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l Introduction

The purpose of this note is to study the set Cdg(Jϋf, n)=Cdg([X, SM]) when
X=G is a compact simply connected simple Lie group, where

Cdg: [ I . S V H o m W I ) , ^ " ) )

assigns the induced homotopy homomorphism/* to the homotopy class of a map
/: X->Sn, To estimate Cdg(X,n) we introduce an invariant cdg(-X^n) and its
stable version scdg(X,n), which are non-negative integers or infinity, such that
*cdg(G,3) was denoted by cd(G) in [9]. We denote by cdĝ -X^w) the exponent
of a prime number/* in the prime power decomposition of cdg(-Y,w) when 0 <
cdg(-XΓ,n)<oo. For convenience1 sake we set cdgj>(X,w)=0 when cdg(X,Λ)=0.
We define ^cdg^J^n) similarly. We prove the following two theorems.

Theorem 1. If G is a compact simply connected Lie group, that is, G=
GjX xG^ with Gf a compact simply connected simple Lie group, then cdg(G, n)
and 5cdg(G, ή) are finite and the following seven statements are equivalent for any
prime number p.

(1) cdg,(G,3)=0.
(2) *cdg,(G, 3)=0.
(3) cdg^G,, 3)^0for alii.
(4) *cdg,(G;, 3)=0for alii.
(5) G§ is p-regular for every i.

(6) G is p-regular.

(7) cdgp(G,n)==0foralln.

Theorem 2. If G is a compact simply connected simple Lie group, then
Cdg(G, n) is a subgroup of Hom(τrn(G), πn(Sn)) of maximal rank. Indeed Cdg(G,
n) is cdg(G,n)Z{sί}(BcZis'2} if (G,n)=(Spin {Am), Am— 1) and cdg(G,») Hom
(πn(G),πn(Sn)) otherwise. Here π^^Spi^Am^Zis^φZisz} and sΊ is the dual
element to s{ c is 1 if m<2 and 2ifm>3; cdg(G, n) is non-zero if and only if
K - , nr}, where ff*(G; Q)^H*(m-iSn<; Q).

In this note all spaces are path-connected with base point and all maps
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preserve base point. Base point of any H-space is the unit of it. To simplify
notation, we denote a map and its homotopy class by the same letter.

We define invariants cdg(X, ή) and scdg(X, ri) in §2, prove Theorems in §3,
and give three results without proofs in §4.

2. Homotopy invariants

We will use the following notation and convention: We denote by a\b
that b=ca for some integer c. For any subset A of Z which contains a non-
zero, we denote by GCD(^4) the greatest common divisor of the non-zero in-
tegers in A. For convenience' sake we set GCD(0)=0, k\ oo for any non-zero
integer k> and O oo=0, hence oo 10. For any subset A of {k&Z; k>0} U {°°},
we denote by LCM(^4) the least common multiple of A (it may be oo) if A is non-
empty and contains neither 0 nor oo, and 0 if A is empty or contains 0, and oo if
A does not contain 0 but oo. For any grop C, we denote by abC the abelianiza-
tion of C, that, is abC is the quotient group of C by its commutator subgroup.
Note that the canonical surjection C->β*C/Tor induces an isomorphism Hom(C,
Z)^Hom(Λ*C/Tor, Z), where Tor denotes the torsion subgroup. The group
C has the rank r, rankC=r, if abC/Ύor is a free abelian group of rank r. We
denote by 33(C) the set of x^abC/Tor which is not divisible by any integer > 2 .

Put {X, Y}=lim^42*X, τkY] and sπn(X)={Sn

y X}. Let sCdg: {X,
SM}->Hom(VΛ(X), sπn(Sn)) be the stable version of Cdg. For any a^πH(X)y we
denote by cdg(X, n; a) or cdg(α) the non-negative generator of the subgroup of
Z generated by the image of α*: [X, Sn]-^πn{Sn)=Z. We define *cdg(α) simi-
larly for any aGsπn(X). If α, β^πn(X) represent the same element in abπn(X)
/Tor, then cdg(α)=cdg(/3). Thus cdg can be defined on abπn(X)IΎoτ. Similarly
scdg is defined on VΛ

DEFINITION 2.1.

cdg(X, n) = LCM{cdg(α);
scdg(X, n) = LCMfcdg(α); aϊΞ$(sπn(X))}.

