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Introduction. Let R be a commutative ring with identity, H a finite
co-commutative Hopf algebra over R and A an //-Hopf Galois extension of R
in the sense of [15]. When R is a field and H is a group ring RGy //-module
structure is simply stated as "the normal basis theorem" and combined with
the theory of Galois algebras [8], [9]. But the normal basis theorem heavily
depends on the /?G-isomorphism HomR(RG> R)^RG. Therefore, in con-
sidering Hopf Galois extensions, the corresponding notion would be the dual
normal basis theorem- an //-Hopf Galois extension of R is isomorphic to H* =
HomR(H, R) as //-modules - of course this does not always hold. We shall
call such one a Hopf Galois extension with a dual normal basis. On the other
hand, A. Nakajima [12], [13] examined an //-module structure under rather
strong assumption //*s=?// and obtained information concerning the relation
between the generalized Harrison cohomology groups and Hopf Galois ex-
tensions.

In this paper, we shall examine an //-module structure of Hopf Galois
extensions and then shall establish a exact sequence involving the isomor-
phism classes of Hopf Galois extensions, unit-valued Harrison cohomology groups
and Pic-valued Harrison cohomology groups, but unfortunately we must es-
sentially assume that H is commutative for a cohomological nature. In §1,
we shall prove that an //-Hopf Galois extension A has a decomposition A^
H*®HP as left //-modules with a rank 1 //-projective module P satisfying
some cohomological properties. In §2, we deal with Hopf Galois extensions
with a dual normal basis. In §3, we shall start from a rank 1 //-projective
module P with further cohomological properties and then construct a Hopf
Galois extension of R from P. Finally in §4, using the results of §1, §2 and
§3, we shall show that the isomorphism classes of Hopf Galois extensions of R
forms an abelian group. In Appendix, we shall define the generalized Harrison
cohomology groups (c.f. [12]) and then, following the idea of A. Hattori [6], [7]
we construct the cohomology groups Hn(H) related to the generalized Harrison
cohomology groups. Also we show that H\H) is isomorphic to the group
of isomorphism classes of //-Hopf Galois extensions of R using the results of
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previous sections.

Througout this paper, R will denote a commutative ring with identity and
H will be a finite co-commutative Hopf algebra over R. £ {resp. Δ, resp. S)
will denote the augumentation (resp. diagonalization, resp. antipode) of H. Un-
adorned ® and Horn will mean ®R and HomΛ. We shall denote by — * the func-
tor HomJ?(—, i?). We shall deal with various ϋf-modules, i7-#-bimodules,
etc., so to indicate the module structure, we shall use the index notation. For
instance, ffilom(H2Hffιi R)H2®ff2ff2P means that Hom(i/, R) is an Hλ—H2=
i/-#-bimodule by (hjh2) {x)=f(h&hύ> hlyh2yx<=HJ<EΞHom(H, R) and the
tensor product is taken with the right H2—ϋf-module Hom(//, R) and the left
H2=H-modu\e P over H2=H. Repeated tensor products of H will be denoted
by exponents, Hn=H®-~®H with rc-factors. For other notations and termi-
nologies we shall refer to [3], [14] and [15].

Recently the author found that T.E. Early and H.F. Kreimer [16] had
investigated this subject in different ways.

1. Decomposition of Hopf Galois extensions

First we shall review the definition of //-Hopf Galois extensions. Let an
i?-algebra A be a faithful finitely generated projective i?-module which H me-
asures and makes A an //-module algebra, that is there exists an i?-homomor-
phism p: H®A->A with the properties;

p(h®ab) = 2 ρ(hω®a)p(h(2)®b)

ρ(h®l) = S(h), 6 is an augumentation (if A has an identity)

ρ(gh®a) = p(g®p(h®a))igίh^H} ayb^A .

ρ(h®ά) is denoted by h a or simply by ha. A is called an ZΓ-Hopf Galois
extension of R if AH={a^A\h a=£(h)a for any h^H} is equal to R and
the homomorphism φ: A®A->ΐίom(H, A) defined by [φ(a®b)] (h)=ah b,
a,b€=A, h€ΞH is an isomorphism. We shall call this homomorphism φ a
fundamental homomorphism or a fundamental isomorphism if this homomor-
phism is an isomorphism. We know that H* is an ZΓ-Hopf Galois extension
of R (c.f. [3], [15]). As to H* (with its canonical left (resp. right) i/-module
structure HHom(HH, R) (resp. Hom(ffH, .#)#)), the isomorphism HH*^I®HH
(resp. H*H^Γ®HH) with rank 1 i?-projective module / (resp. Γ) is well-known
[3], [11]. But unfortunately, these isomorphisms are not necessarily H-H-
bimodule isomorphisms. Hence we consider the following condition (#),
which is automatically satisfied if H is a group ring or H is commutative.

(H* = ^ H o m G ^ R)H2^I®HlHH2 as H,-H2 =

(H—H-bimodules with a rank 1 R-projective module I.
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Proposition 1.1. If H satisfies the condition (#), then for any left H-module
A, there exish the unique {up to H-isomorphisms) left H-module P such that KχA
is isomorphic to HiH*H2®H2H2P as left H1=H-modules.

