ

アが、時刻𝑡 において、 

𝑟௜௝ሺ𝑡ሻ ൐ 𝐴ൻ𝑅௚ଶൿ
଴.ହ

 

であれば、その結合が切断されたとする。ここで、

図 2：重⼼の平均 2 乗変位（MSD）⟨Δ𝑟ଶሺ𝑡ሻ⟩  と non-Gaussian parameter (NGP) 𝛼ଶሺ𝑡ሻ 

の密度依存性。MSD は平均 2 乗慣性半径⟨R୥
ଶሺ𝜌ሻ⟩で規格化している。それぞれ、(a, c) 

がε஘ ൌ 1.5 の柔軟な環状⾼分⼦、(b, d) がε஘ ൌ 5 の硬い環状⾼分⼦の結果。(a, b) で
は、弾道運動、sub-diffusion、⾃由拡散領域を⽰すため、⟨Δ𝑟ଶሺ𝑡ሻ⟩ ∼ 𝑡ఈ を⿊の実線でプ
ロットした。それぞれ、𝛼 ൌ 2, 3 4⁄ , 1である。また、(a, b) の挿⼊図は拡散係数𝐷の密度
依存性の⽚対数プロットである。ρ ൌ 0.85はε஘ ൌ 1.5でのみ計算している。 
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揺らぎによる瞬間的な結合破断を排除するため

𝐴 ൌ  1.2 とした。このとき、時刻差𝑡における仮

想結合の切断本数𝐵௜の空間的な不均一性は、結合

切断の動的感受率𝜒௕ሺ𝑡ሻによって特徴づけられる。 

𝜒௕ሺ𝑡ሻ ൌ
1
𝑀
⟨෍෍𝛿𝐵௜ሺ𝑡ሻ𝛿𝐵௝ሺ𝑡ሻ

ெ

௝ୀଵ
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ெ
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ここで、𝛿𝐵௜ሺ𝑡ሻ ൌ 𝐵௜ሺ𝑡ሻ 2⁄ െ ⟨𝐵ሺ𝑡ሻ⟩は切断された

結合の平均本数からの揺らぎを表す。図 4 に動的

感受率𝜒௕ሺ𝑡ሻの結果を示す。柔軟な環状高分子の

動的感受率𝜒௕ሺ𝑡ሻはどの時間領域においても比較

的小さな値しか取らず、動的不均一性が小さいこ

とがわかる。一方で、硬い環状高分子の場合、動

的感受率𝜒௕ሺ𝑡ሻのピークは密度の増加とともに大

きくなる。これらの結果は、図 2 に示した NGP

の結果と整合しており、環状高分子間の相互作用

が慣性半径によって本質的に変化しうることを

示唆する。 

4．おわりに 

本課題では、Kremer–Grest バネ・ビーズモデル

を用いて環状高分子集合系の粗視化分子動力学

シミュレーションに基づいた解析を行った。特に、

しばしば指摘されていた環状高分子間相互作用

のガラス形成物質との類似性について、動的不均

一性の観点から検証を行った。その結果、鎖が比

較的硬く、大きく広がって「穴」を形成するよう

な環状鎖はガラス形成物質とよく似た遅いダイ

ナミクスを示すのに対して、鎖が十分に柔らかく、

球状に丸まった糸まりのような構造をとる環状

高分子の場合には動的不均一性や非ガウス性が

極めて小さいにも関わらず、sub-diffusion など遅

いダイナミクスを示すことがわかった。このこと

から、環状高分子は鎖が硬くなることで大きく広

がり、それに伴って「穴」を生成することで相互

作用が本質的に変化すると考えられる[7]。 

図 3：それぞれ、（左図）ε஘ ൌ 1.5, ρ ൌ 0.5 の柔軟な環状⾼分⼦、（右図）ε஘ ൌ 5, ρ ൌ 0.5 の硬
い環状⾼分⼦における仮想結合ネットワークの可視化図。⻘⾊の球は重⼼を、オレンジ⾊の
線は結合を表す。 

図 4：𝜀ఏ ൌ 1.5およびε஘ ൌ 5の環状⾼分⼦の仮想結合切断数の動的感受率𝜒௕ሺ𝑡ሻの密度ρ依存性。 
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