The invariant scdg(X, n) has been studied by several people when X is the
Thorn space of an w-dimensional vector bundle [8]. Note from [10] that cdg
{Sp{ή)lSp{k)) 4/z-l) and cdg(C/(w)/£/(&), 2/z-l) are James numbers [2] for 0 <
k<n, though cdg(O(8)/O(l), 7 ) - 6 and the James number of 5O(8)=O(8)/O(l)
i s l .

The invariant cdg(X, n) may be oo, though it is finite if X is a finite CW-
complex. Indeed we have

EXAMPLE 2.2. For each prime p, let 0 (̂3;̂ >) and ax{2\p) be generators of
the ^-components of π2p(S3) and π2p(S2), respectively [12]. Set a^n; p)=*Σn~3

2,_3(S'1) and X(n'ip)=Sn{J06ι(n;p)e
n+2^2 for n > 3 , and set X(2;p)=
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S2U«l(2;p)e*p+1. Then cdg(X(n; p),n)=p and cdg(ΐ[pX(n; p), w)Φθ, hence
cdg(ΐ[pX(n; p), n)=oo by Proposition 2.6 below.

Proposition 2.3. //" 7ΓΛ(X) w offinte rank, then the following three assertions
hold.
(1) cάg{X> w)<oo, and cάg{X> ή)=cdg(a)for some a(Ξ$(πn(X)) if $(πn(X)) is
non-empty.
(2) cdg(X, w)Φθ ί/αnJ onίy z/ rank 7rΛ(X)=rank <Cdg(X, W)>>1, wAm? <Cdg
(X, n)> ώ *fo subgroup of Hom(τrM(X), πn(Sn)) generated by Cdg(X, n).
(3) cdg(X, n)=t=O if and only if rank πn(X)>ί and there exists an integer r>\
such that r Hom(τrn(X)>πrM(5w))c<Cdg(Z, w)>. In the latter case cάg{X, ή) is
equal to the least of such r.

Stable version also holds.

Proof. Put *=rank πn(X) and shrank <Cdg(X, w)>. We denote by {alf

•••, at} and {aly •••, α j a free basis of Hom(7rrt(X), πn(Sn)) and its dual basis of
abπn(X)/Ύory respectively.

First we prove (2). Suppose cdg(JC, w)4=0. Then trivially t>\. To
induce a contradiction, suppose £>ί. Then we can take {alf •••, Λ,} satisfying
<Cdg(X, n)>c<α1, —, αs>. It follows that /*(«,)=0 for all/: X->Sn, hence
cdg(α ί)=0 and cdg(JC, n)=0. This is a contradiction. Hence £=ί. Con-
versely suppose that t=s>\ and cdg(.XΓ, w)=0. Then we can take {aly •••, α j
satisfying cdg(α,)=0. It follows that Cdg(X, ή)czζal9 •••, «/_!> so that s<t— 1.
This is a contradiction. Hence cdg(-X, w)Φθ if ί = ί > l . This proves (2).

Next we prove (1). If cdg(X, w)=0, then there is no problem. So suppose
that cdg(JSΓ,n)Φθ. Then t=s>l as shown above. Choose {a{; \<i<t} such
that {kfi^ \<i<t} is a basis of <Cdg(JΪ,n)>, where Λ f>l. Put * = ^
Then

k = Min{r>0;

and hence & Hom(7rM(X), πrM(5n))c<Cdg(X, n)>, where Min denotes the mini-
mum. Evaluating at any ^ = Σ c l α ίe

βiτrn(X)/Tor, we have & GCD{c, }Zccdg
(β)Z=GCΌ{kici}Z so that cdg(β)=GCΏ{kici} |Λ GCDfe}. If βϊΞ&{πn{X%
then GCD{ς} = l and cdg(/3)|&, hence cdg(X, n) | Λ. Set rft=*/^ and α =
Then G C D K } = 1 and α G % ( X ) ) . We then have cdg(α)=β, so
=cdg(α)=Λ. This proves (1) and a part of (3).

Other part of (3) follows immediately from (2). The same proof is valid
for stable case. This completes the proof of Proposition 2.3.

Proposition 2.4. (1) If all of the following five conditions are satisfied, then
cdg(X, ή) is non-zero.
(i) X is a finite CW-complex.
(ii) rankτrΛ(Z)>l.
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(iii) X is simply connected ifn>2.
(iv) Image{πn{X{n~ι)-*πn{X)} is a torsion, where X(k) is the k-skeleton of X.
(v) All attaching maps of In-cells in XfX{n"ι) are null homotopic if n is even.