Proof. Let Ω, be HomHi(H* Hl, H*Hi), then Ω is isomorphic to H by
homothety. And by this isomorphism Ω//* coincides with the original #//*.
Since H* is a right //-progenerator, we get by Morita theory H A^HιH*H2®H2

Hom^3(Jy3i/*Jy2, ff3A) and Homff9(ff/I*S29 HzA)=*P is uniquely determined up
to //-isomorphisms. This verifies the assertion.

Corollary 1.2. Under the condition (#), let A be an H-Hopf Galois ex-
tension of R, then in the decomposition H1A^H1H*H2®H2H2P of Proposition 1.1,
P is a finitely generated faithful protective H-module.

Proof. Since a Hopf Galois extension A of R is a left //-progenerator
([15] Cor. 1.4.), P=HjHomH2(HsH*Hl,HχA) is a finitely generated faithful pro-
jective //-module by the condition (#). This verifies the assertion.

Now, for an //-Hopf Galois extension A of /?, we have the fundamental
isomorphism

φ: A®Ae*lίom(H, A).

Hence the left //-module P of the decomposition A£*H*®HP must satisfy some
relations, which we next investigate.

Proposition 1.3. Under the assumption (ft), let P be a left H-module and
HλA=HiH*H2®H2H2P. We consider Hom(^4, A) and P®Has left H®H-modules
by the formulas

(g®h) (p®x) = J]gωp®hxS(g(2))
00

g,h,x<=H, /eHom(//, A), p^P, S is an antipode of H. Then HχA®H2A is
H®H-isomorphic to Horn (//, A), if and only if, HP®H2P is H®H-isomorphic
to P®H.

Proof. By the condition (#), ̂ 4®^! is H®//-isomorphic to (I®P)®
(I®P) and with the given H®//-module structures, Hom(H, A) is H®H-
isomorphic to I®I®P®H through the isomorphisms Hom(//, A)
H*®ffP)^(H*®ffP)®H*^((I®H)®ffP)®{I®H)^I®I®P®H. Thus
A^Hom(H, A), if and only if, I®I®P®P^I®I®P®H. The later is equi-
valent to P®P^P®H since / is a rank 1 /2-projective module. This verifies the
assertion.

When A is an //-Hopf Galois extension of /?, the H®//-module structure
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of Hom(H, A) in Proposition 1.3 is the one induced from that of A® A through
the fundamental isomorphism φ. As to that of P®H, we have

Proposition 1.4. P®H with the H®H-module structure given in Pro-
-position 1.3 is H®H-ίsomorphic to (ffiH®ff2H)®HP, where we consider H®H
as a right H-module by the diagonalization Δ: H->H®H.

a
Proof. We consider the homomorphisms a,β: P®H^1(H®H)®HP de-

β
fined by a(p®h)=(l®h)®p, β((g®h)®p)=Σlgωp®hs(g(?)),g)h^Hyp^P. As

easily checked, a and β are well-defined i/®i/-homomorphisms and are in-
verse to each other. This verifies the assertion.

Δ
{H®H)®HP in the above Proposition will be denoted as {H®H)®HP.

Also if Q is a left //-module and H®H is regarded as a right iί-module via
Δ

Δ: H->H®H, then the tensor product Q®H(H®H) will be denoted as 0®H

(H®H). These notations will be used frequently in the sequel.
In the next theorem, we use the terms of the generalized Harrison coho-

mology. As to them, we refer to [12] or Appendix of this paper. From now,
the term cohomology will mean the generalized Harrison cohomology and
cocycle, coboundary, etc. will mean that of the generalized Harrison cohomology.

Theorem 1.5. Under the assumption (#), an H-Hopf Galois extension

A of R has a decomposition A^H*®HP and there exists the H®H-ίsomorphίsm
A

φ: P®P^(H®H)®HP. If H is commutative, above P is a Pic-valued l-cocycle.

Proof. For commutative H, we shall show that P is a rank 1 i/-projective
Δ

module, then all will be settled. We localize the relation P®P^(H®H)®ffP
and count the rank of P, then we get that P is rank 1 over H. This completes
the proof.

2. Hopf Galois extensions with a dual normal basis

Let A be a left /f-module algebra which is isomorphic to H* as left H-
modules. Since the multiplication m: A®A->A is a left i7-homomorphism
(regarding A®A as a left //"-module via Δ) and A^H*, passing to dual we
get a right iϊ-homomorphism m*: H->H®H. m* is uniquely determined by
m*(l)^H®Hy hence A is determined by m*(l). Conversely, from v=^vu

®v2.^:H®H, we can form an //-module algebra H*(v) (not necessarily asso-
ciative) as follows; H*(v)=H* as a left i/-module, the multiplication is given
by (f g)(x)=Έf(vuxω)g(v2.x(2)),ffg(ΞH*y xEΞH. AS easily proved, H*(Ό) is
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an i/-module algebra. Thus A=H*(m*(\)) in this sense. Since A is an asso-
ciative algebra, the following diagram commutes.

m®\
A®A®A > A®A

| \(2.1) |l®flt \\m
m \

A®A > A

Passing to dual, the commutativity of the above diagram (2.1) is equivalent to
the commutativity of the following diagram.

m*®\
H®H®H <—^- H®H

ί ΐ* ΐm*(2.2) ίl®m
I m I

H®H < H

Now we define the algebra homomorphisms Δ : H®H-*H®H®H (ί=0,1,2,3)
by Δ?(ϋ)=l®ϋ, Δ?(»)=(Δ®l)(ι;),Δi
Then the commutativity of (2,2) means
Thus we get the following

Proposition 2.1. A is an associative H-module algebra (not necessarily
with identity) which is isomorphic to H* as left H-modules, if and only only if, A=
H*(Ό) with v£ΞH®H satisfying Al(v)A2

2(v) = A2

3(v)Al(v).

