

Title	粒子法による大規模摩擦焼付きシミュレーション					
Author(s)	杉村, 奈都子					
Citation	サイバーメディアHPCジャーナル. 2024, 14, p. 103- 108					
Version Type	VoR					
URL	https://doi.org/10.18910/96536					
rights						
Note						

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

粒子法による大規模摩擦焼付きシミュレーション

杉村 奈都子 鹿児島工業高等専門学校 機械工学科

1. はじめに

摩擦で生じる深刻な摩耗や焼付きをどうすれ ば回避できるのか、という工学上の切実な問いに 答えるために、摩擦部材の材質、界面性状、外場、 摩擦被膜の生成能と安定性に着目して、さまざま なスケールの試験による焼付き機構の探索がな されている。たとえばマイクロ~ミリメートルス ケールのピンオンディスク試験によって、塑性流 動、移着、発熱の繰り返しが焼付きの前段である ことが、明確に指摘された[1]。これにヒントを 得て我々は、マイクロメートルスケールというマ クロとミクロの中間の系に着目し、連続体(マク ロ視点)としての弾塑性変形と、ナノミクロ相互 作用(ミクロ視点)から繰り込んだ界面相互作用 を構成式の基本に据えた、Smoothed Particle Hydrodynamics (SPH) 法 による大規模並列化メ ソスケール焼付きシミュレーションモデルを構 築した[2]。これは、摩擦の種々仮定理論を置か ず、摩擦の根源であるマルチスケールなエネルギ ー散逸機構を表現し得るモデルという点で、他モ デルと一線を画すものである。また、粒子法には 界面の大変形表現とマルチスケールなポテンシ ャル繰り込みが容易であるというメリットや、大 規模多粒子間相互作用シミュレーションのため のコード並列化フレームワーク FDPS[3]をコーデ ィングに利用できるという利便性がある。このモ デルの基本コードに対しては、定常摩擦を対象と してスティックスリップ現象[4]、分子動力学法 に基づいたせん断界面分子間相互作用の同定と その粒子間相互作用への繰り込みによる酸化被 膜摩擦低減効果 [5] などを再現した。また、せん 断方向と荷重負荷方向の解像度を大幅に変えて 広範なせん断面を表現するための非等方モデル も揃えた[6]。その結果、本題の境界潤滑摩擦焼

付きシミュレーションにおいて、発熱と塑性流動 と凝着の進展が並行して進む様子を再現できる ようになった[7]。これらの改良を経て、高解像 度、高荷重負荷(鉛直方向のシステム厚みが必要)、 長時間の計算のために、本格的に HPCI の利用を 開始した[8]。これにより、低弾性の軟質状態を 仮定した場合、凸凹の衝突に端を発してせん断面 周辺で塑性流動と摩耗と発熱が繰り返され、凸凹 の凝着がせん断面全体に一気に広がる様子が再 現された[9,10]。そこで今回、実際の金属材料を 対象として、本焼付きモデルにおいて以下を明ら かにする研究を行った。

①摩擦部材の表面性状(凸凹サイズ)と構成元 素の違いによるせん断時のフラッシュ(閃光)温 度と温度分布の特徴 ②弾性接触問題の計算精 度の精査

なお、金属摩擦によって生じる固体間摩耗凝着 の要因や機序については議論がなされて久しい が[11]、本件では界面相互作用、塑性流動、発熱 のスキームを備えることにより、結果的に界面間 溶融あるいは界面間結晶成長などとみなせる事 象が生じることとなる。

2. 方法および結果

SPH法は、連続体を粒子の集合体とみなして離 散化し、連続体の挙動を粒子の Lagrange 的な運 動により表現する、粒子法の代表的な一手法であ る。本件でも、せん断固体の運動方程式とエネル ギーの方程式(熱伝導、発熱)を、SPH 粒子に関 する各方程式として離散化して計算する。せん断 界面については、界面分子間のミクロ相互作用を 界面上の SPH 粒子間相互作用に繰り込む粗視化 を行うが、今回は界面分子間ポテンシャルを Lennard-Johns ポテンシャルで近似し、そのサイ ズスケーリングがほぼ成り立つことを Monte Carlo シミュレーションにより確認ののち、SPH 粒子間相互作用と置いた。なお、②の弾性接触シ ミュレーションでは界面相互作用を0とした。

