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Introduction

The main purpose of this paper is to construct elliptic complexes on
symmetric spaces of inner type, which are very analogous to Dolbeault complexes.
When a symmetric space of the above type has a homogeneous vector bundle
satisfying a certain condition, we can canonically associate to it an elliptic
complex with length of half a dimension of the space, whose first term coincides
with the given vector bundle (Theorem 3.1). In particular, if the symmetric
space has an invariant complex structure, one can see that the elliptic complex
associated in such a way is no other than the Dolbeault complex for the given
holomorphic vector bundle.

In more detail, let X=G/K be a symmetric space of inner type, i.e., (G, K)
is a symmetric pair and rank G=rank K. To an irreducible K-module V,
there is the homogeneous vector bundle C{/ over X associated. When we denote
by & the complex cotangent bundle over X, we define an invariant first order
differential operator

D’: C=(V) = C=(VQRP)

as the covariant differentiation induced from the invariant connection determined
by the Cartan decomposition of the Lie algebra of G' with respect to (G, K).
Here C*=(-) denotes the space of infinitely differentiable sections of a vector
bundle. It is known that this operator extends uniquely to a differential

operator
D*: CY (VR N'P) — CHVR N P),

such that D¥sp)=D’s Ap-+sdp for s€C=(V), peC(A?SP). For a lexico-
graphical order of the root system of the complexification of the Lie algebra of G,
we choose a homogeneous vector bundle U/CYVRQ AP for every g=>1,
satisfying the following property. First it holds D(C=(U?))cC=(U?*");
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putting CPI=CPQR A‘P[U?, A°=CY, we then obtain invariant first order

differential operators
D?: C=(CP?) — C=(CV7)

by the quotient of D? for every ¢>0.
Then the resulting sequence
@0 Ql Qﬂ—l
0— Co(YV) — C™ (V) —>++- —> C=(CP*) — 0
is an elliptic complex over X under a certain condition on the K-module V

(Definition 1, §2), when a lexicographical order of the root system is chosen
appropriately (“‘admissible” in Definition 3, §3). Here the length of the complex

. 1 ,.
=_— dimgX.
1s 7 3 img

The arguments in §2 are devoted to the preparations for determining U?
where the generalized Borel-Weil theorem proved by Bott plays a fundamental
role, and in §3 we construct the above elliptic complexes (Theorem 3.1). Even
if X is not symmetric or a lexicographical order of the root system is not ad-
missible, we obtain an elliptic complex consisting of two homogeneous vector
bundles determined by an irreducible K-module, which is similar to the elliptic
complex over a symmetric space described as above. Here we consider such
a homogeneous space X=G /K that G is a connected real semi-simple Lie
group, K a connected compact subgroup and rank G=rank K. In fact, the
indices of these elliptic complexes are calculated in quite the same way (§§4, 5).
Therefore we do not assume that the homogeneous space X is symmetric till §5
except in §3.

In §4, the homogeneous indices of the elliptic complexes constructed in §3
are calculated in case G is compact by means of Bott’s theorem in [5] (Theorem
4.2). This result is very analogous to the Borel-Weil-Bott theorem for a compact
kahlerian homogeneous space. In fact, the homogeneous index of our elliptic
complex associated to an irreducible K-module is equal to the element de-
termined by ome irreducible G-module in the character ring of G. In §5,
we shall first generalize Hirzebruch’s proportionality principle to the case of
general elliptic complexes on a compact locally homogeneous space (Theorem
5.2) and then calculate the indices of the elliptic complexes constructed in §3
over such a space (Theorem 5.3). We use the index theorem of Atiyah-Singer
[1] for this purpose. If the theory of automorphic functions on a real symmetric
space of inner type would be meaningful, the results in §5 might give some
indications to it.

