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1．Introduction 

   Heterogenous catalysts plays critical roles in the 

human civilization by facilitating the synthesis of 

essential compounds. Given in-depth understanding of 

interactions between catalysts and chemicals, 

enhancing the performance can be achieved by tuning 

the morphology of the catalyst, especially the structure 

of the active sites. However, elucidating the active 

sites is non-trivial due to the dynamic of the catalyst 

during operating condition (i.e., non-equilibrium 

states) which might reconstruct the active sites far 

from the as-prepared condition.  

   In this study, we aim to elucidate the active sites at 

non-equilibrium states by taking CO2 hydrogenation 

to methanol as a case study. The utilization of 

greenhouse gas CO2 to methanol and the application 

of methanol in a fuel-cell are appealing solutions to 

tackle the global warming, but development beyond 

the conventional catalyst (i.e., Cu/ZnO/Al2O3 or CZA) 

is hindered by the controversy in the active sites. 

Industrially, methanol is synthesized from the mixture 

of CO2/CO/H2 gas and there is a strong possibility 

that the adsorbates and intermediates existed during 

the reaction might induced surface transformation, 

thereby form the new active sites. We regard this 

phenomenon as “self-optimization of the catalyst” 

since the origin of the new active sites come from the 

system itself without any additional surface 

engineering.  

   In the raise of computing power, simulation of 

catalysis is highly promising to unbiasedly elucidate 

the catalyst reconstruction by providing explicit 

atomistic picture of catalytic events. In general, the 

simulation requires the interatomic potential, from 

which the energy and forces of atoms that govern the 

dynamic of the system can be derived. Accurate 

potential can come from a very computationally-

expensive method called Density Functional Theory 

(DFT). Fortunately, given the rapid progress in 

machine-learning (ML) technique, DFT results can be 

accurately predicted by an ML model after learning 

from adequate database. This framework results in 

faster and more efficient method called machine-

learning molecular dynamics (MLMD) [1].  

   In this article, we highlight our application of 

MLMD to uncover atomic-level phenomena in the 

self-optimization of active sites, first focusing on the 

formation of small clusters on Cu surfaces induced by 

CO. This study, which has been published in reference 

[2], has been conducted utilizing the SQUID super 

computer of Osaka University.   
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2．Machine Learning Molecular Dynamics 

   In practice, we apply the MLMD by integrating 

four frameworks including DFT, ML, MD, and the 

analysis tool that we called elucidator. The schematic 

is shown in Fig.1 and each of them is discussed in the 

following. 

 

Fig. 1：The framework of MLMD 
2.1 Density Functional Theory (DFT) 

   We employed DFT software Quantum Espresso 

[3] to provide the energy and atomic forces for each 

training data that consist of atomic environments of the 

Cu surface interacting with various configurations of 

CO molecules (both in gas and adsorbed states). Some 

snapshots of the training data are shown in Fig 2.  

 
Fig. 2：Some snapshots of training data: (a) CO 
on the flat Cu(111) surface, (b, c) CO with some 
Cu clusters, and (d) CO on Cu step surface.  
2.2 Machine-Learning (ML) 

   After generating the database with the 

corresponding target values (i.e., energy and atomic 

forces), we proceeded with constructing a machine-

learning interatomic potential. In this study, we 

employed the Gaussian Process Regression (GPR) 

machine-learning algorithm, implemented within the 

FLARE software [4]. GPR was selected due to its 

capability to provide prediction uncertainty based on 

the database, facilitating the active learning approach. 

This method utilizes high uncertainty values as criteria 

for including atomic environments in the database, 

ensuring each data point is sufficiently distinct, 

resulting in a compact and minimally correlated 

database. To ensure the reliability of the potential, the 

atomic force of each atom is evaluated. All the Mean 

Absolute Error (MAE) is below 0.1 eV/Å. The result 

of the validation is shown in Fig. 3.  

 

 
Fig. 3：The parity plots showing the validation of 
the atomic forces of each element: (a) Cu with 
MAE of 0.04 eV/Å, (b) C with MAE of 0.08 eV/Å, 
and O with MAE of 0.06 eV/Å.   