① 表面性状(凸凹サイズ)、構成元素とフラッシュ温度[12]

焼付きは多くの場合、急激な温度上昇を伴う。 そのため今回、フラッシュ温度(摩擦時に瞬間的 に計測される高温)、すなわち、摩擦面で計測さ れる時々刻々の最高温度に着目をした。

界面に、円錐形凸凹を規則的に同数だけ配した 3µm×3µm×高さ約1µm 立方の弾塑性固体を 用意し、向かい合わせて荷重下における摺動試験 を行った。円錐高さを固定し円錐傾斜角を変えて (Rz:0.170µm, Ra:0.0125µm(小),0.0567µm (大)/円錐傾斜角逆数に比例)接触開始から数 ナノセカンドの間の温度上昇を比較した。ただし、 界面反応エネルギーに加え、塑性変形時にひずみ エネルギーの9割が熱として解放されると仮定 している[13]。また、解像度については粒子直径 0.033µm、総粒子数はそれぞれ Ra(小) 424240, Ra(大)463792 である。

固体を純アルミニウム(A1)とし摺動速度を 50~210m/sと増加させると、円錐傾斜角が緩く 接触断面積の大きいもの(Ra(大))でより温度 が上昇する傾向があり、また、摺動速度の増加と フラッシュ温度の上昇には正の相関が見られた。 温度や応力の増大域も、円錐傾斜角が緩く接触断 面積の大きいもの(Ra(大))でより大きくなっ た(Fig.1)。

A1 に加え、純ニッケル(Ni)、純鉄(Fe) につい ても同様にシミュレーションを実施した。その結 果、Ni、Fe においても摺動速度の増加とフラッシ ュ温度の上昇の間に傾向として正の相関が確認 されたが、A1 とは異なり、フラッシュ温度の激し い上下動が観測された。また、とりわけ円錐傾斜 角が緩く接触断面積の大きいもの(Ra(大))の 場合に A1<Fe<Ni とフラッシュ温度が大きく増大 した(Fig. 2)。

Fig.1 グラフは Ra(小)、Ra(大)における各摺動速度での Al フ ラッシュ温度の時間変化。下は摺動速度 150m/s における摺動 面の温度分布ならびに相当応力分布の時間変化。

Fig.2 Ra(大)における各摺動速度での Al, Ni, Fe のフラッシュ 温度の時間変化。Al については Fig.1 の左図と重複。

② 弾性接触問題の計算精度[14]

本メソスケール焼付きシミュレーションモデ ルはマルチスケール化を見据えている。そのため、 マクロスケールの運動を表す弾塑性スキームの 計算精度評価は重要である。小荷重における数百 µmスケールのヘルツ弾性接触試験は、解析シミ ュレーションでは解を得やすいが、時々刻々のシ ミュレーションでは接触点の嵌入や計算収束ま での膨大な計算時間など、難しさが指摘されてい る。今回、本モデルにおいて解析解の再現性につ いて、その精度評価に着手した。

半径 225µm の純鉄(Fe)半球を 585µm× 585µm×高さ287µm の純鉄(Fe)直方体直上に 配置し、半球上面1層の粒子に定荷重(6.1e-8~3.0e-4N)を負荷する弾性接触試験を行った (Fig.3)。解像度については粒子直径5.62µm, 総粒子数 702631(半球 129331,直方体 573300) である。垂直応力、相当応力の時間経過を観察す ると、負荷荷重が増すほど接触圧力は増し、どの 負荷荷重においても、接触部では圧縮が進んで相 当応力が増大し、しばらくするとそれが緩むとい う応力の振動が観測され(Fig. 4)、その振動数は 荷重の大きさに関わらず約1MHzであった。接触 点直下領域(24μm×24μm×高さ33μm)の平均 垂直応力、平均接近量に着目すれば、負荷荷重 3.0e-4Nの場合、その垂直応力の大きさは 197.8MPaであり、接近量は123.9nmとなった。