Now let X=G/K be a symmetric space of inner type again, V', the irre-
ducible K-module with lowest weight A-+2p; where p; is half a sum of positive
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compact roots under some order of the root system. W. Schmid considered in
[16], [17] an invariant first order differential operator

9D: C=(Uy) = C=(V3),

where C1/y is the associated homogeneous vector bundle to V', €/} determined by
Cy, through the above order of the root system. He proved the ellipticity of this
operator 9 under certain regularity conditions, which we shall show in §§2, 3
under the weaker condition than his. The differential operator 9 is equal
to the operator 9)° of the first term in our elliptic complex when the order is
admissible. As a matter of fact, this work is stimulated by his in this sense.
The ellipticity of 9 under the weaker condition improves most of his results.
We shall illustrate it in §6. Especially, the following result seems to be some-
what striking. Introducing an invariant volume element on X, one can consider
square-integrable sections of C{/.  We denote by 9, the linear space consisting
of the square-integrable sections of C{/; annihilated by 9. When 9 is elliptic,
O has a structure of Hilbert space, which gives a unitary representation of
G. When the group G is assumed to be a type of the generalized Lorentz
groups with a compact Cartan subgroup, it follows from Schmid’s argument in
[16] and our estimate for the ellipticity of 9 that all the unitary representations
of the discrete series of G are exhibited by these ., where A runs over an
appropriate domain (Theorem 6.3 and its Corollary).

In concluding the introduction, it is a pleasant duty for the author to ex-
press his gratitude to Professors S. Murakami and M. Takeuchi for helpful
discussions with them. Especially, an arrangement of §2 and the proof of
Lemma 3.2 are indebted to Prof. M. Takeuchi. The author also thanks to
Prof. M. Ise who communicated the reference related to §5, and to Prof.
W. Schmid who kindly pointed out an oversight in §3 in the first manu-

script.

1. Preliminaries and notation

Let g, be a real semi-simple Lie algebra, f, a compactly imbedded
subalgebra of g,, i.e., f, generates a compact subgroup in the adjoint group of g,.
We assume, throughout this paper, that rank g,=rank ¥, and keep fixed a Cartan
subalgebra §, of g, contained in f,. Denote by B the killing form of g,, Then
the restriction of B to the subalgebra f; is a negative-definite invariant bilinear
form on ¥, (Helgason [9]). Therefore we have a direct sum decomposition

G = fo@po
[fo’ po] by,

where P, is the orthogonal complement of {, in g, with respect to B. We notice
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that the restriction of B to b, is non-degenerate and f,-invariant, hence we shall
often identify p, with its dual space p§ by B.

Denote the complexifications of g, £, ), and p, by g, £, § and p respectively.
Through the adjoint action of ), we have a root space decomposition

g= b@égm’

where A denotes the root system of g for §, g* the one-dimensional eigenspace for
a root = A. Since the Lie algebra § is also a Cartan subalgebra of f and the
subspace P is stable under the action of §, the root vector space g” is contained
either in f or in p. Hence we have

t=bh 2 ¢°
aEAt
p=2 ¢
Beay
and a disjoint union
A= ArUAp,

where we put
Ay = {asA|g°ct}
Ap = {BeAlgPCh) .

We now consider a compact connected Lie group K whose Lie algebra is
f,. Let H be the Cartan subgroup of K corresponding to the Cartan subalgebra
b A the character group of the toral group H. Then A is identified with
a lattice in b%, the dual space of Hr=+/ 10, One can regard the root
system A as a subset in A. If we denote by o the conjugation of g with
respect to a real form g,, then for every root vector space g* we have

og”=g",

because o has imaginary values on the real part §,. We fix, once and for all, a
lexicographical order on the vector space hi and denote by A*, Af, A, the
subsets consisting of the positive roots of A, Ay, Ap with respect to this order.
As usual, when we refer to the highest or the lowest weight of a g (or f)-
module, it means to be the highest or the lowest element with respect to the
above order on b among the set of the weights of the representation. The
Killing form B induces a positive-definite inner product ( , ) on h% and we
shall call A& A singular if (N, a)=0 for some o= A (resp. Ay), regular if (A, a)
+0 for all a€A (resp. Ay), dominant if (A, a)>0 for all = A* (resp. Af),
with respect to g (resp. ¥). It is well known that A= A is the highest weight
of some representation if and only if A is dominant. We choose Borel sub-
algebras b, b’ of the complex Lie algebras g, f such as
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b=5jop > ¢g°°
acs A+

