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1. Introduction

The purpose of this note is to study the set Cdg(X, #n)=Cdg([X, S"]) when
X=G is a compact simply connected simple Lie group, where

Cdg: [X, §"]—Hom(z,(X), z.(S"))

assigns the induced homotopy homomorphism f to the homotopy class of a map
f: X—>8". To estimate Cdg(X,n) we introduce an invariant cdg(X,n) and its
stable version ‘cdg(X,n), which are non-negative integers or infinity, such that
‘cdg(G, 3) was denoted by cd(G) in [9]. We denote by cdg,(X,n) the exponent
of a prime number p in the prime power decomposition of cdg(X,n) when 0<
cdg(X,n)<oco. For convenience’ sake we set cdg,(X,n)=0 when cdg(X,n)=0.
We define ‘cdg,(X,n) similarly. We prove the following two theorems.

Theorem 1. If G is a compact simply connected Lie group, that is, G=
G, X+ X G, with G; a compact simply connected simple Lie group, then cdg(G, n)
and °cdg(G, n) are finite and the following seven statements are equivalent for any
prime number p.

(1) cdg,(G, 3)=0.

(2) ‘cdgy(G, 3)=0.

(3) cdg,(G;, 3)=0 for all 5.

4) “cdgy(G;, 3)=0 for all i.

(5) G, is p-regular for every i.

(6) G is p-regular.

(7) cdg,(G, n)=0 for all n.

Theorem 2. If G is a compact simply connected simple Lie group, then
Cdg(G, n) is a subgroup of Hom(z,(G), =,(S")) of maximal rank. Indeed Cdg(G,
n) is cdg(G,n)Z {si} DcZ{s3} if (G,n)=(Spin (4m), 4m—1) and cdg(G,n)-Hom
(7a(G), 7 ,(S™)) otherwise. Here m,y,_,(Spin(4m))=Z{s} ®Z{s,} and s/ is the dual
element to s;; cis 1 if m<2 and 2 if m>3; cdg(G, n) is non-zero if and only if ne
{n,, +--, n,}, where H¥(G; Q)=H*(I]7-1S"; Q).

In this note all spaces are path-connected with base point and all maps
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preserve base point. Base point of any H-space is the unit of it. To simplify
notation, we denote a map and its homotopy class by the same letter.

We define invariants cdg(X, #) and °cdg(X, ) in §2, prove Theorems in §3,
and give three results without proofs in §4.

2. Homotopy invariants

We will use the following notation and convention: We denote by a|b
that b=ca for some integer ¢. For any subset 4 of Z which contains a non-
zero, we denote by GCD(4) the greatest common divisor of the non-zero in-
tegers in 4. For convenience’ sake we set GCD(0)=0, k| oo for any non-zero
integer k, and 0- co=0, hence oo |0. For any subset 4 of {k€Z; k>0} U {co},
we denote by LCM(A) the least common multiple of 4 (it may be o) if 4 is non-
empty and contains neither 0 nor oo, and 0 if 4 is empty or contains 0, and oo if
A does not contain 0 but co. For any grop C, we denote by *C the abelianiza-
tion of C, that, is ®C is the quotient group of C by its commutator subgroup.
Note that the canonical surjection C—*C/Tor induces an isomorphism Hom(C,
Z)=Hom(**C|Tor, Z), where Tor denotes the torsion subgroup. The group
C has the rank 7, rankC=r, if ®*C/Tor is a free abelian group of rank r. We
denote by B(C) the set of x&**C/Tor which is not divisible by any integer >2.

Put {X, Y}=Ilim,,.[3*X, 3*Y] and ‘z,(X)={S", X}. Let °Cdg: {X,
8"t >Hom(’z (X), ‘z,(S")) be the stable version of Cdg. For any aex,(X), we
denote by cdg(X, n, o) or cdg(a) the non-negative generator of the subgroup of
Z generated by the image of a*: [X, §"]>=,(S")=Z. We define ‘cdg(c) simi-
larly for any ae°z,(X). If a, BEx,(X) represent the same element in “z,(X)
[ Tor, then cdg(a)=cdg(B). Thus cdg can be defined on “z,(X)/Tor. Similarly
‘cdg is defined on ‘z,(X)/Tor.

DEerFINITION 2.1.

cdg(X, n) = LCM {cdg(a); a € B(m (X))},
‘cdg(X, n) = LCM {’cdg(a); a € B(m(X))}.

