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1. Introduction

Heterogenous catalysts plays critical roles in the
human civilization by facilitating the synthesis of
essential compounds. Given in-depth understanding of
interactions between catalysts and chemicals,
enhancing the performance can be achieved by tuning
the morphology of the catalyst, especially the structure
of the active sites. However, elucidating the active
sites is non-trivial due to the dynamic of the catalyst
during operating condition (i.e., non-equilibrium
states) which might reconstruct the active sites far

from the as-prepared condition.

In this study, we aim to elucidate the active sites at
non-equilibrium states by taking CO2 hydrogenation
to methanol as a case study. The utilization of
greenhouse gas CO2 to methanol and the application
of methanol in a fuel-cell are appealing solutions to
tackle the global warming, but development beyond
the conventional catalyst (i.e., Cu/ZnO/AlO3 or CZA)
is hindered by the controversy in the active sites.
Industrially, methanol is synthesized from the mixture
of CO2/CO/H2 gas and there is a strong possibility
that the adsorbates and intermediates existed during
the reaction might induced surface transformation,
thereby form the new active sites. We regard this
phenomenon as “self-optimization of the catalyst”
since the origin of the new active sites come from the
additional surface

system itself without any

engineering.

In the raise of computing power, simulation of

catalysis is highly promising to unbiasedly elucidate
the catalyst reconstruction by providing explicit
atomistic picture of catalytic events. In general, the
simulation requires the interatomic potential, from
which the energy and forces of atoms that govern the
dynamic of the system can be derived. Accurate
potential can come from a very computationally-
expensive method called Density Functional Theory
(DFT). Fortunately, given the rapid progress in
machine-learning (ML) technique, DFT results can be
accurately predicted by an ML model after learning
from adequate database. This framework results in
faster and more efficient method called machine-

learning molecular dynamics (MLMD) [1].

In this article, we highlight our application of
MLMD to uncover atomic-level phenomena in the
self-optimization of active sites, first focusing on the
formation of small clusters on Cu surfaces induced by
CO. This study, which has been published in reference
[2], has been conducted utilizing the SQUID super

computer of Osaka University.
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2. Machine Learning Molecular Dynamics

In practice, we apply the MLMD by integrating
four frameworks including DFT, ML, MD, and the
analysis tool that we called elucidator. The schematic
is shown in Fig.1 and each of them is discussed in the

following.

Quantum Espresso [3]

DFT | ML

)
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Fig. 1 : The framework of MLMD
2.1 Density Functional Theory (DFT)

We employed DFT software Quantum Espresso
[3] to provide the energy and atomic forces for each
training data that consist of atomic environments of the
Cu surface interacting with various configurations of
CO molecules (both in gas and adsorbed states). Some

snapshots of the training data are shown in Fig 2.

Fig. 2 : Some snapshots of training data: (a) CO
on the flat Cu(111) surface, (b, ¢) CO with some
Cu clusters, and (d) CO on Cu step surface.

2.2 Machine-Learning (ML)

After generating the database with the
corresponding target values (i.e., energy and atomic
forces), we proceeded with constructing a machine-
learning interatomic potential. In this study, we

employed the Gaussian Process Regression (GPR)

machine-learning algorithm, implemented within the
FLARE software [4]. GPR was selected due to its
capability to provide prediction uncertainty based on
the database, facilitating the active learning approach.
This method utilizes high uncertainty values as criteria
for including atomic environments in the database,
ensuring each data point is sufficiently distinct,
resulting in a compact and minimally correlated
database. To ensure the reliability of the potential, the
atomic force of each atom is evaluated. All the Mean
Absolute Error (MAE) is below 0.1 eV/A. The result

of the validation is shown in Fig. 3.
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Fig. 3 : The parity plots showing the validation of
the atomic forces of each element: (a) Cu with
MAE of 0.04 eV/A, (b) C with MAE of 0.08 eV/A,
and O with MAE of 0.06 eV/A.
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2.3 Molecular Dynamics (MD)

The LAMMPS [5] package is utilized to conduct
MD simulations employing both MPI and OMP
parallelization techniques. This software reads the ML
potential and computes energy and forces of the
system at each time step, resulting in dynamics of the
atoms.