Cu

O

C
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2.3 Molecular Dynamics (MD) 

   The LAMMPS [5] package is utilized to conduct 

MD simulations employing both MPI and OMP 

parallelization techniques. This software reads the ML 

potential and computes energy and forces of the 

system at each time step, resulting in dynamics of the 

atoms. 

2.4 Elucidator 

   Elucidator is a set of analysis tool that we used to 

post-process the trajectory of the MD simulations. 

This tool is Python-based program which relies on two 

libraries, namely ASE [6] and Ovito [7]. Tasks that are 

performed includes: the visualization of the dynamics, 

identification of the size and shape of the clusters, as 

well as analyzing the mechanism of the cluster 

formations. 

 

3．The formation of Cu nano-clusters on Cu 

surface induced by CO adsorptions 

   With the help of MLMD, we succeeded in 

capturing the atomic level events of the formation of 

active sites in the form of small nano-clusters. Such 

formation is induced by the interaction of Cu surface 

with CO adsorbates as no similar behavior is observed 

when the Cu surface is not exposed with the CO. The 

snapshot of the Cu surface at 550 K without and with 

CO exposure are shown in Fig. 4 and Fig. 5, 

respectively. 

 

 
Fig. 4 : Snapshot (top-view) of Cu island (yellow) 
deposited on Cu(111) surface (green atoms).  

 

Fig. 5 : Snapshot (top-view) of Cu island (yellow 
atoms) deposited on Cu(111) surface (green 
atoms). The island is decomposed to small 
clusters due to the interaction with the CO 
adsorbates.  
 

   With the help of elucidator, the shapes and sizes of 

the nano-clusters formed during the simulation can be 

identified. As shown in Fig.6, the size of the clusters is 

ranged from dimer (consists of 2 atoms) to heptamer 

(consists of 7 atoms). In all cases, the CO is adsorbed 

on the edge of the cluster, which is consistent with the 

DFT calculations that suggest that CO is favorably 

adsorbed on low-coordinated atoms. 

 

 

Fig. 6 : Snapshots of the clusters formed during 
the simulation of CO interacting with Cu surface: 
(a) dimer, (b) trimer, (c) tetramer, (d), pentamer, 
(e) hexamer, and (g) heptamer. The CO in the gas 
phase is drawn in semi-transparent color.  
 

Further, the mechanism of the cluster formation can 

be clarified from the results of MD simulations. We 

No cluster is found

Clusters are found !
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found that the clusters are mainly formed by the 

agglomeration of the Cu-CO complex(s) which then 

grow bigger over the time. Such process is typically 

initiated by the detachment of monomers from the 

island. The time evolution of this mechanism in the 

scale of ns is shown in Fig. 7.  

 

Fig. 7 : The mechanism of the formation of Cu 
clusters induced by CO adsorptions. The event is 
initiated by detachment of the monomer from the 
island, followed by subsequent agglomerations 
that form bigger cluster over the time. 
 

   We attribute the origin of the surface 

transformation due to the lowering of the detachment 

barrier of the Cu adatoms from the step edge when the 

CO adsorbs on the Cu atoms. The DFT calculated 

barriers shown in Fig. 8. clearly shows that the more 

CO adsorb on the step edge, the lower the detachment 

barrier of the Cu atom. For instance, without the CO 

adsorbate, the adsorption of detachment barrier for a 

single Cu adatom is as high as 0.72 eV but when the 

Cu step edge is fully occupied with CO the barrier 

reduces to 0.12 eV. Interestingly, the high coverage of 

CO also slightly increases the re-attachment barrier of 

the adatoms which further favor the stability of the 

small clusters over the island. 

 

Fig. 8 : The detachment barrier of Cu adatom 
from the step edge given different number of 
adsorbed CO. 
 
4．Conclusion 
   Overall, we apply molecular dynamics accelerated 

with machine learning to provide the direct 

observation to the influence of CO adsorption upon the 

formation of Cu clusters on the Cu(111). This Cu 

clusters might become the new active sites for further 

reaction in the methanol synthesis. The clusters, 

ranging from dimer to heptamer, are formed indirectly 

by agglomeration of smaller clusters. The main origin 

of the cluster formation is attributed to the reduction in 

the detachment barrier of Cu adatom when the CO 

adsorbs on top of it.  
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