Fig.4 荷重負荷試験(4.2e-7N)における垂直応力σzz の、接触点を含む断面における時間変化。荷重を変え てもその値以外、様子は変わらない。

3. 考察

① 表面性状 (凸凹サイズ)、構成元素とフラッシュ温度 に関して

フラッシュ温度**0**に関しては、次の式(1)が提唱 されている[15]。

$$\theta = \alpha \frac{Q}{\pi r \kappa} \frac{1}{\kappa} e^{-P_e} [I_o(P_e) + I_1(P_e)] \qquad (1)$$

ここでQ発熱量, r真実接触面積半径, κ 熱伝導 度, I_n 第一種変形ベッセル関数, P_e ペクレ数, α 熱 分配率である。これは、マクロの摩擦試験でフラ ッシュ温度が想像以上に高温になる現象を、真実 接触面積がせん断面積よりもはるかに小さいこ とで説明する根拠となっている。このとき、発熱 量Qは摩擦係数とpv(p圧力v摺動速度)の積とさ れた。一方で、ミクロの観点からこの発熱量Qに 着目すれば、これは界面のエネルギー流速qに真 実接触面積 πr^2 を掛けたものと定義でき、結果的 に式(1)は式(2)と表現できる。

$$\theta = \alpha \frac{qr}{\kappa} e^{-P_e} [I_o(P_e) + I_1(P_e)] \qquad (2)$$

ここで、界面のエネルギー流速qは単位面積あた りの界面相互作用力q'と摺動速度vの積であり、 本シミュレーションではこの q'が界面の SPH 粒 子間相互作用力 f に比例する。そのため式(2)は 式(3)とも表現される。

$$\theta \propto \frac{fvr}{\kappa}$$
 (3)

以上から、Ra(小)に比べて Ra(大)でより温度 が上昇すること(rに着目)、摺動速度(v)の増加 とフラッシュ温度の上昇の間に正の相関が見ら れることは、この理論式で説明できる現象とい える。また、発熱温度がA1に比べて Fe,Ni で上 昇することも、熱伝導度 κ がA1に比べて Fe,Ni で低いことにより、上式を用いて説明できる。 また、界面の SPH 粒子間に設定した Lennard – Jones 型ポテンシャルの深さ (fの係数)が A1<<Fe<Ni (Al: 8.90e – 24J, Fe: 4.52e –

15J, Ni: 4.03e – 14J) であることから、フラッシ ュ温度の上昇のグラフ形状が Al と Fe, Ni で異な ること、温度が Fe<Ni であることは、上式より 類推ないし説明ができる。

ただし、Fe, Ni で見られる温度の上下動には、 用いた界面相互作用力の斥力項が大きく寄与し ていると見られ、界面の形状変化を含めて更なる 検証が必要であると考えている。また、定量的な 比較についても、現在検討を進めているところで ある。

弾性接触問題の計算精度に関して

結果を解析解と並べて Fig.5 ならびに Table1 にまとめる。負荷荷重3.0e – 4Nで観測された垂 直応力の大きさ197.8MHzは、Hertzの接触理論に よる最大接触圧力と平均接触圧力の中間値 (204.7MHz)に近い値であるとみなすことができ る。また、応力や接近量の振動数は負荷荷重に依 存せず 1MHz 程度であり、このことから、この 振動は計算手法により人為的に生じたものでは なく固有振動であるとみなすことができる。そこ で解析的に直方体の固有振動数(支持一支持弾性 梁り曲げと仮定)を求めると、その値は1.95 MHz となる。これはシミュレーションの結果の2倍弱 であるが、オーダーレベルでは一致している。