b =D X g7
acdy

We shall now recall Bott’s generalized Borel-Weil theorem for compact Lie
groups. Let K€ be the complexification of the compact Lie group K, B’ the
Borel subgroup of K¢ whose Lie algebra is b’. Then the homogeneous space
S=K]/H is diffeomorphic to the complex manifold K¢/B’. We shall hereafter
fix the choice of a complex structure on .S with this identification. Further note
that dim¢ S is equal to the number of elements of the set Ay, and put s=dim¢ S.
For a character A& A of H, A can be extended uniquely to the holomorphic
character of B’, which is denoted by the same letter A. If we denote by L, a
homogeneous line boundle over S=K¢/B’ associated to A, then L, is a holo-
morphic line bundle on which K¢ acts as an automorphism group. Hence
the cohomology group H*(S, L,), with coefficients in the sheaf of germs of
holomorphic sections of L,, has a structure of a K°module. We denote by
Wy the Weyl group of K, by n(w) the index of we W, i.e., the number of
elements of the set {&¢ € At |wa <0}, and put

1
Pr=72 a.
aEAi*

We then know the following Borel-Weil theorem proved by Bott.

Theorem 1.1 (Bott [4]). For a character NE A, let L, be the associate
homogeneous line bundle over S. As for the KC-module H*(S, L,), the following
holds.  If N+ py is singular, then

HS, L\) =0 for every q .

If A-py is regular, then there exists the unique element we W g such that w(\-+py) s
dominant, and we have

H4(S, L\) =0 for every g=n(w) .

For gq=n(w), H"™(S, L) is an irreducible KC-module with highest weight
w(A+py)—pr. Here the words “singular, regular and dominant” mean so with
respect to t.

Remark. This theorem gives an explicit construction of all irreducible
K¢modules. For example, the irreducible K¢-module with highest weight
A is given by H°(S, L,), and the one with lowest weight p is given by H*(S, L,-2,)
where s=dim¢ S.
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2. Exact sequences of homogeneous vector bundles and their
cohomology groups

In this section, we shall treat certain sequences of homogeneous vector
bundles over the flag manifold S=K¢/B’ and their cohomology groups. These
arguments prepare a decomposition law and exact sequences of K¢ (or K)-
modules, which will be indispensable for the construction of elliptic complexes.
We retain the situation and notation introduced in §1.

Let p be the K¢-module defined in §1. We denote by P the homogeneous
vector bundle over S associated to the B’-module p induced by the restriction
of K¢ to B’. Then P is a holomorphically trivial bundle. In fact, the homo-
geneous vector bundle P is, by definition, the quotient space of K¢xp by the
equivalence relation:

(kb, X)~(k, bX) for keK®¢, beB’', Xep,

where X—bX is the action of bB’ on X&p with respect to the B'-module
structure of p. We shall denote by K¢X »p this expression of P as a quotient
space. Then the map kB'—(k, k7'X) of S to K¢X gp is well-defined for a
fixed Xe&p and is a holomorphic section of P’ which vanishes nowhere if X=0.
Denote by sx& H(S, P) this holomorphic section determined by X&p. Then
the map X+—-sx gives a K¢-module isomorphism

p = H'(S, P)

and a trivialization of P as a holomorphic vector bundle. When we put p_=
pN b, where b is a Borel subalgebra of g defined in §1, p_ is a B’-submodule of p.
Define p, =p/p_ as the quotient B’-module. Denoting by » the number of
elements of the set A; , we then see

dim¢p_ = dimep, =1n.

We denote by #z? a canonical projection A% — A%, of the g-th exterior
product of p onto that of p,, by n? the kernel of z? (n’={0}, n'=p_). We
then have an exact sequence of B’-modules,

q

0—n7— A% —> A%, —0.