Next we shall consider the condition of v which guarantees that H*(Ό) is an
ϋ-Hopf Galois extension of R.

Lemma 2.2. For v=^vu®v2i^H®Hy the following diagram is com-
i

mutative.

H*(v)®H*(v) —ί—> HomH(H®H, H*(υ))

\θV* can. A |
(H®H)* ΞΞS=: (H®H(H®H))*

where H®H is regarded as a left H-module via Δ, and the homomorphisms are
defined by [[φ'{f®g)](x®y)](z) = 'Σlf{vuZ(1)x)g(v2iZ(2)y), [θ(τ)] (x®(y®z)) =

ί,C2)

[τ{y®z)] (x), [v*(f®g)] (χ®y)='Σf('viiχ)g{v2iy)>f,g^H*(v) = H*, TGHOΠIJ
i

(H®H, H*(v)), x,y,z,G:H, can. is the usual canonical isomorphism.

Proof. This is an easy computation.

Theorem 2.3. A = H*(v),v^H®H is an H-Hopf Galois extension of R,
if and only if, Δo(^)Δ2(^) = Δ|(^)Δi(^) and v is a unit of H®H.
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a
Proof. Let a,β be the homomorphisms HomH(H®H, H*(v))^lllom(H,

β
H*(v)) defined by [a(g)] (sή=g{l®x)9\β(f)](x®y)^X(ϋf(S(xω)y)9gGUomE

(H®H, #*(©)),/eHom(#, H*(Ό))9 x,y^H. a and β are well-defined homo-
morphisms anil are inverse to each other. The commutativity of the following
diagram is easily proved.

H*(v)®H*(v) - > UomH(H®H9H*(υ))

Horn (#,

where φ' is the homomorphism defined in Lemma 2.2 and φ is the fundamental
homomorphism of an i/-module algebra H*(υ). Thus, if A=H*(v) is an
H'Hopf Galois extension of i?, then φ, so φf is an isomorphism. By Lemma
2.2, this claims that «;* is an isomorphism, hence that v is a unit. Conversely
we assume that v==^vu®v2i is a unit and Al(v)A2(v)=Al(v)Aι(v). Then

H*{v) is an associative ϋ-module algebra and by the above arguments, φ is
an isomorphism. We shall show that H*{v) has an identity, then AH is automa-
tically equal to R (c.f. [15] Prop. 1.2). Thus A = H*(υ) is an #-Hopf Galois
extension of R. Applying 1®£®1 on both sides of Al{v)A\(v) = Δ!(ZJ)ΔI(Z;)

and then cancel v. We get 2 1 ® % ) ^ = ! ] ̂ l δ ^ K )' Further applying

ί®8 and £®1 on both sides, we get

(2.3)

(2.4)

We shall put e=(S(Σ*vuv2i))-1S(ΞH*=H*(υ). Then for any f£ΞH*(υ) and

for any x^H,we have

(f e) (x) =

which is equal to/(*) by (2.3). Similarly, we get (e-f) (x)=f(x) by (2.4). Thus
e is an identity of H*(v) and for x^H, xe=S(x)e follows readily. This com-
pletes the proof.

Let A, B be an /ί-module algebra, then A^B means that there exists an
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algebra isomorphism A^B which preserves iϊ-actions.

Theorem 2.4. Two H-Hopf Galois extensions of R with a dual normal
basis H*(v)y H*(vf) are isomorphic, if and only if, there exists a unit zcEίH such
that vA(w)=(w®w)v'.
Thus, if H is commutative, the isomorphism classes of H-Hopf Galois extensions
of R with a dual normal basis is set theoretically isomorphic to the unit-valued 2-
cohomology group.

Proof. The existence of the left iί-isomorphism y: H*(v)^H*(vr) is
equivalent to the existence of the right ϋf-isomorphism ??*: H={H*(v'))*^
{H*(v))*=H. The later is uniquely determined by the unit w=η*(
The commutativity of the diagram

H*(v)®H*(v) - ' H*(v>)®H*(v')

(2.5) i . . .
v J multi. multi.

H*(υ) ' Ί H*(Ό')

is equivalent to the commutativity of the diagram

(H*(v))*®(H*(y))*

(2.6)

H=(H*(υ))* ' ' {H*(υ'))*=H

where [l(v)](x) = vA(x), [1(V')](X) = O'A(X)> X<EΞH. Since [l(υ)v*](l) = υA(to)
and [V*®V*1(O')](1)=(W(B)W)V'J the commutativity of (2.6) is equivalent to
vA(w)=(w®w)v'. From Proposition 2.3 and the definition of cohomology,
the assertion about cohomology follows readily. This completes the proof.

REMARK. In §4, we shall define the product on the isomorphism classes
of H-Hopί Galois extensions of R, and then we shall show that the isomorphism
of Theorem 2.4 is a group isomorphism.

3. General Hopf Galois extensions

Let P be a finitely generated faithful projective ίf-module with an H2-
A

isomorphism <f>: P(&P£*(H(g)H)(g)HP. If H is commutative such (P:φ) is a
Pfc-valued 1-cocycle. By abuse the language, we shall call such (P, φ) a-Pic-
valued 1-cocycle even if H is not commutative.