一方で、接近量については Hertz の接触理論解 2.59nmより 2 オーダー大きく、これについては 現在検討を進めている。ちなみに、接触部におけ る粒子嵌入を回避する目的で XSPH 法を採用した が、段階的荷重負荷試験(ステップロード試験) において XSPH 法では通常の SPH 法よりも大きな 接近量を示す傾向が確認された。

Fig.5 荷重負荷試験(3.0e-4N)における接触点直下の von Mises 相当応力(上)、接近量 Dz(下,黄緑)、 垂直応力*σ*_{zz}(下,青)の時間変化。

 Table 1 Fig.5 をフーリエ変換して求めた振動数、応力、接近量。

定負荷荷重 3.0e-4N	Dz	σ_{zz}	vM Stress	Contact Theory of Hertz	Natural frequency
Frequency	<u>0.99</u> MHz	<u>0.99</u> MHz	0.95 MHz		<mark>1.95</mark> MHz
Max. Amp. of Stress		<u>197.8</u> M Pa	119.3 MPa	245.7 MPa(max.) 163.8 MPa(ave.)	
Max. Amp. of Dz	<u>123.9</u> nm			2.59 nm	

4. SQUID 資源の利用状況

今回、計算には SQUID の汎用 CPU ノード群を用 いた。並列計算は、OpenMP によるスレッド並列と MPI 並列のハイブリッド並列とした。具体的には、 1ノード76 コアを4プロセス(19 スレッド並列) として、19 ノードあるいは 76 ノードを用いて、 ジョブ時間 24 時間~72 時間の計算実施を基本と した。長時間の計算が必要な場合には、リスター トを繰り返して対応した。100 ノードを超える並 列計算は通常、ジョブ実行までの待ち時間が長く なることから、比較的空いている時期に実施した。 なお、4 プロセスで実行する場合、76 コアをフル に用いた 19 スレッド並列とするか、0S 処理分の 余裕を勘案して 72 コアを用いた 18 スレッドと するかについてテスト計算を行ったが、19 スレ ッド並列の方が計算にかかる時間が少なくて済 むことを確認し、これより 76 コアをフルに用い てスレッド並列することとした(Fig.6)。

Fig.6 プロセスあたりのスレッド数比較。19 スレッドの場合の方がグラフの傾きが小さく、処理が速いことがわかる。

5. まとめ

Smoothed Particle Hydrodynamics (SPH) 法 に よる大規模並列化メソスケール焼付きシミュレ ーションモデルを構築し、これまでに焼付きの進 展に関わる塑性流動、発熱、凝着の同時並行的な 進展を、極軟質な材料を仮定してシミュレーショ ンで再現することに成功していた。本年度はこの モデルを実金属材料に対して適用し、以下を明ら かにする研究を行った。

①表面性状(凸凹サイズ)と構成元素の違い
 (A1, Fe, Ni)によるせん断時のフラッシュ(閃光)
 温度と温度分布の特徴

②弾性接触問題の計算精度の精査

①では接触面積が小さい Ra(小)と大きい Ra(大)について結果を比較した。摺動速度の増加 とフラッシュ温度の上昇には正の相関が見られ、 Ra(小)に比べて Ra(大)ではより温度が上昇す る傾向があった。これらの現象は、フラッシュ温 度について提唱される理論式から説明すること ができる。また、Ra(大)の場合に Al<Fe<Ni と フラッシュ温度が大きく増大した。一方、Al とは 異なり、Fe, Ni ではフラッシュ温度の激しい上下 動が観測された。発熱温度が Al に比べて Fe, Ni で上昇することは、熱伝導度 κ の大小により理 論式で説明ができる。界面相互作用力の大きさが Al<<Fe<Ni であることから、Al と Fe, Ni で温度上 昇の時間変化の傾向が異なること、温度が Fe<Ni であることも説明できる。ただし、定量的な議論 については更なる検証が必要である。