The invariant ‘cdg(X, #) has been studied by several people when X is the
Thom space of an n-dimensional vector bundle [8]. Note from [10] that cdg
(Sp(n)/Sp(k), 4n—1) and cdg(U(n)/U(k), 2n—1) are James numbers [2] for 0<
k<mn, though cdg(O(8)/O(1), 7)==6 and the James number of SO(8)=0(8)/0(1)
is 1.

The invariant cdg(X, #) may be oo, though it is finite if X is a finite CW-
complex. Indeed we have

ExampLe 2.2. For each prime p, let ,(3;p) and a,(2; p) be generators of
the p-components of 7,,(S%) and ,,(S?), respectively [12]. Set a,(n; p)=1""3
(35 P) Empizp-3(S") and X(n; p)=S8"U ,,n; pe* ™72 for n>3, and set X(2; p)=



ConomoToryY of Lie Groups 215

S?U wy2; p€?*'. Then cdg(X(n; p), n)=p and cdg(I1,X(n; p), n)=+0, hence
cdg(II,X(n; p), n)=co by Proposition 2.6 below.

Proposition 2.3. If »,(X) is of finte rank, then the following three assertions
hold.
(1) cdg(X, n)<oo, and cdg(X, n)=cdg(a) for some ac Bz (X)) if B(r(X)) is
non-empty.
(2) cdg(X, n)=0 if and only if rank =,(X)=rank (Cdg(X, n)>>1, where <Cdg
(X, n)> is the subgroup of Hom(r,(X), z,(S")) generated by Cdg(X, n).
(3) cdg(X, n)==0 if and only if rank n,(X)>1 and there exists an integer r>1
such that r-Hom (7 ,(X), 7,(S")) c<Cdg(X, n)>. In the latter case cdg(X, n) is
equal to the least of such r.

Stable version also holds.

Proof. Put ¢=rank ,(X) and s=rank {Cdg(X,n)>. We denote by {a,,
-+, a;} and {a,, **-, a;} a free basis of Hom(z,(X), 7,(S")) and its dual basis of
%r (X)[Tor, respectively.

First we prove (2). Suppose cdg(X, #)=%0. Then trivially £>1. To
induce a contradiction, suppose ¢t>s. Then we can take {a,, ::-, 4,} satisfying
(Cdg(X, n)pc<ay, -, a,». It follows that fy(a,)=0 for all f: X—S", hence
cdg(a;)=0 and cdg(X, #)=0. This is a contradiction. Hence #=s. Con-
versely suppose that t=s>1 and cdg(X, n)=0. Then we can take {a,, -+, a;}
satisfying cdg(er;)=0. It follows that Cdg(X, n)c<a,, *++, a,-,» so that s<t—1.
This is a contradiction. Hence cdg(X, n)==0 if t=s>1. This proves (2).

Next we prove (1). If cdg(X, n)=0, then there is no problem. So suppose
that cdg(X, n)#0. Then t=s>1 as shown above. Choose {a;; 1<i<t} such
that {k;a;; 1<i<t} is a basis of {Cdg(X, n)>, where k;>1. Put k=LCM{k;}.
Then

k = Min{r>0; - Hom(z,(X), ,(S")) c<Cdg(X, n)>}

and hence k-Hom(z,(X), =,(S"))c<{Cdg(X, n)>, where Min denotes the mini-
mum. Evaluating at any B8=3}c;a;€“x,(X)/Tor, we have k- GCD{¢;} ZC cdg
(B)Z=GCD{k;c;} Z so that cdg(8)=GCD{k;c;} |k-GCD{c;}. If B€B(n, (X)),
then GCD{¢;} =1 and cdg(B) | k, hence cdg(X, n)| k. Set d;=k/k; and a=3>d;a;.
Then GCD{d;} =1 and a= B(r,(X)). We then have cdg(a)=k, so cdg(X, n)
=cdg(a)=*k. This proves (1) and a part of (3).

Other part of (3) follows immediately from (2). The same proof is valid
for stable case. This completes the proof of Proposition 2.3.

Proposition 2.4. (1) If all of the following five conditions are satisfied, then
cdg(X, n) is non-zero.
(1) X is a finite CW-complex.
(i) rank z,(X)>1.
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(i) X is simply connected if n>2.
(iv) Image{r (X®")—n,(X)} is a torsion, where X® is the k-skeleton of X.
(v) Al attaching maps of 2n-cells in X|X*~V are null homotopic if n is even.
(2) If X is a finite CW-complex with rank’ z,(X)>1, then ‘cdg(X, n) is
non-zero.