2.4 Elucidator

Elucidator is a set of analysis tool that we used to
post-process the trajectory of the MD simulations.
This tool is Python-based program which relies on two
libraries, namely ASE [6] and Ovito [7]. Tasks that are
performed includes: the visualization of the dynamics,
identification of the size and shape of the clusters, as
well as analyzing the mechanism of the cluster

formations.

3. The formation of Cu nano-clusters on Cu
surface induced by CO adsorptions

With the help of MLMD, we succeeded in
capturing the atomic level events of the formation of
active sites in the form of small nano-clusters. Such
formation is induced by the interaction of Cu surface
with CO adsorbates as no similar behavior is observed
when the Cu surface is not exposed with the CO. The
snapshot of the Cu surface at 550 K without and with
CO exposure are shown in Fig. 4 and Fig. 5,

respectively.

No cluster is found

Fig. 4 : Snapshot (top-view) of Cu island (yellow)

deposited on Cu(111) surface (green atoms).

Clusters are found !

Fig. 5 : Snapshot (top-view) of Cu island (yellow
atoms) deposited on Cu(111) surface (green
atoms). The island is decomposed to small
clusters due to the interaction with the CO

adsorbates.

With the help of elucidator, the shapes and sizes of
the nano-clusters formed during the simulation can be
identified. As shown in Fig.6, the size of the clusters is
ranged from dimer (consists of 2 atoms) to heptamer
(consists of 7 atoms). In all cases, the CO is adsorbed
on the edge of the cluster, which is consistent with the
DFT calculations that suggest that CO is favorably

adsorbed on low-coordinated atoms.

Fig. 6 : Snapshots of the clusters formed during

the simulation of CO interacting with Cu surface:
(a) dimer, (b) trimer, (c) tetramer, (d), pentamer,
(e) hexamer, and (g) heptamer. The CO in the gas

phase is drawn in semi-transparent color.

Further, the mechanism of the cluster formation can

be clarified from the results of MD simulations. We
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found that the clusters are mainly formed by the
agglomeration of the Cu-CO complex(s) which then
grow bigger over the time. Such process is typically
initiated by the detachment of monomers from the
island. The time evolution of this mechanism in the

scale of ns is shown in Fig. 7.

0.012 ns

Fig. 7 : The mechanism of the formation of Cu
clusters induced by CO adsorptions. The event is
initiated by detachment of the monomer from the
island, followed by subsequent agglomerations
that form bigger cluster over the time.

We attribute the origin of the surface
transformation due to the lowering of the detachment
barrier of the Cu adatoms from the step edge when the
CO adsorbs on the Cu atoms. The DFT calculated
barriers shown in Fig. 8. clearly shows that the more
CO adsorb on the step edge, the lower the detachment
barrier of the Cu atom. For instance, without the CO
adsorbate, the adsorption of detachment barrier for a
single Cu adatom is as high as 0.72 eV but when the
Cu step edge is fully occupied with CO the barrier
reduces to 0.12 eV. Interestingly, the high coverage of
CO also slightly increases the re-attachment barrier of
the adatoms which further favor the stability of the

small clusters over the island.
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Fig. 8 : The detachment barrier of Cu adatom
from the step edge given different number of

adsorbed CO.

4. Conclusion
Overall, we apply molecular dynamics accelerated

with machine learning to provide the direct

observation to the influence of CO adsorption upon the
formation of Cu clusters on the Cu(111). This Cu
clusters might become the new active sites for further
reaction in the methanol synthesis. The clusters,
ranging from dimer to heptamer, are formed indirectly
by agglomeration of smaller clusters. The main origin
of the cluster formation is attributed to the reduction in
the detachment barrier of Cu adatom when the CO

adsorbs on top of it.
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