(2) If X is a finite CW-complex with rank* πn(X)>l, then scάg{X, n) is
non-zero.

Proof. The assertions for w=l can be proved by using the facts that the
composite of [X, S1]^H1(X)^1tiom(H1(X)yZ)^}iom(π1(X))Z) is Cdg and that

Suppose n>2 and five conditions in (1).
First we shall show that Cdg is a surjection on [Z ( Λ + 1 ) /^ ( Λ " 1 } , Sn]. This is

trivial if X has no (w+l)-cell, so we assume that X has (w+l)-cells. We then

have a cofibre sequence V Sn^> V Sn-^X(n+ι)IX(n~1) and the commutative diagram:

[VSn,Sn] t- [X^^IX^'ι\Sn]
Cdg 1 <* Cdg \ « I Cdg

Hom(πn(VS% Z) - Hom(πn(VS% Z) - Hom( ίr l i(^+ 1>/^- 1>) f Z) .

In this diagram, the upper horizontal sequence is the same as the stable one and
hence exact, i% is a monomorphism, and p*°i*=0. By chasing the diagram,
it follows that the third Cdg is a surjection.

Given any atΞlϊom(πn(χ(»+iηχ<»-»), Z\ choose b: X<»+iηχ<»-»-+Sn such
that Cdg(b)=a. By (v) and [1, 3.1], we can construct skeleton-wise a map /:
Xlχ(»-»->Sn such that foi=kob for some &Φ0, where i: X^IX
χ(n-DΛ This implies that <Cdg(Z/Z(n-1), n)> is of maximal rank, since

l)IX^l)\ Z).

By (iii) and a theorem of Blakers-Massey, πΛ(X, X^'^exπ^XIX^'^). Then
by (iv) the homomorphism

ί ί : Hom(πn(XIX^% Z)^Hotn(πn(X), Z)

induced by the quotient map q has a finite cokernel. Therefore <(Cdg(J£, n)> is
of maximal rank, since q%<fiάg{XjX^-ι\ τz)>c<Cdg(X, n)>. Hence cdg(X,
«)Φ0 by Proposition 2.3. This proves (1). By almost the same proof as the
above, we have (2).

The following two results can be proved easily. So we omit their proofs.

Proposition 2.5. (1) If X is k-connected with n<2k+ί and $(sπn(X))
is non-empty, then scάg{X, n) \ cdg(-XΓ, ri).

(2) // rankτr r t(Z)-rank s7rM(Z)=l, then w-scdg(Z, n)\cάg{Xi ή), where
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the suspension Σ°°: abπn(X)IΎor=Z->sπn(X)ITor=Z is multiplication by m.
(3) If G is a connected simple Lie group, then rank7r3(G)=ranks7r3(G)=l

and
fcdg(<5,3)|iii.'cdg(G,3)|cdg(G,3)

where G is a universal covering group of G and mis a non-zero integer defined as in
(2)forX=G.

We denoted m.scdg(G, 3) in 2.5(3) by cd(G) in [9]. Hence scdg(G, 3)=
cd(G) if G is simple and simply connected.

Proposition 2.6. (1) If <B(πn{Xi)) is non-empty for i= 1, 2, then LCM{cdg
(Xl9 n), cdg(JSΓ2, n)}\cdg(X1xX2ί ή). Stable version also holds.

(2) IfΛhπn{X^ is a torsion, then cdg(Z1xX2> n)=cdg{X2> n).
(3) // πn{Xi) is of finite rank and cdg{X(> n)ΦQ/or i = l , 2, then c d g ^ X

X2f n)=LCM{cdg{Xu n), cdg(X2, n)}.
(4) If Xi is (n—ί)-connected and sπn(Xi) is of finite rank for i=ί, 2, then

2j n)\scdg(Xly nycdg(X2, n).