Proof. The assertions for n=1 can be proved by using the facts that the
composite of [X, S']e H(X)=Hom(H,(X), Z)==Hom(z\(X), Z) is Cdg and that
b (K)o X).

Suppose #>2 and five conditions in (1).

First we shall show that Cdg is a surjection on [X®+V/X®-Y S§"]. This is
trivial if X has no (n+1)-cell, so we assume that X has (n+41)-cells. We then

b4

have a cofibre sequence V S"=V S n L x o /X =Y and the commutative diagram:
p* i*
[VS", Sn] -— [vSn, Sn] -— [X(n+1)/X(n—l)’ Sn]
Cdg | = Cdg | = } Cdg
Hom(s,(V §"), Z) = Hom(r,(V §), 2) 5 Hom(s,(X "] X™), 2).
* Lk

In this diagram, the upper horizontal sequence is the same as the stable one and
hence exact, 7§ is a monomorphism, and p¥ ci¥=0. By chasing the diagram,
it follows that the third Cdg is a surjection.

Given any a€ Hom(z,(X*+V/X®-Y), Z), choose b: X*/X*D—-S" such
that Cdg(d)=a. By (v) and [1, 3.1], we can construct skeleton-wise a map f:
X/X®D—S8" such that foi=kob for some k+0, where i: X/ X*-Dc X/
X®-D, This implies that {Cdg(X/X®", n)> is of maximal rank, since

i%: Hom(z,(X/X®V), Z)=~Hom(z,(X*/X®V), Z).

By (iii) and a theorem of Blakers-Massey, 7z,(X, X* V)=z, (X/X®V). Then
by (iv) the homomorphism

g¥: Hom(z,(X/X*™V), Z)->Hom(r (X), Z)

induced by the quotient map ¢ has a finite cokernel. Therefore <Cdg(X, n)) is
of maximal rank, since ¢}<Cdg(X/X®V, n)>c<Cdg(X, n)>. Hence cdg(X,
n)=+0 by Proposition 2.3. This proves (1). By almost the same proof as the
above, we have (2).

The following two results can be proved easily. So we omit their proofs.

Proposition 2.5. (1) If X is k-connected with n<2k+1 and B('z,(X))
is non-empty, then ‘cdg(X, n)|cdg(X, n).
(2) If rank z,(X)=rank ‘z,(X)=1, then m-°cdg(X, n)|cdg(X, n), where



ConomoTtory of LiE GRouPS 217

the suspension 3" “z(X)/Tor=Z—‘r,(X)/Tor=Z is multiplication by m.
(3) If G is a connected simple Lie group, then rank ny(G)=rank ‘z,(G)=1
and

‘cdg(G, 3)|m-*cdg(G, 3)|cdg(G, 3)

where G is a universal covering group of G and m is a non-zero integer defined as in
(2) for X=G.

We denoted m-°cdg(G, 3) in 2.5(3) by cd(G) in [9]. Hence ‘cdg(G, 3)=
cd(G) if G is simple and simply connected.

Proposition 2.6. (1) If B(r,(X,;))is non-empty for i=1, 2, then LCM {cdg
(X,, n), cdg(X,, n)} |cdg(X,XX,, n). Stable version also holds.

(2) If ®n,(X,) is a torsion, then cdg(X, X X,, n)=cdg(X,, n).

(3) If m(X,) is of finite rank and cdg(X;, n)=%=0 for i=1, 2, then cdg(X,x
X,, n)=LCM{cdg(X,, n), cdg(X,, n)}.

4) If X, is (n—1)-connected and °r,(X;) is of finite rank for i=1, 2, then
‘edg(X, X X,, n) | “cdg(X, n)-"cdg(X;, n).

3. Proof of Theorem

In this section G denotes a compact connected Lie group of type {n,, .-,
n}, that is, H*(G; Q)=H*(IIi-1 S"i; @). As is well-known, #; is odd and there
are maps f: [[; S"—G and g: G—I] S™ which induce isomorphisms 74(I].S™)
®Q=7,(G)RQ (see [7]). From this and Proposition 2.3 we have

Proposition 3.1. The following five statements are equivalent.
(1) Cdg(G, n) is non-trivial.

(2) cdg(G, n) is non-zero.

