
Title
Modeling Drug Release of Phosphoramidate-based
Antibody-drug Conjugates using Machine Learning
Metadynamics

Author(s) Fadilla, Rizka Nur; Morikawa, Yoshitada

Citation サイバーメディアHPCジャーナル. 2024, 14, p. 89-
92

Version Type VoR

URL https://doi.org/10.18910/96533

rights

Note

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University



Modeling Drug Release of Phosphoramidate-based Antibody-drug 

Conjugates using Machine Learning Metadynamics 

Rizka Nur Fadilla and Yoshitada Morikawa 
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1．Introduction

Antibody-drug conjugates (ADCs) are a type

of biopharmaceutical drug designed to 

deliver cytotoxic payloads (chemotherapy 

drugs) specifically to cancer cells. The 

goal is to kill cancer cells while minimizing 

harm to healthy cells, a common challenge in 

conventional cancer chemotherapy. The goal 

is achieved by linking the payload to an 

antibody that can precisely locate cancer 

cells via a suitable linker. The success of 

ADCs depends on the antibody's specificity, 

the linker's cleavage selectivity (remaining 

intact outside but readily cleaved inside 

cancer cells), and the potency of the payload 

[1]. 

One of the most critical challenges in ADC 

development is the instability of the linker. 

This issue can lead to the premature release 

of the payload, for instance, in the 

bloodstream, before it reaches the targeted 

cancer cells. Such premature release can 

cause toxicities, as demonstrated by the 

withdrawal of Mylotarg from the market in 

2010 [3], after its FDA approval in 

2000. Understanding and overcoming these 

challenges is crucial for the successful 

development of ADCs. 

The phosphoramidate-based linker (see Fig. 

1) is one of several proposed linkers that

potentially tackle the linker instability 

challenge. It exhibits stability at neutral 

pH (representing the environment outside 

cancer cells),  with a controllable rapid 

release in low pH (representing the 

environment inside cancer cells). The linker 

has shown its potency in carrying a diverse 

payload, which could significantly enhance 

the efficacy of ADCs [4-6]. Despite these 

encouraging results, no approved ADC 

utilizing this linker has been reported yet. 

One possible explanation is the lack of a 

clear mechanistic understanding of how the 

payload release is controlled. 

Exploring the potential energy surface 

(PES) of the involved chemical reactions is 

essential to gaining insight into the 

payload release mechanism from a 

phosphoramidate-based linker. This PES can 

be represented using an interatomic 

potential model. Achieving an accurate 

representation of the PES involves solving 

the Schrödinger equation, which can be 

approximated through density-functional 

theory (DFT). However, the high 

computational cost of DFT often limits its 

use for statistical sampling, such as in 

metadynamics simulations [7]. 

Recently, machine learning techniques have 

shown promise in accurately representing the 

PES when trained with data generated from 

DFT-based calculations. Here, we have 

developed a machine learning interatomic 

potential for phosphoramidate in aqueous 

89



 

 

solution. Subsequently, we utilized this 

developed potential to explore the PES 

associated with the payload release from a 

phosphoramidate-based linker. 

 

2．Computational Method 

2.1 Deep Potential 

We utilize the Deep Potential (DP) scheme 

[8] to develop a machine learning 

interatomic potential. Within the DP scheme, 

the potential energy of atomic 

configurations is represented as the sum of 

atomic energies. The local environment of 

the atom within a specified cutoff radius 

determines each atomic energy. The process 

begins by establishing the local coordinate 

information of each atom while preserving 

translational, rotational, and permutational 

symmetries. Subsequently, this local 

coordinate information is used as input for 

a deep neural network, generating atomic 

energies as the output. The DP scheme 

implementation is carried out using the 

DeePMD-kit [9]. 

 

Fig. 1: Components of antibody-drug 

conjugates with phosphoramidate-based 

linker. Symbols R1, R2, and R3 denote the 

substituent of the linker. 

 

2.2 Density-functional Theory (DFT) 

Density-functional theory (DFT) is a 

computational method based on quantum 

mechanics that accurately investigates the 

electronic structure of atoms, molecules, 

and solids. This study employs DFT to 

generate training data for input into the DP 

network. We utilized the CP2K software [10] 

to calculate the system's energy and atomic 

forces. The training data comprises two 

systems: pure bulk water and the 

phosphoramidate in aqueous solution. Fig. 2 

and 3 illustrate the typical training 

structures used in this context. 

 

 
Fig. 2: Pure bulk water. The red and white 

colors denote oxygen and hydrogen atoms, 

respectively. 

 

 
Fig. 3: Phosphoramidate-based ADC in 

aqueous solution. The red, white, green, 

blue, and brass colors denote oxygen, 

hydrogen, carbon, nitrogen, and phosphor 

atoms. 