82 K. YOKOGAWA

Let (P, φ) be a PzΊ -valued 1-cocycle. Then we have a chain of isomor-

l®φ Δ 1®Δ 1®$
phisms P®P®P « P®((H®H)®HP)=H3 ®H*(P®P) «
Δ (1®Δ)Δ (Δ®1)Δ 1®$"X Δ®1 Δ $ - 1®l
®HP)=H3 ®ff P=H3 ®ff P ex H3®H2 (P®P) = ((H®H)®ffP)®P «
P®P®P. Composing these isomorphisms, we get an automorphism of P®
P® P, which we shall denote by u(Py φ). When H is commutative, u(P,φ) is an
i/3-automorphism of P®P®P and we shall regard u(P, φ) as a unit of H3 by
homothety.

Lemma 3.1. If H is commutative, then for a Pic-valued ί-cocycle (P, φ)
and a unit v of H2, we have u(P, vφ)=d(v)u(P, φ) (d is a coboundary operator)
and u{P, φ) is a unit-valued 3-cocycle.

Proof. The assertion follows by easy computations and usual localiza-
tion technique.

Theorem 3.2. Let H be commutative and (P, φ) be a Pic-valued ί-cocycle,
then A =/ί*®jyP has a structure of an H-Hopf Galois extension of R, if and only
if, u(P, φ) is a 3-coboundary.

Proof. First we shall prove only if part. Let φ be the fundamental
isomorphism A®A^Hom(H, A). Then we have the /^-isomorphism $';

Δ
P®Ps*H2®HP by Theorem 1.5. φ' may differ from the given φ, but Lemma
3.1 ensures that the difference between u(P, φ') and u(P, φ) is a 3-coboundary.
So we may assume φ' = φ and we have the following commutative diagram.

Φ
Horn (H, A)

can.

(3.1) (H*®HP)®(H*®HP) can.

can.
by Prop. 1.4

I®I®(H2®HP)

We shall show that u(P. φ) = l®l®l^H3. For this purpose, we may assume
that R is a local ring, hence H*=eH=He, e is a free basis as an ϋΓ-i/-bimodule.
We consider the following diagrams (they are commutative but the commutati-
vity is unnecessary)
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(He®HP)®(He®HP) - ^ Hom(H, He®HP)

(3.2) \
(He®He)®HiP®P) ί (He®He)®HP)

(He®He®He)®H*(P®P®P) = (He® HP)®(He® HP)®(He® HP)

(3.3) (He®HP)®((He®He)®HP) Hom(H®Ht He®HP)

1®Δ i®φ |^(1®Δ)Δ
(He®He®He) ®H*(P®P) ϊ (He®He®He) ®H P

(He®He®He)®H*(P®P®P) = (He®HP)®(He®ffP)®(He®HP)

| \\

(3.4) ((He®He)®ffP)®(He®HP) Hom(H®Hy He®HP)

II \I φ | ( Δ ® 1 ) Δ
(He®He®He) ®H*(P®P) > (He®He®He) ®H P

where a is defined by [a((xe®ye)®p)](h)=^ e®e(hyS(X(2)))x(2)p, β is defined^

by β[(xe®ye®ze)®p](g®h)= Σ e®e(gyωS(x(2)))e(hzS(y(2)))xωp, 7 is defined

by [Ύ((e®p1)®(e®p2)®(e®p3))](g®h)=(e®p). g((e®p2)*h(e®p3)) (product in

He®HP=H*®HF),p.puptoPstΞP, x,y,z,g,htΞH.
(3.2) is a localized diagram of (3.1) and by the similar methods to Proposition
1.3, 1.4, β is a well-defined isomorphism. We shall compute /3 (l®φ) (l®
(l®φ)). For (e®p1)®(e®p2)®(e®p3)^(He®HP)®(He®HP)®(He®HP)y we

Δ
shall put φ(p2®p3)='Σι(l®P2i)®p3i^H2®HP (we may assume that the first

term of H2 is 1 by Proposition 1.4) and we shall put 4>(pi®ps)=^l (l®ί>ί)®
A

pz j^H2®HP. Then from the commutativity of (3.2), we get

(3.5) (e®p2)-(e®hp3) = Σ e®e(hp'2)p'3i,

(3.6) (e®p1)-(e®hpii) = Σ e®e(hp'lj)p'3'ip

Since φ is an i/2-isomorphism, φ(Σίgωp2®g(2)hp3)='Σ (gω®S^p2i)®pZi, which

is equal to Σ (^®g(i)flp2iS(g(2)))®g(3)p3i, g^H. e is a basis of i ί * as an H-H-

bimodule, so e(gh)=(eg)(h)=(ge)(h)=e(hg) for any g,h^H. Thus we get for

(3.5)' Σ (e®gωp2)-(e®gωhp3) = Jl^e®e(gωhp/

2iS(g(2)))g(3)p
/

3i

:
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(3.6)' («®/>,) (e®hrp'3i) = ^

Thus [(/8 (1®$) (1®(1®$))) ((e®p1)®(e®p2)®(e®p3))] (g®h)

By (3.5)' and (3.6)', this is equal to

Έ(e®p1) (e®e(hp'2i)gp3i)

= (*® A) ( Σ (e®gωp2) (e®g(2)hρ3)Σ

Similarly, [(/3 (1®$) (1®($® 1))) ((<

= Σ ((e®Pi)-(e®gωp2))-(e®gωhp3).