(3) rank z,(G)=rank <Cdg(G, n)>>1.

(4) rank z,(G)>1.

5) neiny, -, n}.

Proof of Theorem 1. Numbers cdg(G, n) and °cdg(G, n) are finite by Pro-
position 2.3. Put A(n)={i; rank =,(G;)>1} and define *A(n) similarly. Then
A(3)="A(3)=1{i; 1<i<t}. We have °cdg(G, 3)|cdg(G, 3) by 2.5 (1). Thus
(1) implies (2). We have LCM{’cdg(G;, 3)} |°cdg(G, 3) and cdg(G, n)=LCM
{cdg(G;, n); i A(n)} by 2.6. Hence (2) implies (4), and (1) and (3) are equivalent.
By Theorem 4.1 (1) of [9], (4) and (5) are equivalent. Trivially (5) implies (6),
and (7) implies (1).

To prove that (6) implies (7), suppose (6). By Proposition 3.1, we may
suppose that n& {n,, -+, n,}. Then there is a p-equivalence f: G—>S=][}., S"
so that rank 7,(G)=rank ,(S)=u, say, and the image of fy: z,(G)—n,(S) is of
maximal rank. Let {a,, -**, @,} be a free basis of =,(G)/Tor and {a,, -+, a,} its
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dual basis of Hom(z,(G), 7,(S"). Let {k, -, k,} be positive integers and
{B, -+, B.} a free basis of =,(S) such that fy(a;)=Fk;B;. Then k; is prime to
p. Since f§oCdg=Cdgof*: [S, S"]>Hom(z,(G), ,(S")) and since Cdg is
surjective on [S, S"], we have Cdg(G, n)D>Image(f})=®Pi.; k;Z{a;}. Hence
Cdg(G, n) contains LCM{k;} - Hom(z,(G), =,(S")) so that cdg(G, n)| LCM{%;}
by Proposition 2.3 (3), therefore cdg,(G, n)=0. This implies (7) and com-
pletes the proof of Theorem 1.

ExampLE 3.2. For G non-simply connected, Theorem 1 does not hold in
general: ¢dg(SO(3), 3)=2 and °cdg(SO(3), 3)=1 (see [10]).

Recall that if G is simple then n&€ {n,, --+, n,} if and only if rank =,(G) is 1
or 2 and rank 7,(G)=2 if and only if (G, n)=(Spin(4m), 4m—1) for m>2. Then
the following and Proposition 3.1 prove Theorem 2 except for the case (G, n)=
(Spin(4m), 4m—1).

Proposition 3.3 (James). If n is odd, then the image of a*: [X, S"—=,(S")
is a subgroup for every acn,(X). In particular if n is odd and rank »,(X)=1,
then Cdg(X, n)=cdg(X, n)- Hom(r,(X), 7,(S")).

Proof. The first assertion can be proved by the method in [3, p.88]. The
second assertion then follows, since a*=ev, o Cdg and ev, is an isomorphism if
rank z,(X)=1 and « represents a generator of “z,(X)/Tor=Z, where ev,: Hom
(7 (X)), 7a(S™))—>7,(S") is the evaluation at e, that is, ev,(0)=0().

Let
) i »
Spin(4m—1) — Spin(4m) — S*m~!
be the canonical bundle for m>1. Then we have
7l'4m—1(SPi”(4m)) = Z{sl} GBZ{SZ}’
Hom(7,,,-(Spin(4m)), m - (S*"1)) = Z{s1} D Z{s3}

where s, is the image under 7, of a generator of z,,._,(Spin(4m—1))=2Z and s, is
an element such that py(s;) is 2 if m>3 and 1 if m<2 (cf., [5]); s} is the dual
element to s;. 'Then the following completes the proof of Theorem 2.
Proposition 3.4. The number cdg(Spin(4m), 4m—1) is non-zero and
Cdg (Spin(4m), 4m—1) = cdg(Spin(4m), 4m—1)Z {s} DcZ {s3}
where cis 2 if m>3 and 1 if m<2.
Proof. If m<2, then Spin(4m)~Spin(4m—1)x S*»~* and the assertion can

be obtained easily.
Suppose that m>3. Then s¥(p)=2, hence cdg(s,)=2 by the following
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lemma.

Lemma 3.5. If X is an H-space and n is odd with n=1, 3, 7, then cdg(c)
is even for every acn,(X).