Hence, denoting by P,, N? the homogeneous vector bundles over S associated
to p,, n?, we have an exact sequence as K °-homogeneous vector bundles over S,

0> N?— AP —> AP, —0.

Next we define a vector bundle map
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af: NP — AP for E€p

as follows. We express A?P, A?"'P as the quotient spaces KCX g Ap,
K¢x o A7 respectively. Consider the map

af: KX A% — KCx A?p  for E€h

defined by af((k, X))=(k, E(k'E)X), where &(k7'E) is the exterior multipli-
cation on AP by k'€p. Then af clearly determines a well-defined map «¢:
KCx g Ap—KCX g A?"'p, and consequently a vector bundle map af: AP
— A?"'P. Then we have

Lemma 2.1. If 0 in b, then the sequence

0 1 2n—1
0-1-25,p %, pep .. 2, [mp g

is exact, where 1 denotes the trivial line bundle with fibre C.

The lemma is clear from the property of exterior multiplications and the
fact that AP is holomorphically trivial.

We note that a§(N?9)C N?** for every £p, where N?, N?** are regarded
as the subbundlesin A?P, A?"'P. In fact, the canonical projection z?**: A?"'P
— AP, is given by z?'((k, X))=(k, z?"'X)eK X y A", for (k, X)
eKCx y A?"p, making use of the projection z?%': A?t'p— A2, defined
before. Hence, if (k, X)= KX yn?, then

z? oaf((k, X)) = (&, 0),

since 7?7 oal((k, X))=(k, E(z'(k7'E))7?X) and z?X=0 for X&n? Thus we
have
af(N9)c N,

Here we put Bf=a}| N?, the restriction of a{ to the subbundle N?. We clearly
have

BE1oBE=10.
Moreover, one can therefore define the vector bundle map
vé: NP, — N?V'P,
as the quotient map of af by B¢, and we clearly have
Eoyf = 0.

Thus we obtain the following commutative diagram of the homogeneous vector
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bundles over S for E&p.

0 0 0
Pt g
O<_l——>P+_£_,...l§._,/\”P+-—> 0 0
1 ! ar  af? 1 1 1
0—>1—>P —_— e ——> /\”P~—>/\”+1P—>...—>/\2"P—>O (I)

1 e et 1

0 ->N'"—>H..... 5 N* - N"! ... N* - (

1 1 t 1
0 0 0 0

We already know the exactness of the column short sequences and the row
af-sequence if £+0 in p (Lemma 2.1). Further we have

Proposition 2.1. Identify p, canonically with the real subspace of its
complexification p. If £40 in p,, then in the above diagram (1) the [B¥-
sequence and the vv¥-sequence are both exact.

Proof. First observe the following fact.

Lemma 2.2. Assume that the af-sequence is exact. Then the B¥-sequence
is exact if and only if the y§¥-sequence is exact.

Proof. For a vector bundle E over S, we denote by E| the fibre of E over
s&€S. FixseSandlet N, P,, P be the complexes consisting of the sequences
of vector spaces

0= N!—>erms N 5 0,
O_)C_)Ps-_)..._)(/\ZnP)s_)O,
0 C = (P.), = (A"P,), > 0,

respectively. We then have a short exact sequence
0N, > P, - P — 0

of the three complexes in view of the diagram (I). By the assumption, we see
that the cohomology group of the complex 93, vanishes. Considering the
cohomology exact sequence associated to the above short exact sequence, we see
that H{(N,)=0 if and only if H*7(P;)=0. This implies Lemma 2.2.

We shall return to the proof of Proposition 2.1. Take x& N?*' such that
B (x)=0 for a fixed £4=0 in p,. By the exactness of the aF-sequence, there
exist X& A, kK¢ such that x=(k, §(R7'E)X)e KX gn?"'=N?*" where
E(kT'E)Xen?™. It suffices to show that there exists X,&n? such that

&k E)X, = s(kE) X .
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In fact, if we take (k, X,)eK¢X yn’=N? then RB¥Y(k, X,))=x, which will
imply the exactness of the B¥-sequence.