②について、Fe 半球を Fe 直方体に微小荷重で 押し付ける弾性接触試験を実施した。時々刻々の シミュレーションでは接触点の嵌入や計算収束 までの膨大な計算時間など、難しさが指摘される 試験である。さらに、①に対して解像度、スケー ルともに100倍程度大きく、マクロスケールスキ ームの精度評価を目的としている。垂直応力、相 当応力の時間経過を観察すると、負荷荷重が増す ほど接触圧力は増し、また、どの負荷荷重であっ ても接触部での応力の振動数はほぼ一定であっ た。この振動数を弾性曲げの固有振動数と比較す ると、オーダーレベルでの一致が確認された。ま た、接触点直下の垂直応力は Hertz の接触理論に 基づく解析値にほぼ一致した。ただし、接近量は 過大評価であり、これについてはXSPH法の利用 によるとも考えられるが、検証を進めている。

今回の実金属材料による試験は、本大規模並列 化メソスケール焼付きシミュレーションモデル の開発において、マルチスケール化を目指す上で 重要な位置を占めている(Fig.7)。この実現は、 SQUIDの利用なくしては叶わなかった。

Fig.7 本メソスケール焼付きモデルの完成イメージ

謝辞

本研究の実施に際し、SQUID を利用させていた だきましたことに深謝いたします。

参考文献

- Y. Matsuzaki, K. Yagi, J. Sugimura, Wear, 386-387, 165 (2017)
- (2) 科研費 基盤研究(C)「境界潤滑摩擦の摩
 耗発熱焼き付き機構解明を目指したメソス ケール計算モデルの開発」杉村奈都子,杉
 村剛(20K04245)
 https://kaken.nii.ac.jp/ja/file/KAKENHI PROJECT-20K04245/20K04245seika.pdf
 (2020~2022)
- M. Iwasawa, A. Tanikawa, N. Hosono, K.
 Nitadori, T. Muranushi, J. Makino, PASJ, 68, 54-1 (2016)
- (4) L.V. Sang, A.Yano, S.Fujii, N.Sugimura, H.Washizu, EPL,122,26004 (2018)
- (5) L.V.Sang, A.Yano, A. Isohashi, N.Sugimura,H.Washizu, Tribol. Int., 135, 296 (2019)
- (6) Natsuko N Sugimura, Le Van Sang, Yuji
 Mihara, Hitoshi Washizu; Development of the simulation model about dry asperity friction and wear by SPH method with disk-like particles, International Tribology Conference Sendai
 2019(ITCSendai2019),19-H-6 (2019)
- (7) N.Sugimura, L.V.Sang, Y.Mihara, H.Washizu, J Comput Sci, submitted
- (8) 富岳・一般課題「メソスケールの境界潤 滑摩擦における実界面性状焼付きシミュ レーションモデルの開発とその高速化」 hp210071 (hp200214 継続) 杉村奈都子,鷲 津仁志,三原雄司(2021)
- (9) 杉村奈都子, Le Van Sang, 三原雄司, 鷲津仁志, トライボロジー会議 2021 秋 松江,予稿集 162_L0101.pdf (2021)
- (10) N.Sugimura, Y.Mihara, H.Washizu; 2022 JSME-IIP/ASME-ISPS Joint International Conference on Micromechatronics for Information and Precision Equipment (MIPE2022),C1-4-02 (2022)
- (11) A.M. Kovalchenkoa, P.J. Blaub, J. Qub, S. Danyluka, Wear 271, 2998-3006 (2011)

- (12) M.Era, N.Sugimura, Hitoshi Washizu, 9th International Tribology Conference (ITC), Fukuoka 2023, 28-PO-29 (2023)
- (13) P. Ulysse, International Journal of Machine Tools & Manufacture 42, 1549-1557 (2002)
- (14) N.Sugimura, M.Era, R.Tsuda, K.Nitta, Y.Mihara, H
 Washizu, 9th International Tribology
 Conference (ITC), Fukuoka 2023, 28-J-05
 (2023)
- (15) 山本雄二, Journal of Japan Society of Lubrication Engineers, 27, pp789-793 (1982)