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1. INTRODUCTION

New classes of 2D materials are the subject of recent
research efforts for a variety of applications (e.g.
electronics, energy storage, catalyst). The high surface
density of these 2D materials makes them ideal for H,
storage and catalysis. In particular, the newly
synthesized hydrogen boride (HB) sheets are a
promising material for H, storage due to their inherent
high hydrogen composition. This HB sheet can be
reliably synthesized from MgB, with a yield of
42%.[1]

Recent studies have shown that H, extraction is
possible by using heat treatment or photon irradiation
which can extract about 94% of the total hydrogen
composition.[2] The noteworthy storage and
extraction yield is a significant advantage over bulk
metals and alloy based H, storages. We also found in
our previous study that it is remarkably stable against
water,[3] a common substance in ambient condition
and fuel cell technologies, making HB sheets a
promising material for hydrogen storage applications.
To further investigate its viability, there is a need to
study the cyclic hydrogen discharge-recharge process.
In particular, the effect on the stability and structure of
hydrogen deficiency is unclear.

In addition, HB sheets have been shown to be a
promising catalyst for ethanol reforming and carbon
dioxide conversion.[4] However, in the experimental
process, the HB sheets are subjected to heat pre-

treatment that induces hydrogen desorption and

releases about 33-50% of the hydrogen composition,
meaning the experimental condition of the HB sheets
are in a hydrogen deficient state.

In both hydrogen storage and catalyst applications,
the condition of the hydrogen deficient HB sheet is
important to understand. For simulation studies, to
effectively study the reaction processes, an accurate
representation of the hydrogen deficient HB sheet
structure is required.

In this study, we investigate the structure of the
hydrogen deficient HB sheet at varying levels of
hydrogen vacancy saturations using a workflow
involving machine learning assisted structure search
with a density functional based tight binding (DFTB)
method as a target potential. This is followed up by
accurate optimization using the density functional
theory (DFT) method. Finally, we obtain a set of the
most energetically favored structures with varying

hydrogen content.

2. METHODOLOGY
In the pursuit of exploring novel structures,
scenarios like high-

particularly in complex

dimensional  structure searches where local
optimization falls short, the demand for a robust and
efficient global optimization (GO) algorithm is
imperative. This study employs GOFEE (global
optimization with first-principles energy expression)
algorithm, integrated within the AGOX package,[5] as

the GO algorithm of choice. Conventional GO
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Figure 1. Workflow diagram.

methods entail resource-intensive

typically
computations for energy and force evaluations,
compounded by entirely random structure propagation,
diminishing the likelihood of converging to the global
minimum (GM). GOFEE introduces two pivotal
innovations. First, it mitigates computational burdens
by employing a Gaussian process regression (GPR)
model, iteratively train on-the-fly using the target
potential — here, Density Functional Tight Binding
(DFTB) method as implemented in the DFTB+
package [6] — to handle energy and force evaluations
during local optimization steps. Secondly, rather than
relying on random structure propagation, a genetic
algorithm is adopted. This approach entails generating
subsequent structures for evaluation by iteratively
applying mutations to preceding structures.

In the following discussion, we explain the
workflow of the structure search as described in Fig. 1.
The first step is initializing four sets comprising 30
independent instances of GOFEE calculations. This
entails seeding each calculation differently, making the
initial state of the search distinct from each other. For
a more comprehensive search, we included two

variations of GOFEE calculation: template and «

No-Template (NT)

/ /| [

With-Template (WT)

Figure 2. Graphical model of the with-template and

no-template initial state.

parameter. In the template variation, we considered
two starting structures, a no-template (NT) and a with-
template (WT) setup (refer to Fig. 3). The NT
configuration allows GOFEE complete freedom to
place all hydrogen and boron atoms while the WT
initializes with a 2D boron sheet that creates a bias
towards a sheet-like structure and only allows GOFEE
to place the hydrogen component. The k governs the
exploratory-exploitative tendency of the search and
was varied to values of 2 and 3. The lower k value
nudges the balance towards a more exploitative
direction. The combination of these two variations
results in four sets of GOFEE calculations that are
distinctly initialized. The mutations applied are
random and rattle mutations with a 6:14 ratio in the 20
samples. A dual-point evaluation was also performed
with the second point a small nudge towards the force
direction. With 500 iterations, a cumulative total of
120,000 structures are evaluated, resulting in the
identification of the GM structure and its
corresponding energy.

Subsequently, the second step involves a reduction
in the number of structures by eliminating those
exceeding 3eV from the GM energy. Following this,
the third step entails duplicate removal. Here, we
employ a group strategy for atomic structures utilizing
the eigenvalues of the distance-based Laplacian matrix,
implemented within AGOX. This comparison method

exhibits insensitivity to minor fluctuations in bond

94



GOFEE GM Found

200 400 600 800 1000
Iteration [#]

o

Relative energy [eV]
o g =
s &

&

10 - Best structures
20 - Stratified samples

All structure

o
°

0 10 20 30 40 0 10 20 30 40

B8 BB 7 Sa800 S o800
/888 /858 /888

Best structure 2nd Best structure

3rd Best structure

Figure 3. Workflow results on pristine HB sheet. (a)
shows the success rate on finding and converging to a
global minimum shown in (b). In (¢), a graphical
representation of the sampling strategy is shown.