In the first place, suppose k= K, the compact form of K¢. We consider
the next direct decomposition as an H-module

N = n‘Pq?,

where q¢ is the subspace  >1  gPiA--AgPs of A% spanned by the g-th
Buy i BaE oy

exterior products of the root vectors for the roots belonging to Ag. We note
that g7 is isomorphic to A?p, as H-modules. In particular for ¢g=1, we have

p= p—@ql ’

where q'= >} g°. If we denote by o the conjugation of p with respect
Beay
to the real form p,, then we have.

since og®?=g~? as noticed in §1. We decompose £=Pp according to the above
decomposition and put £=£_+£, where £_ep_£,=q'. If £y, then cE=E;
hence we have o&_=&,. Thus £=0 for £=p, if and only if £,+0. Since p,
is a K-module, we have

(k7'€).=*+0 for keK
when £=0in p,. The decomposition of X & A is also denoted by
X=X _+X,
where X_en? X . eq? Then we have
E(RTE)X = e(RTE)X_+E((RTE) )X +E(RTE) )X .
Suppose E(k'E)X en’*'. Then it holds that €((k7'£), )X . en?* since
E(RTE)X _+E(kTE) )X ent .

On the other hand, we have &((k7'£),)X.=q?"", which implies E((R7£).)X .
=0. Therefore there exists Y& A?"'p such that X, =¢&((k7'£),)Y if £€=+0in
Po. Put X, =X_—&(k).)Yen?. We then have &(RE)X,=€(k7'E)X.
Thus the assertion has been shown for ke K.

For ke K¢, we put k=~k’b where R’'K and b= B’. If (k') Xen’™,
then &(k''E)bXe&n?*" since n?"' is a B’-module. Hence there exists Y,en’
such that &(k'7'E)Y,=¢&(k''E)bX. If we put X,=b"'Y,, then X,&n? and
E(kTE)X,=€(k'E)X. This shows the assertion in general. Thus one can
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see the exactness of the B¥-sequence for £4-0 in p,, which implies Proposi-
tion 2.1 in view of Lemma 2.2.

Proposition 2.2. Let
0 —)E0—>...——) Em -0

be an exact sequence of holomorphic vector bundles E,, ¢g=0, 1 ,---, m over a complex
manifold X of dimension s. Then the following holds.

i) If H{(X, E;)=0 for any i>0 and every q, then the induced sequence
0—- HX, E;) »>---— H(X, E,)—0

is also exact.
ii) If HY(X, E,)=0 for any i<s and every q, then the induced sequence

0—- HX, E)) »---—> H(X,E,)—0
is also exact.

Proof. The fact i) is rather natural in the view-point of homological
algebra. Here we shall show ii). Note that the exactness of the sequence of
vector bundles implies by the induction on ¢ that the map ¢?: E,—~E,,, in
the given sequence is of constant rank for every q. Therefore one can consider
the kernel of @? (=the image of @?™") as a holomorphic vector subbundle of
E,, which is denoted by Ker ¢?. We intend to show that the sequence

q -

1 q
HY(X, E,.) 2% Ho(X, E,) 2% H*(X, E,.,)

is exact when H*'(X, Ker ?*?)=0. Consider the following three exact
sequences;

cg—1 cg-1

0—>Ker¢"“——+Eq_ll—>Ker p?—0 (1)
yq 19

0—>Ker<p"—l—>Eq—]——>Ker¢q+‘—>0 (2)
E, (3)

0 — Kerp?"' — E,,, ——> Ker ¢p?** — ’

From (1) and (2), we have a commutative diagram

O
H(X, E,_,) Z_*_') H*(X, Ker @)

pi N it

H*(X, E,) ,
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where j{™' is surjective, which implies that
the image of @{ '=the image of .