To simplify notations, we set (G, n)=(Spin(4m), 4m—1). By definition,
we have

Cdg(G, n)ccdg(s,)Z {si} D2Z {s3} .

Take any integers k, and k,. Then there exists a map f: G—S" such that Cdg
(f)=cdg(s,)k,s1-+2js5 for some integer j. Let I: G—G be the inversion, that is,
I(A)=A"'. Then Cdg of the composition of
d 1x +
c¢LoxcXdoxs E s

is cdg(s,)k,s1+(2j4-2)s3, where d is the diagonal map, g, the canonical action
and g_=g,o(Ix1). Inductively we then have cdg(s,)k,si+2k,s;& Cdg(G, n).
Hence Cdg(G, n)=cdg(s,) Z{si} D2Z{s5}. Also cdg(s,) is even from Lemma
3.5, hence cdg(G, n)=cdg(s;)#0 from Proposition 2.3(3) and the following
lemma.

Lemma 3.6. cdg(s,)=0.

Proof of 3.5. Let g: X—S" be a map such that go a=cdg(a)Ex,(S")=
Z. Then the degree of the composition of

. y
'8 st 228 xuxh vy L g

is cdg(a) for j=1, 2, where 7; is the inclusion to the j-th factor and y is the mul-
tiplication. Hence cdg(at)’[¢,, tu]=[cdg(c)c,, cdg(a)e,]=0, so cdg(e) is even,
because the Whitehead square [¢,, ¢,] of the identity map ¢, of S” is of order 2.

Proof of 3.6. Set n=4m—1. Then the homomorphism z,(Spin(n))=
Z—>n,(Spin(n+2))=2Z induced by the inclusion is multiplication by e, where e
is 1if m>3 and 2 if m<2. Thus we have cdg(Spin(n+1), n; s,)| e- cdg(Spin(n-+
2), ). Since the latter number is non-zero by Proposition 3.1, so is the former.

This completes the proofs of Proposition 3.4 and Theorem 2.

ReMARK 3.7 ([10]). By almost the same proof as the above, we can prove
that Cdg(SO(m), n) is a subgroup of maximal rank. By using Proposition 4.1
below, we can prove that if G is simple but not necessarily simply connected, then
Cdg(G, n) contains a subgroup of maximal rank.
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4. Other results

We give three results. See [6] and [10] for their proofs. When we study
Cdg(G, n) for non-simply connected G, the following is useful.

Proposition 4.1. Let q:H—>G be a finite covering homomorphism and m
the least positive integer such that x™=1 for all x in the kernel of q. Then we have
(1) m-Cdg(H, n)c g} Cdg(G, n)cCdg(H, n),

(2) cdg(B)|cdg(g«B)|m-cdg(B) for every BEm,(H),
(3) cdg(H, n)|cdg(G, n)|m-cdg(H, n) for n>2,
(4) cdg(H, 1)|m.

Let E: 7,(X)—>H,(X) be the Hurewicz homomorphism. Put PH,(X)=
{xeH,(X); dy(x)=xQ14+1Qx}, where d: X —>X X X is the diagonal map. As
is easily seen, B(z,(X)) c PH,(X). Itisknown as a theorem of Cartan-Serre that
EQQ: 74(G)QQ=PH,(G)®Q. L. Simith[11] studied the problem: What is
the smallest positive integer N(G, n) such that N(G, n)x is contained in the
image of the modulo torsion Hurewicz homomorphism

E: n,(G)[Tor—PH,(G)[Tor
for every x& PH,(G)/Tor?

Proposition 4.2. If G is simple or simply connected, then cdg(G, n) is a
multiple of N(G, n).

ExampLE 4.3. The number N(G, n) has been determined for classical
groups, G, and F, (see e.g., [4]). The first few values of the Smith’s upper
bound N(n) of N(G, n) are N(3)=1, N(5)=2% N(7)=2*.3, N(9)=2%-3, N(11)=
28.3%.5 (see[11]). If G is simple and simply connected, then N(G, 3)=1 and cdg
(G, 3) is even except for G=S°. We have N(SU(3), 5)=cdg(SU(3), 5)=2;
N(Sp(2), 7)=cdg(Sp(2), 7)=2-3=N(5p(3), 7); 2°-3|cdg(Sp(3), 7)|2°-3; N
(SU(5), 9)=cdg(SU(5), 9)=23-3; N(G,, 11)=cdg(G,, 11)=23-3.5.
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