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Abstract
We consider the positive solution of the following semi-linear elliptic equation

on the compact Einstein manifoldsMn with positive scalar curvatureR0

10u� �u + f (u)u(n+2)=(n�2) = 0,

where 10 is the Laplace-Beltrami operator onMn. We prove that for0 < � �
(n � 2)R0=(4(n � 1)) and f 0(u) � 0, and at least one of two inequalities is strict,
the only positive solution to the above equation is constant. The method here is
intrinsic.

1. Introduction

Let (Mn, g0) be the compact Einstein manifold with positive scalar curvature R0

and n � 3. In this paper we consider the following nonlinear elliptic equation

(1.1)

�10u� �u + f (u)u(n+2)=(n�2) = 0, on Mn;
u > 0, on Mn,

where10 is the Laplace-Beltrami operator onMn related tog0. In the case off a
constant and� = (n�2)R0=(4(n�1)) with R0 the scalar curvature of Riemannian man-
ifold Mn, the problem (1.1) is just the Yamabe problem in the conformal geometry.
If Mn = Sn, there are infinitely many solutions for the Yamabe problem because the
conformal group of the sphere is also infinite. For the Einstein manifold which is con-
formally distinct from sphere, Obata [11] shown that the Yamabe problem has unique
solution, and Schoen pointed out there are more than three solutions for Yamabe prob-
lem on S1 � Sn�1, n � 3. Recently, Brezis and Li [4] consider problem (1.1) and
specially the following problem by using moving planes and blow-up analysis.

(1.2)

�10u� �u + up = 0, on Sn;
u > 0, on Sn,

and obtain that
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(A): for M = Sn, 0< � < n(n� 2)=4 and f decreasing on (0, +1), the only positive
solution to (1.1) is constant,
(B): for 0 < � � n(n � 2)=4 and 1< p � (n + 2)=(n � 2), and at least one of two
inequalities is strict, the only positive solution to (1.2)is constant,
(C): for M compact,n = 3 and f = 1, there exists a constant�0 = �0(M, g) > 0 such
for 0< � < �0, the only positive solution to (1.1) is constant.

In this paper our conclusions rely on the remarkable identity established by intrin-
sic properties. For related problems, see e.g. [2], [3], [5], [6], [8], [9], [12], [13].

Our main results are as follows.

Theorem 1.1. Suppose M be the compact Einstein manifold, 0 < � � (n �
2)R0=(4(n � 1)) and f0(u) � 0, and at least one of two inequalities is strict. Then
the only positive solution to(1.1) is constant.

As a consequence, we prove the following theorem.

Theorem 1.2. Suppose M be the compact Einstein manifold, 0 < � � (n �
2)R0=(4(n � 1)) and 1 < p � (n + 2)=(n � 2), and at least one of two inequalities
is strict. Then the only solution of the equation

�10u� �u + up = 0, on Mn;
u > 0, on Mn,

is the constant solution u= �1=(p�1).

REMARK . Clearly, Theorem 1.1 and Theorem 1.2 can be seen a generalization
of Brezis and Li’s results (see Theorem 1 in [4]). On the otherhand, Theorem 1.2
also answers the Brezis and Li’s problem 2 in [4] for compact Einstein manifolds with
positive scalar curvature.

2. Proof of Theorems

Let (Mn, g0) be the compact Einstein manifold with positive scalar curvature R0.
Define the conformal transformationg = u4=(n�2)g0 on Mn, then10 is related with the
scalar curvaturR of g by

10u� (n� 2)R0

4(n� 1)
u +

(n� 2)R

4(n� 1)
u(n+2)=(n�2) = 0,

which combing with (1.1) gives

R =
4(n� 1)

n� 2

�
f (u) +

�
(n� 2)R0

4(n� 1)
� ��u�4=(n�2)

�
.
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Setting �̄ = �� (n� 2)R0=(4(n� 1)), then

R =
4(n� 1)

n� 2
( f (u)� �̄u�4=(n�2)).