From (2) and (3), we have a commutative diagram

H°(X, E,) —ii—» H*(X, Ker p?™)
LN i
H(X, E,.,) .
On the other hand, in view of the cohomology exact sequence induced from
(3), 74" is injective if H* (X, Ker ¢?**)=0. This implies

the kernel of @%=the kernel of j%,
which shows the assertion since
the kernel of j§ =the image of 7%

by (2). In order to prove the proposition, it remains to deduce the vanishing
of the cohomology groups of Ker @* from that of E,. For g sufficiently large,
for example g>m, we have Ker @?=0. Suppose H(X, Ker ¢?")=0 for
i<s—1. Then Hi(X, Ker ¢?)=0 for i<s from the cohomology exact sequence
related to (3) and the assumption. Therefore, by the induction on ¢, we have

Hi(X, Kerp?) =0 fori<sand every q.
This implies Proposition 2.2.

Let a be a K¢-module and consider a as a B’-module by the restriction.
Then we know that the associated homogeneous vector bundle A=K¢X ya over
S is holomorphically trivial and H°(S, 4)=a as K¢modules. Suppose that
there is given another homogeneous vector bundle E over S. In general, the
cup product with respect to coefficients in sheaves

H(S, EYQH(S, 4) — H (S, EQA)
gives a K¢-module homomorphism. In our case this homomorphism becomes

to be a K¢-module isomorphism because of the triviality of 4. Thus we have
a K¢-module isomorphism

Hi(S, EQ A) ~ H¥(S, E)®a .

This isomorphism is unique up to identifications of H°(S, A) with a.
Remark. Fix an identification p=H"(S, P) as defined in the beginning

of this section. Then the identification A%=H"(S, A?P) is canonically

induced. Defining af for £=p as before, we see easily that for a homogeneous
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vector bundle E, the diagram

1 q
Hi(S, Eo AP) 2% pis, B AtvP)
R 1RE(E) R

H{S, EYQ Np —> H(S, EYQ A*"'p
is commutative, where the column isomorphisms are as above.

Now we take a character A& A of the maximal torus H of K, and consider
the homogeneous line bundle L, over S associated to A& A as in §1. By
tensoring of L, to the diagram (I), we obtain the following commutative diagram;

0 0

| V
0 g L)\ - L)\ -0

! | b
0> LN - LQP — LP. —0
} | |

! l ! (1) -
0— LQN" — LiQA"P _>L>\®/\”P+—’ 0
|

Y V
0 >LQN" 'L QA"P—> 0

| ;
| i
0 0

As for the cohomology groups of the vector bundles in (I,), we have

Proposition 2.3. Suppose £40 in p,. Then the following holds.
i) If Hi(S, L\)=0 and H(S, L, QN?)=0 for any i>0 and every q, then
in the commutative diagram

0 0
! l
0 —~ HYS, L) — HY(S, L) —0
| |
0 — H'(S, LL\@N")— H'(S, I,QP) — HS, [,@P,) —0
) | } (I1),
| | |
0 —H(S, Lf®N”) —H'(S, L1® A"P)—H'(S, L,& A"P,)— 0
}
0

all the column and row sequences are exact.
i) If HS, L\Q AN“P.)=0 for any i<s and every q, then in the com-
mutative diagram
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0 0
Y
0 -~  HYS, L) - H’(,Si', L) —0
|

|
0 — HY(S, LL@N")— HS, L @P) — HS, [,@P,) —0
| ! l (I13),

| J l
0 —H*(S, 11,\®N") —H(S, L@ A"P) — H*(S, L@ A"P,)—> 0
! |

all the column and row sequences are exact, where s=dim¢ S.

Proof. As for i), the assumption implies H(S, Ly® A‘P)=H(S, L\Q
A?P.) for any >0 in view of the cohomology exact sequence related to the
row short exact sequence of (I,). On the other hand, H'(S, Li® AP)
=H(S, L)Q A% since P is trivial. Thus H(S, L\Q AP, )=H(S, L\®
A?P)=0 for any 7>0 and every ¢. This implies i) by Proposition 2.2, 1).
The proof of ii) is quite similar to that of i), using Proposition 2.2, ii).