Lastly, (d) shows the 3 best DFT-optimized structures.

lengths, thereby effectively clustering structures with
similar eigenvalues. Within each group, we opt for the
energetically most favorable structure. In the fourth
step, a further reduction in the number of structures is
achieved through a simple sampling technique.
Specifically, we select the 10 lowest energy structures
and choose 20 structures by stratified sampling from
the remaining unselected structures, resulting in a total
of 30 structures.

Continuing with the fifth step, we proceed to further
optimize all 30 structures until the forces are below 10
4 Ry/Bohr. This optimization is conducted using DFT,
implemented within the Quantum Espresso
package.[7] Herein, a k-point mesh of 6x6x1 is
employed, alongside a tight self-consistency threshold
of 10, and wavefunction (charge) cutoff energy of 60
(480). The exchange-correlation functional was
approximated using rev-vdW-DF2 to -effectively
account for the vdW interactions.[8] The
pseudopotentials generated using the Perdew-Burke-

Ernzerhof formulation of the generalized gradient

approximation were adopted from the GBRYV ultrasoft

pseudopotential library.[9] Finally, the duplicate
removal step is reapplied to yield the final set of
structures, wherein the true GM manifests as the most

energetically favored configurations within the set.

3. RESULTS AND DISCUSSION
3.1 PRISTINE HB SHEET

As a preliminary benchmark, we initially subject a
pristine HB sheet to the workflow. Figure 3 provides a
summary of the results obtained from the workflow
steps. Notably, in terms of success rates (Fig. 3a)
converging on the GOFEE GM structure (Fig. 3b), the
WT approach demonstrates a high success rate of
approx. 70%. Conversely, the NT approach encounters
challenges in locating the GM, likely due ot the
increased complexity inherent in the initial unbaised
state, necessitating more iterations copared to the WT
approach. Figure 3c illustrates the graphical
representation of the sampling strategy, which entails
selecting the top 10 structures along with the 20
stratified structure samples. Subsequently, all 30
structures undergo optimization using the DFT method,
and the top three structures showcased in Figure 3d. It
is noteworthy that the optimal structure post-

optimization is identical with the GM identified in the

preceding GOFEE calculation.

3.2 HYDROGEN-DEFIGIENT HB SHEET

To emulate the experimental condition, a few
models corresponding to 11, 22, 33, and 44 at%
hydrogen deficiencies were used. The summary of the
structure search findings is presented in Figure 4. In all
cases the GOFEE calculation successfully obtained the
GM within the iteration span. Interestingly, the higher
hydrogen deficiency (e.g. 44 at%) converges much
faster compared to lower hydrogen deficiency. The
GMs found by deficiency 22 at% and greater show a
more complex configuration of the bridge hydrogen. It

seems the desorption process does not simply remove
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Figure 4. Summary of the structure search workflow on hydrogen-deficient HB sheet at varying level of deficiency.
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Figure 5. Relative energy of the hydrogen deficient

structures.

the hydrogen atoms but instead also induces
reconfiguration on the remaining hydrogen atoms. In
the post-processing steps, duplicate removal on 11 at%
deficiency has significant effects but as the deficiency
increases, the impact reduces due to the increasing

complexity of the system. This complexity stems from

the lack of enough atoms to form a periodic and
symmetric structure making a tendency to form more
“chaotic” structures. This is also why the NT has
increased rates at high deficiency — because the GM
found by WT was more chaos and close to NT
performance. The best DFT structure are also
presented. In all cases, the best structure is not
identical to the GOFEE GM found, meaning that the
final DFT optimization is a better and more accurate
approach in obtaining true GM. Lastly, the best DFT
structure was artificially expanded along its periodic
direction for a clearer visualization of the holes created
in the desorption process.

Finally, we describe the relative energies of the
discovered structures. In all deficient cases, the
relative energy shows that the structure is less stable
than the pristine structure. Interestingly, the largest

energy step increase is in the step from pristine to 11

at%. The succeeding increase in deficiency saturation
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did further destabilize the structure but not to the same (9) Garrity, K. F., et al., Comput. Mater. Sci. 81,
magnitude as the first step. This means that the 446452 (2014).

desorption process bottleneck happens in the initial

hydrogen desorption step, and succeeding hydrogen

desorption will be easier. Additional calculations on

energy barriers are still required to further investigate

this aspect.

4. CONCLUSION

In conclusion, our study explores the structure and
stability of hydrogen deficient HB sheets. Leveraging
a machine-learning-assisted structure search workflow,
we elucidate the effect of varying levels of hydrogen
deficiency on the structural configuration and stability
of HB sheets.

The structure at varying levels of hydrogen
deficiency is described in detail. These set of structures
can be a baseline model for future calculations that
needs a more accurate HB sheet environment in high
temperature conditions. As observed, the increase in
hydrogen deficiency also increasingly destabilizes the
structure. The largest destabilization happens at the

first step — from pristine to 11 at% deficiency.
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