 
2.3 Metadynamics 

Metadynamics is a simulation technique 

employed to investigate the PES and 

accelerate the sampling of rare events by 

periodically introducing bias potential. 

This bias potential is incorporated into the 
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space of selected collective variables (CVs) 

that characterize the chemical reaction. In 

our study, we have chosen two CVs: the P-N 

coordination number (reflecting the P-N bond 

cleavage) and the P-O coordination number 

(representing the P-O bond formation). To 

conduct the metadynamics simulation, we 

utilized Plumed [11] patched with LAMMPS 

[12]. 

 

3．Validation of Deep Potential 

To validate the accuracy of the developed 

potential, we compare the machine learning 

(ML) potential's prediction on energy and 

atomic forces to the DFT results (Section 

3.1). We also calculate both quantities' 

root mean square errors (RMSE). We further 

use the ML potential to simulate the behavior 

of liquid water and compute the oxygen-

oxygen radial distribution function (Section 

3.2). 

3.1 DFT vs Deep Potential 

Parity plots of the energy and atomic 

forces, DFT vs ML, over 805 test data, are 

shown in Fig. 4. The test data are not 

included in the training process. They 

consist of pure bulk water and 

phosphoramidate in aqueous solution. The 

RMSE of energy and atomic forces are smaller 

than one meV/atom and 100 meV/Å, which 

indicates a good quality of potential. 

3.2 Radial Distribution Function 

The performance of ML potential is further 

validated through the oxygen-oxygen radial 

distribution function (RDF) of pure bulk 

water, as shown in Fig. 5. The discrepancy 

between the predicted RDF and the 

experimental one is not significant. The ML 

potential predicted the water molecules to 

be slightly more localized than the 

experimental results. This result and the 

parity plot indicate that the ML potential 

is reasonably good. 

 

(a) 

 
(b) 

Fig. 4: Parity plot of (a) energy and 

(b) atomic forces. 

  

 
Fig. 5: Oxygen-oxygen radial distribution 

function of water. 

 

4．Tautomerization  

ML metadynamics is performed to simulate 

the payload release for clarifying the 
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detailed mechanism. Prior to payload release, 

we observed tautomerization occurred in the 

simulation. The tautomerization changes the 

molecule from having single nitrogen-

protonated to double nitrogen-protonated, as 

shown in Fig. 6 (a) and (b), respectively. 

ML metadynamics simulation is performed to 

simulate the payload release to clarify the 

detail mechanism. Prior to payload release, 

we observed tautomerization in the 

simulation. The tautomerization changes the 

molecule from having one hydrogen bonded to 

nitrogen to two hydrogen, as shown in Fig. 

6. Further simulation and analysis to 

clarify the reaction mechanism are ongoing. 

 

 
(a) 

 

(b) 

Fig. 6: (a) Initial and (b) final state 

of tautomerization. 

 

5．Conclusion 

We have developed a machine learning 

potential using the Deep Potential scheme, 

which can represent the interatomic 

interactions of phosphoramidate in aqueous 

solution. When coupled with metadynamics 

simulation, this machine learning potential 

emerges as a promising tool for exploring 

the potential energy surface, especially in 

the presence of rare events. Once this work 

is completed, we expect to be able to clarify 

the payload release mechanism in detail. 

 

Bibliography 

(1) R. V. J. Chari, et al., Angewandte Reviews, 53, 

3751-4005 (2014). 

(2) A. Samantasinghar, et al., Biomedicine & 

Pharmacotherapy, 113308 (2023). 

(3) A. D. Ricart, Clinical Cancer Research, 17, 

6417-6472 (2011). 

(4) C. J. Choy, et al., Bioconjugate Chemistry, 27, 

824-830 (2016). 

(5) C. J. Choy, et al., Bioconjugate Chemistry, 27, 

2206-2213 (2016). 

(6) F. P. Olatunji, et al., Bioconjugate Chemistry, 

32, 2386-2396 (2021). 

(7) A. Barducci, et al., Wiley Interdisciplinary 

Reviews: Computational Molecular Science, 1, 

826-843 (2011). 

(8) L. Zhang, et al., Physical Review Letters, 120, 

143001 (2018). 

(9) H. Wang, et al., Computer Physics 

Communications, 228, 178-184 (2018). 

(10) T. Kühne, et al., Journal of Chemical Physics, 

152, 194103 (2020). 

(11) G. A. Tiberllo, et al., Computer Physics 

Communications, 185, 604 (2014). 

(12) A. P. Thompson, et al., Computer Physics 

Communications, 271, 10817 (2022). 

92