Since 4̂ is an associative algebra, /3 (l®φ) (l®(l®φ))=/3 (l®φ)

1)), which claims that u(P, φ)=l®l®l^H3 as desired.

Conversely, let (P, $) be a P/c-valued 1-cocycle and assume that w(P, φ) is a

unit-valued 3-coboundary. We may alter φ by vφ with the suitable unit

^Gίf2. Hence we may assume w(P, φ ) = l ® l ® l e i / 3 . We shall put i4=

H*®HPy i/* = /®i/. From φ, we make φ: ^4®^4^Hom(i/, 4̂) such that

the diagram (3.1) commutes. We define the product of A by a b=[φ(a®b)]

(1), l e i / , ayb^A. By the above arguments, u(P, $) = 1®1®1 claims that this

product is associative and makes A an i/-module algebras with the fundamental

isomorphism φ. Only the existence of identity is not yet valid. We make

a smash product A$H(A#H=A®H as an i?-module we write a$h rather

than a®hy the product is defined by a#g b#h=*Σ\ag(1)b#g(2)hy a,b^A, g,h^

H) and consider the homomorphism μ: A#H->Hom(A, A) defined by [μ(a#

h)](b)=ah b. Locally A is an associative i/-module algebra with a dual normal

basis, hence by Proposition 2.1 A=H*(v). From the proof of Theorem 2.3,

that φ is an isomorphism claims that v is a unit and A has an identity. Thus

locally A is an i/-Hopf Galois extension with identity. Hence μ is an isomor-

phism locally (c.f. [15] Theorem 1.1), so globally. Let μ ( Σ Λί#^») be an iden-

tity of Hom(^4, A). Since Σ Λ ί # A , is contained in A locally, Σ β ί # ^ t is c o n "
i f

tained in A globally and 2 «,-# Af is a left identity of A. By localization, Σ Λi#

hi is a right identity of A, This completes the proof.



THE COHOMOLOGICAL ASPECTS OF HOPF GALOIS EXTENSIONS 85

Let H be merely a finite Hopf algebra satisfying the condition (#) and
(P, φ) be a P/c-valued 1-cocycle. From the above proof, if A=H*®HP has
a structure of an //-Hopf Galois extension of R, then we can chose the cocycle
condition isomorphism φ to satisfy that u(P> φ) is an identity automorphism
of P®P®P. Conversely if u(P, φ) is an identity automorphism of P®P®P,
then we can make A=H*®HP an associative //-module algebra (it may not
have an identity — the commutativity of H is used only to ensure the existence
of an identity of A) with the fundamental isomorphism φ: A®A^Hom(H, A).
Instead of localization techniques, passing to the residue class field, we can prove
the existence of an identity as follows

Theorem 3.3. Let H be a finite (of course co-commutative) Hopf algebra

which satisfies the condition (#) and let A=H*®HP be an H-Hopf Galois extension
Δ

of R. Then we can choose an H2-isomorphism φ: P®P^(H®H)®HP to satisfy

that u(P, φ) is an identity automorphism of P®P®P. Conversely, let (P, φ) be a

Pic-valued l-cocycle and assume that u(Py φ) is an identity automorphism of P®

P®P. Then A=H*®HP has a structure of an H-Hopf Galois extension of R.

Proof. Only the existence of an identity of A=H*®HP should be proved.
We make a smash product A#H and consider the homomorphism μ:A#H-+
Hom(Ay A) as the proof of Theorem 3.2. We shall show that μ is an isomor-
phism. For this purpose, we may assume that R is a local ring, further by
Nakayama's lemma we may assume that R is a field since A$H and Hom(^4, A)
are finitely generated projective i?-modules. From φ, we have the isomor-
phism φ: (He®HP)®(He®HP)^Hom(H,He®HP), where e is a basis of //*.
We shall regard (He® HP)®(He® HP) as a left //-module via the second term
and regard Hom(//, He®HP) as a left //-module by #Hom(//#, He®HP). Then
φ is a left //-homomorphism. As left //-modules, the former is d direct sum
of ώm^ P-copies of P and the latter is a direct sum of dimR P-copies of //*, which
is isomorphic to the direct sum of dimR P-copies of //. Since H is a finite di-
mensional algebra over a field R we get P^H as left //-modules by Krull-
Schmidt theorem. This means that A has a dual normal basis, hence A has
an identity by Theorem 2.3 and μ is an isomorphism. Thus μ is an isomor-
phism for a general commutative ring R. let μ(a) be an identity of Hom(^4, A).
Then by Nakayama's lemma, a is contained in A and a is a left identity of A.
Again by Nakayama's lemma, a is a right identity of A. Thus A has an identity
element. This completes the proof.

Corollary 3.4. // H is a group ring RG over a field R. Then any RG-Hopf
Galois extension A of R (hence the usual Galois extension with the Galois group G)
has a dual normal basis, therefore A has a normal basis.
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Proof. That A has a dual normal basis is proved in the proof of Theorem
3.3. Considering the i7-#-bimodule isomorphism η: i / = i ? G ^ J H Γ * = H o m
(RG, R) defined by [η(σ)] ( τ ) = δ σ - i ( T (Kronecker delta) σ, T G G , the assertion
follows.