In what follows, the Einstein summation convention will be used. Let

' = 'i j
��xi

 ��x j

be a symmetric tensor defined onMn, and

'i j =
R

2
gi j � Rkl g

ikg j l .

It follows from [7] that the operator� associated to' acting on anyC2-function f
defined by

(2.1) � f = 'i j f,i j =

�
R

2
gi j � Rkl g

ikg j l

�
f,i j

is self-adjoint relative to theL2 inner product ofMn, that is

Z
Mn

(� f )g dVg =
Z

Mn

f (�g) dVg.

Lemma 2.1. Let g0 = '�2g, B0 and B the trace free Ricci tensor of the metric
g0 and g on Mn, respectively. Then we have

B0 = B +
n� 2'

�
D d' � 1'

n
g

�
.

This formula was studied in particular by Obata [10]. One canfind a proof also
in Besse’s book [1], Theorem 1.159.

For an Einstein metricg0, its trace free Ricci tensor is nothing but zero. Let' =
u2=(n�2), then the above lemma shows that, in the local coordinate system,

(2.2) Bi j = (n� 2)

�
1

n
1(u2=(n�2))gi j � (u2=(n�2)),i j

�
u�2=(n�2),

where the covariant derivatives are with respect tog, and

(2.3) Ri j = Bi j +
R

n
gi j .
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(2.2) can be written as

(2.4) (u2=(n�2)),i j =
1

n
1(u2=(n�2))gi j � 1

n� 2
u2=(n�2)Bi j .

Substituting f in (2.1) with u2=(n�2) and using (2.4), we have

(2.5)

�(u2=(n�2)) =

�
R

2
gi j � Rkl g

ikg j l

�
(u2=(n�2)),i j

=
R

2
1(u2=(n�2))� Rkl(u

2=(n�2)),i j g
ikg j l

=
R

2
1(u2=(n�2))� Rkl

�
1

n
1(u2=(n�2))gi j � 1

n� 2
u2=(n�2)Bi j

�
gikg j l

=
(n� 2)R

2n
1(u2=(n�2)) +

1

n� 2
u2=(n�2)Rkl Bi j g

ikg j l .

Therefore, (2.5) together with (2.3) gives

�(u2=(n�2)) =
(n� 2)R

2n
1(u2=(n�2)) +

1

n� 2
u2=(n�2)

�
Bkl +

R

n
gkl

�
Bi j g

ikg j l

=
(n� 2)R

2n
1(u2=(n�2)) +

1

n� 2
u2=(n�2)jBj2 +

R

n(n� 2)
u2=(n�2)Bi j g

i j

=
(n� 2)R

2n
1(u2=(n�2)) +

1

n� 2
u2=(n�2)jBj2.

Note that Z
Mn

�(u2=(n�2)) dVg = 0, dVg = u2n=(n�2) dVg0.

Integrating the above equality and using the divergence theorem, we obtain
(2.6)Z

Mn

u2=(n�2)jBj2 dVg =
(n�2)2

2n

Z
Mn

hr(u2=(n�2)), rRi dVg

=
(n�2)2

2n

Z
Mn

u2hr0(u2=(n�2)), r0Ri dVg0

=
2(n�1)(n�2)

n

Z
Mn

u2hr0(u2=(n�2)), r0( f (u)� �̄u�4=(n�2))i dVg0

=
4(n�1)

n

�Z
Mn

f 0(u)un=(n�2)jr0uj2 dVg0

+
4�̄

n�2

Z
Mn

u�2=(n�2)jr0uj2 dVg0

�
.



UNIQUENESS FOR THEBREZIS-NIRENGERG PROBLEM 613

Under the assumption of Theorem 1.1, (2.6) shows that

0� Z
Mn

u2=(n�2)jBj2 dVg

=
4(n� 1)

n

�Z
Mn

f 0(u)un=(n�2)jr0uj2 dVg0 +
4�̄

n� 2

Z
Mn

u�2=(n�2)jr0uj2 dVg0

� � 0,

and u must be a constant.
Let f (u) = u�, � � 0, we get Theorem 1.2 holds. The proof of theorems is com-

pleted finally.
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