3. Proof of Theorem

In this section G denotes a compact connected Lie group of type {nly •••,
nr}, that is, ί ί*(G; Q)βfl*(Πί-i S"r> Q) As is well-known, n{ is odd and there
are maps/: Π t Sni->G andg: G->Π Snf which induce isomorphisms Λ

(see [7]). From this and Proposition 2.3 we have

Proposition 3.1. The following five statements are equivalent.
(1) Cdg(G, n) is non-trivial
(2) cdg(G, n) is non-zero.
(3) rank τrn(G)=rank <Cdg(G, w)
(4) rankτrM(G)>l.
(5)

o/ Theorem 1. Numbers cdg(G, w) and 5cdg(G, w) are finite by Pro-
position 2.3. Put A(ή)=(i; rankτrn(Gt ) > l } and define sA(ή) similarly. Then
i4(3)=fi4(3)={ί; l < ί < ί } . We have scdg(G, 3)|cdg(G, 3) by 2.5 (1). Thus
(1) implies (2). We have LCMfcdgίG,., 3)} Γcdg(G, 3) and cdg(G, Λ ) = L C M

{cdg(Gt , ή) i^A(ή)} by 2.6. Hence (2) implies (4), and (1) and (3) are equivalent.
By Theorem 4.1 (1) of [9], (4) and (5) are equivalent. Trivially (5) implies (6),
and (7) implies (1).

To prove that (6) implies (7), suppose (6). By Proposition 3.1, we may
suppose that n ε {nly •••, nr}. Then there is a ̂ -equivalence/: G-> ίS

f=Πi-i *S*»
so that rank τrΛ(G)=rank πn(S)=u, say, and the image of/*: πn(G)-*πn(S) is of
maximal rank. Let {av •-, au} be a free basis of πn(G)/Ύor and \aly •••, ΛW} its
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dual basis of Hom(τrΛ(G), πn(Sn)). Let {kly •••, ku} be positive integers and
ίA> •••> βu\ a free basis of πn(S) such that f*((Xi)=kiβi. Then k{ is prime to

p. Since /*oCdg=Cdgo/* : [5, SΛ]->Hom(τrn(G), πn(Sn)) and since Cdg is
surjective on [5, 5n], we have Cdg(G, w)Dlmage(/ |)=0? β I A;Z{α,}. Hence
Cdg(G, n) contains LCM{&,} .Hom(τrn(G), πn{Sn)) so that cdg(G, w)|LCM{&f}
by Proposition 2.3 (3), therefore cdg^G, w)=0. This implies (7) and com-
pletes the proof of Theorem 1.

EXAMPLE 3.2. For G non-simply connected, Theorem 1 does not hold in
general: cdg(SO(3), 3)=2 and scdg(SO(3), 3)=1 (see [10]).

Recall that if G is simple then we {nu ~->nr} if and only if rank πn{G) is 1
or 2 and rank πn(G)=2 if and only if ((5, ή)=(Spin(4m), 4m— 1) for m>2. Then
the following and Proposition 3.1 prove Theorem 2 except for the case (G, ή)=
(Sρin(4m)y4m-l).

Proposition 3.3 (James). If n is odd, then the image o/α*: [X, Sn]->πn(Sn)
is a subgroup for every a^πn(X). In particular if n is odd and rank7rM(X)=l,
then Cdg(X, n)=cdg(X, ή).Hom(πn(X)y πn(Sn)).

Proof. The first assertion can be proved by the method in [3, ρ.88]. The
second assertion then follows, since a*=evΛ o Cdg and evΛ is an isomorphism if
rank 7rn(X)=l and a represents a generator of abπn(X)ITor=Zy where evΛ: Horn
(τrn(Z), πn(Sn))^πn(Sn) is the evaluation at α, that is, evΛ(θ)=θ(ά).

Let

Sρin(4m—ί) -^ Sρin(4m) ^> S4"1'1

be the canonical bundle for m> 1. Then we have

where s1 is the image under /* of a generator of π4m^1(Spin(4m—ί))=Z and s2 is
an element such that p*(s2) is 2 if τrc>3 and 1 if m<2 (cf., [5]); jy is the dual
element to Sj. Then the following completes the proof of Theorem 2.

Proposition 3.4. The number cdg(Spin(4m), 4m—1) is non-zero and

Cdg (Spin(4m), 4m-\) = cάg{Spin(4m), 4m-\)Z{s[}®cZ{s/

2}

where c is 2 ifm>3 and 1 ifm<2.

Proof. If m<2, then Spin(4m)^Spin(4m—ί) X S4m~~ι and the assertion can
be obtained easily.

Suppose that m>3. Then sf(p)=2> hence cdg(ί2)=2 by the following
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lemma.

Lemma 3.5. If X is an H-space and n is odd with nΦ 1, 3, 7, then cdg(α)
is even for every a &πn(X).