Now, we shall assume that H is commutative and shall investigate when two
ΦΛ Δ

#-Hopf Galois extensions of R, A=H*®HP, B=H*®HQ (P®P^H2®HPy

ΦB Δ
Q®Q^H2®HQ, u(P,φA)=u(Q,φB)=l®l®l<EΞH3) are isomorphic. By Pro-

position 1.1, if A and B are isomorphic then P^Q (we shall identify P and
ξ

Q). Let ξ be the isomorphism A=H*®HP^B=H*®HP, then ξ induces an
automorphism of P, which we shall denote by w(ξ) and we sometimes regard
w(ξ) as a unit of H by homothety. ξ commutes with the multiplications of
A and B, so u\ξ) commutes with φA and φB. That is the following diagram
is commutative.

ΦΛ
 Δ

P®P —ί-^U (H®H)®HP

L I(3.7) ) ( )

P®P —!-£-» (H®H)®HP

Since φ^ and $ 5 are ίίMsomorphisms and the isomorphism l®&>(f) is a left
homothety by A(w(ξ)), the commutativity of (3.7) claims that φi4$i1=Δ(w(^))~1

(w(ξ)®w(ξ)) or equivalently $^φi1=rf(^(?)), ί/ is a coboundary operator. Con-
versely, if such w(ξ) exists, we can easily make the isomorphism ξ: H*®ffP
£zH*®HP. Thus we get

Theorem 3.5. Let H be a commutative Hopf algebra, A=H*®HP and
A

B=H*®ffQ be H-Hopf Galois extensions of R with φA: P®P^H2®HP and
A

ΦB'Q®Q=H2®HQ, u(Py φA)=u{P, φB)=l®l®l. Then A is isomorphic to
By if and only if, P^Q and φAφ~Bl is a unit-valued 2-coboundary.

Here we can review the results of §2. We assume that H is commuta-
tive. Let A=H*®ffP be an HΉopϊ Galois extension of R with a dual normal

Δ
basis, so P^H. By Theorem 3.2, there exists φ: H®H^H2®HH=H®H
with u(H, $) =1®1®1. φ i s a homothety by a unit v of H2. u(H, v)=
(v-1®l)'((A®l)(v-1))'((l®A)(v))'(l®v). Ύhusu(H,φ)=1®1®1 claims that
v is a unit valued 2-cocycle. As easily proved, the product of A=H*®HH
defined by Theorem 3.2 is same as that of /f*(^). Similarly Theorem 3.5
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deduces Theorem 2.4 when P^H.

4. The isomorphism classes of Hopf Galois extensions

Throughout this section, we assume that H is commutative.
First we shall prove two Lemmas, and then we shall prove that the iso-

morphism classes of //-Hopf Galois extensions of 72-which we shall denote by
i?(//)-forms an abelian group.

Lemma 4.1 (c.f. [13] Lemma 2.5). Let m:G->H be a homomorphism of finite
Hopf algebras and let A be a G-Hopf Galois extension of R. Then H o m G ( ^ A)
is an H-Hopf Galois extension of R} where the multiplication on #HomG(//#, A) is
defined by the formula;

Σ
Proof. £ is an identity of HomG(//, A) and HomG(//, A) is an associa-

tive //-module algebra. We shall consider the following diagram.

Φ'
HomG (H, A) ® HomG (H, A) > Horn (//, HomG (//, A))

/ can.

(4.1) HomGΘG (H®H, A® A) Can.

HomG2 (H\ φ)

HomG0G (H®H, Horn (G,A)) > HomG (GH®H, A)

where φ is the fundamental isomorphism A®A^Hom(Gf A) and φ' is the
fundamental homomorphism of an //-module algebra HomG(//, A), α is
defined by

[a(r)] (x®y) = 2 [τ(xω®xωy)] (1) >

lyx,y^H, τeHom G Θ G (/ί®//, Hom(G, ̂ 4)). As easily checked, (4.1) is a com-
mutative diagram, a is an isomorphism - the inverse a'1 is given by the for-
mula;

(z) = Σ ( ω ( ) y )

v^HomG(GH®H, A), x,y^H, z^G. Thus φ' is an isomorphism. So HomG

(H, A) is an i/-Hoρf Galois extension of R as desired.

Lemma 4.2. Let A{ be an HrHopf Galois extension of R (z=l,2), then Aλ

®A2 is an H1®H2-Hopf Galois extension of R.

Proof. The tensor product of the fundamental isomorphisms of Ax and
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A2 will give the fundamental isomorphism of Aλ®A2.

Well, the multiplication m:H®H-+H is a homomorphism of Hopf algebras.

Let A,B be an H-Hopί Galois extension of i?, we shall define

A B = HomH®H(H, A®B)

which is an i/-Hopf Galois extension of R by Lemma 4.1 and 4.2.
By the image of lEίH, A B is characterized as follows;

Lemma 4.3. Let Aβ be an H-Hopf Galois extension ofR, then A B=HomH9H

(Hy A®B) is isomorphic to Q}ai®bi^A®B\y^hai®bi=^ai®hbi for any
i i

h^H}.

We shall denote {Σai®bi^A®B\J]hai®bi=
yΣι a&hbi for any hEΞH}

by (A®B)H. In the sequel, we will pass freely between A B and (A®B)H.
By this product, E(H) forms an abelian semi-group.