To simplify notations, we set (G, ri)=(Spin(4m), 4m— 1). By definition,
we have

Cdg(G, w)ccdg(ί 1 )^«}θ2Z{^}.

Take any integers kλ and k2. Then there exists a map /: G->Sn such that Cdg
(f)=cdg(sJ)k1sΊ-\-2js2 for some integer j . Let /: G->G be the inversion, that is,
I(A)=A~1. Then Cdg of the composition of

is cdg(s1)k1sΊ+(2j±2)s/

2y where d is the diagonal map, g+ the canonical action
and g_=g+o(Iχ 1). Inductively we then have cdg(s1)k1sί+2k2S2^Cdg(Gyn).
Hence Cdg(G, n)=cdg(s1)Z{sί}φ2Zis2'}. Also cdg(^) is even from Lemma
3.5, hence cdg(G, n)=cdg(ί1)4=0 from Proposition 2.3(3) and the following
lemma.

Lemma 3.6. cdg(^) Φ 0.

Proof of 3.5. Let g: X->Sn be a map such that go a=cdg(a)^πn(Sn)=
Z. Then the degree of the composition of

is cdg(α) for j=l, 2, where ij is the inclusion to the 7-th factor and μ is the mul-
tiplication. Hence cdg(a)2[ιn, »̂] = [cdg(oj)ίn, cdg(ά)ιn]=0y so cdg(α) is even,
because the Whitehead square [ιny ιn] of the identity map ιn of Sn is of order 2.

Proof of 3.6. Set n=4m— 1. Then the homomorphism πn(Spin(n))=
Z->πn(Spin(n-\-2))=Z induced by the inclusion is multiplication by e, where e
is 1 if m>3 and 2 if m<2. Thus we have cdg(Spin(n+l), n; s1)\e cdg(Sρin(n+
2), n). Since the latter number is non-zero by Proposition 3.1, so is the former.

This completes the proofs of Proposition 3.4 and Theorem 2.

REMARK 3.7 ([10]). By almost the same proof as the above, we can prove
that Cdg(SO(m)y n) is a subgroup of maximal rank. By using Proposition 4.1
below, we can prove that if G is simple but not necessarily simply connected, then
Cdg(G, n) contains a subgroup of maximal rank.
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4. Other results

We give three results. See [6] and [10] for their proofs. When we study
Cdg(G, n) for non-sίmply connected G, the following is useful.

Proposition 4.1. Let q :H-+G be a finite covering homomorphism and m
the least positive integer such that χm=lfor all x in the kernel of q. Then we have
(1) m.Cdg(H,n)aq*Cdg(Gyn)c:Cdg(H9n),
(2) cάg{β)\cάg{q*β)\m-cάg(β) for every βZΞπn(H)y

(3) cdgtff, n)|cdg(G, n)\m cdg(H, n)for n>2,
(4)

Let B:πtt(X)-*Hn(X) be the Hurewicz homomorphism. Put PHn(X)=
\x&Hn(X); d*(x)=x®l+l®x}> where d: X->XxX is the diagonal map. As
is easily seen, B(πu(X)) dPHn(X). It is known as a theorem of Cartan-Serre that
&®Q: π*(G)®Q^PH*(G)®Q. L. Simithfll] studied the problem: What is
the smallest positive integer N(G, n) such that N(G, n)x is contained in the
image of the modulo torsion Hurewicz homomorphism

S: πn(G)IΎor-+PHn(G)ITor

for every ΛieP/ϊn(G)/Tor?

Proposition 4.2. If G is simple or simply connected, then cdg(G, n) is a
multiple of N(G,ή).

EXAMPLE 4.3. The number N(G, n) has been determined for classical
groups, G2 and F4 (see e.g., [4]). The first few values of the Smith's upper
bound N(n) of N(G, n) are JV(3)=1, iV(5)=22, iV(7)=24 3, iV(9)=26 3, ΛΓ(11)=
28 32 5 (see[ll]). If G is simple and simply connected, then N(G> 3)=1 and cdg
(G, 3) is even except for G = S 3 . We have N(SU(3), 5)=cdg(Sί7(3), 5)=2;
N(Sp(2)y 7)=cdg(Sp(2), 7)=2> 3=N(Sp(3), 7); 2s.3|cdg(5ft3), 7)|28 3; N
(SU(5), 9)=cdg(SU(5)y 9)=2 3 3; N(G2y ll)=cdg(G2, l l )=2 3 .3-5.
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