Proposition 4.4. Let A=H*(υ)y B=H*(v') be an H-Hopf Galois exten-
sion of R with dual normal basis. Then

Proof. First we shall show that H*(v) H*(v') is isomorphic to H*(vv') as
a

left iί-modules. We define the homomorphisms α, β: ( i/*^)®//*^'))*^
β

H*(vvf) by the formulas

[β(f)](χ®y)=f(χy)

f1®f2e(H*(v)®H*(Όt))H,f&H*(vv')9 l,x,y€ΞH< It is easily checked that a
and β are wrell-defined left i/-homomorphisms and are inverse to each other.
That a gives an isomorphism of i/-module algebras can be proved by strait-
forward but laborious calculations. This completes the proof.

From Proposition 4.4 and Theorem 2.4, we get

Corollary 4.5. The group of the isomorphism classes of H-Hopf Galois

extensions of R with dual normal basis is isomorphic to the unit-valued 2-cohomology

group as abelian groups.

Theorem 4.6. Let (P, ^ P ) , (Q> φQ) be a Pic-valued l-cocycle with u(Py

$p)=u(Q, $ g ) = l ® l ® l , and let A=H*®HP> B=H*®HQ be an H-Hopf

Galois extension of R induced from P, Q respectively. Then A B is an H-Hopf
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Galois extension of R induced from a Pic-valued \-cocycle (P®HQ> ΦP®H2ΦQ)-

Especially, the isomorphism classes of H-Hopf Galois extensions of R, E(H) forms an

abelίan group.

a!
Proof. We shall define the homomorphisms α', β': (A®B)+1H*®H

β'
HQ) by the formula;

β\f®{P®q)) = Σ (/i,®/0®(/%®?) if β(f) =

where α, /3 is the homomorphism in Proposition 4Λ,/1,/2,/lf,/2l.G if*,
As easily checked, a1 and βr are well-defined left i/-homomorphisms and are
inverse to each other. To see that a' is an isomorphism of ϋf-module alg-
ebras, we may localize it. Then Proposition 4.4 ensures that a' is an isomor-
phism of ϋf-module algebras. Now, that E(H) forms an abelian group with
identity H* follows readily. This verifies the assertion.

Appendix

Throughout we assume that H is commutative.

First we shall define the generalized Harrison cohomology. Let

ΔS, Δ? ( ί = 1,2, ...,n), ΔJ+ 1: H»^H»+1 (

be the algebra homomorphism defined by the formulas;

H° means R and we note that Δ§, Δ? coincides with the unit map R-*H.
Let U denote the unit functor and Pic denote the Picard group functor. ΔJ
(ί=0,l, ,n+l) yields functors U(Hn)-+U(Hn+1)y Pic(Hn)-+Pic(Hn+1)y which
we shall denote by the same letter Δ?. We shall define

dn: U(Hn)-»U(Hn+1), dn: Pic(Hn)->Pic(H»+1)

as the alternate sum of Δ? (we use the same letter dn or simply d, it would not
make confusions). We remark that d0 is a zero homomorphism.
Since d2=dn+1dn=0, we can define cochain complexes C(H, U)= {U(Hn)y dn}n>0

and C(H, Pic)={Pic(Hn), dn}n^>0. The n-th cohomology group Ker(dn)/
Im(dn_i) ( n ^ l ) of C(H, U), C(H, Pic) is denoted by H\H3 U), Hn(H, Pic) re-
spectively, and will be called the unit-valued (resp. Pic-valued) generalized
Harrison cohomology group. The O-th cohomology group is defined as H°
(H, U)=Ker(do)=U(R), H°(H, Pic)=Ker(do)=Pic(R).
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Next, we proceed toward the definition of groups Hn(H) parallel with
Hattori [6],[7]. Let Pic(Hn) be the category of projective /Γ-modules of rank
l(n=0y 1, ). This is a category with product ®H». In this Appendix, P *
denotes the Hn-dual module of P^Pic(Hn) unless otherwise stated. Hence
P*ϊΞPίc{Hn).

Similar to the case of Pic-valued cohomology groups, ΔJ: Hn->Hn+1 yields
the functor Δ? \Pic{Hn)->Pic{Hn+ι). Hence we also define dn :Pic(Hn)->Pic(Hn+1)
as the alternate sum of Δ?. Let f:Po*Q be an isomorphism in Pic(Hn) and
let Δ?/:ΔJP^Δ/g, Δ?/*: Δ?P*^Δ?jg* be the canonical isomorphism in-
duced from/, then dnf is defined as Δo/®ΔJ/*® : dJP^djQ.
There exists a canonical isomorphism 7n+1: dHn^Hn+1, through which we iden-
tify dHn with Hn+1. We also identify d2Hn with Hn+2 through the composite

of the canonical isomorphisms d2Hn ^ dHn+1 ^ Hn+2.
For any P^Pic(Hn)y we have a canonical isomorphism d2P^Hn+2 given by
contracting all dual pairs appearing in the expression of d2P. This isomor-
phism d2P^Hn+2 will be written as cP in the sequal. For/: P^Q, the following
diagram is commutative:

n+2

l»+2H

In particular, the composite d2Hn ^ dHn+ι ^ Hn+2 (through which we iden-
tified d2Hn with Hn+2) coincides with cHn\ d2Hn^Hn+2. An automorphism of
P^Pic(Hn) is given by a unit u^Hn by homothety, which we shall denote by
the same letter u. For P^Pic(Hn), we shall denote the isomorphism class of
Pby \P\ςΞPic(H»).

Let n^l, (P,p) denotes a pair of a module P^Pic(Hn+1) such that \P\ is
a P/c-valued ra-1-cocycle and a cocycle condition isomorphism p: dP^H". An
isomorphism {Pip)^(P\p') is an isomorphism /: P^P' such that the following
diagram commutes:

P

We shall denote the category of these pairs and isomorphisms Pn(H). This is
a category with product defined naturally by

(P,PHQ, q) =

The set of isomorphism classes \(P, p)\ of (P, p)^Pn(H) forms an abelian
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group, which we shall write Pn(H). We shall denote by Zn(H) the subgroup
of P\H) consisting of all | (P, p) | satisfying dp=cPy and by B"(H) the set of
all \(dP, cP)\ (P<=Pic(H»-2)). For Λ = 1 , we shall put B\H)={\(R, Ix)\}.
Since dcP=cdpy Bn(H) is a subgroup of Zn(H) and we have the groups

H\H) = Z\H)IB\H)

for 11=0, we put Z°(H)={u(ΞU(R)\dQu=l}, and B\H)={1}. Since d0 is a
zero-homomorphism, this means H°(H)=H°(Hy U)=U(R).

Every u^U(Hn) determines a pair (Hn~\ u) where a: dHn~ι=Hn-^Hn and
I (fl"*"1, w) I ̂ Zn(H) if and only if w is a unit-valued w-cocycle. If # is a coboun-
dary, (Hn~ι

y u)^(Hn~1

> 1). Thus we have a homomorphism (#^1),

αΛ: H\Hy U) - H β («) cl(u) H-> rf | (H»~\ u) | .

For rc=0, α° is defined to the identity map H\H9 U)=H\H).
The definability of the following map is clear (w^l).

βn: H\H) -+ H»-\H, Pic); cl\(P,p)\\-> cl\P\ .

Let \P\ be a Pic-valued n-1-cocycle and take any cocycle condition isomor-
phism^: dP^Hn. There exists a unit u^Hn+1 such that the following diagram
is commutative.

dΨ — ^ > Hn+1

I dp V
dΨ —±-> iϊ«+ 1

And we see easily that u is a unit-valued z+1-cocycle. The cohomology class
of u does not change, even if we change P to an isomorphic module P' or p to
another cocycle condition isomorphism/)'. If \P\ is a coboundary | dQ \, taking

as a cocycle condition isomorphism. Then dcQ=cdQ claims
that u=\. Hence we have the following homomorphism.

γ*: H»-\H, Pic) -+ Hn+\Hy U);cl\(P,p)\^ cl{u).

Theorem A.l. The following sequence is exact:

a1 β1 γ1

0 -> H\Hy U) > H\H) —> H°(H, Pic) > -

'" —+ H*(H, U) > H\H) - ^ U H*-χ{H, Pic) > -

Proof. Let Λ > 1 , it is easily verified from the definition of maps that the
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composite of any consecutive maps reduces to 0. Let cl\(P, p)\^Ker(βn).
We may assume that P=dQ with some Q^Pic(Hn~2). Then there exists wG
U(Hn) such that p=ucQ and it must satisfy du=l. Since we have

VQ,P) = VQ, CQHIΓ, U), (dQ, CQ)SΞB\H),

cl\{Pyp)\ =cl\(dQ>P)\tΞltn(an).

If cl\P\ ^Ker(<γn), we have dp=cP with a suitably chosen p: dP^Hn. This
means that cl\P\ (Ξlm(βn). If cl(u)<=Ker(an+1), there exists P^Pic{Hn~ι) such
that (H"9 u)^(dP, cP). This means that there exists p: dP^Hn satisfying cP=
udp. Hence u"1^Im(fγn)9 and therefore z/e/τw(γw).
The definitions of H\H) and H\H, Pic) are slightly different to the case of
n>\. But the above arguments will give the proof of the case « = 1 , if we are
careful. This completes the proof.

Well, in our case of Harrison cohomology, those which Hn(H), Hn(H, U)
and Hn(H, Pic) represent are different from Hattori's by their own characters.
For example, H°(H)=H1(H, U)=U(R), H\Hy Pic)=Pic(R), H\H, U)={u£Ξ
U(H)\A(u)=u®u} is the group of group-like units of H, by Corollary 4.5
H\H, U) respresents the group of isomorphism classes of ϋf-Hopf Galois ex-
tensions of R with a dual normal basis. Further as is easily verified, β1 is
an epimorphism. Thus we get

Corollary A.2. The following sequences are exact

α1 β1

0 -> H\H, U) > H\H) —-* Pic(R) -> 0 ,

0 - H\Hy U) - ^ H\H) - ^ * H\H3 Pic) -^ H*{H, U)-^-

Let cl\(P,p)\ ^.H\H), this means that P is a rank 1-projective i/-module
Δ p

and that dP=(P®P)®H2(H®H)®HP*^H2 satisfying cP=dp. From p we
Δ

make φp: P®P^H2®HP naturally, then cP=dp means u(P, φ)p=l®l®l^H3.
And (Pyp)=(P',p') means that there exists a unit w^H which makes the follow-
ing diagram commutative;

Thus (P, p)s*(P',p') means u(Py φp)=dwφpu(P', φp,). From Theorem 3.2,
3.5, we get

Theorem A.3. H\H) represents the group of isomorphism classes of H-
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Hopf Galois extensions of R.
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