ReEMARK. In the diagram (II}) and (IIf), the row three-term sequences
consist of K¢-module homomorphisms, but the column sequences are not so.

Finally, we shall discuss the vanishing conditions in Proposition 2.3. For
this purpose, we make use of Schmid’s method in [16]. Let us introduce the
Grothendieck group R(K) of finite-dimensional K-modules, which is regarded
as the free abelian group generated by the set of equivalence classes of irreducible
K-modules. Suppose that a homogeneous vector bundle E over S'is given. We
shall correspond to E the Euler characteristic

X(E) = 33 (—1Y[HYS, BIeR(K),

where [V] denotes the element of R(K) corresponding to a K-module V. If
0—E'->E—E"—0 is an exact sequence of homogeneous vector bundles over
S as holomorphic K¢-vector bundles, then we have X(E)=X(E')+X(E") in
R(K). Here we shall show the following proposition partly due to W. Schmid.

Proposition 2.4. Let A A.
i) Suppose that

(AEBE£B,, )=0 for all ac A}

whenever B, ,--+, B, € A; are mutually distinct for every r<gq. Then
Hi(S, L,\QN")=0 and H(S, LyQ N"P.)=0 for any i>0 and every r<q. More-
over, the irreducible components of the K-module H'(S, L,Q N\P.) consist of the
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K-modules with highest weights N+ 3,+ -+ -+ 3, where 3, ,--, B,,EA; are mutually
distinct.
ii) (Schmid [16], Lemma 5.5). Suppose that

(AtptBit 4By a) <O for all ac A}

whenever B, ,-++, BsE Ay are mutually distinct. Then H'(S, LaQP.)=0 for
any 1<s, and the irreducible components of K-module H*(S, L,Q N\?P.) consist of
the K-modules with lowest weights N+2py+ 8, -+++ 8, where B, ,-++, B, Ap are
mutually distinct.

Proof. There exists a sequence of holomorphic homogeneous vector
subbundles

0=E,CcE,c--CcE,=L\QN?

such that L,,=E,/E, , is the homogeneous line bundle associated to a holo-
morphic character ;€A of B’ because of the solvability of B’. We clearly
have

N = AR+ +B, (0<7r<q)

where 8, ,::+, 8,€A; are mutually distinct and if r=g¢, then all the signs in
the above formula are not positive. Consider the exact sequence

OﬁEi_l—)Ei*‘)L)\‘-‘QO.

Then we have H?(S, E;)=~H?(S, L,,) for p>0 when H?(S, E;_,)=0 for p>0.
Using Theorem 1.1 of Bott, we therefore have

H?(S, LLON?) =0 for p>0

inductively by the assumption. Moreover this clearly implies the assertion
also in case that r<q. The vanishing of H(S, L,® A"P,) is deduced from
that of H(S, L,®N") in view of the cohomology exact sequence.

Next, L@ AP, has also an sequence of the subbundles

0=F,cF,c---CF,,= LQ NP,
such that Ly =F[F;_, is the homogeneous line bundle associated to the character
7\fj = A +6,+ "'+Bq

where 3, ,:+, B, Ap are mutually distinct. We then have

X(L\® NP.,) = =i: X(Ly,) in R(K).
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By the vanishing condition, we have

X(LaQ NP,) = [H(S, L@ N\*P.)]
and
X(La,) = [H'(S, L)
Thus we have

[H(S, L@ ATP.)] = 31 [HS, L,))],

which shows our assertion i). As for ii), the vanishing is due to Schmid.
The proof of the rest part is similar to that of i).

Related to the conditions in Proposition 2.4, i), we easily see that there
exists a positive number ¢*>0 such that, for A€ A, if (A, a)>c? for all e Ay,
then )\ satisfies the vanishing conditions in i) for all ¢. Similarly, there
exists a positive number ¢*>0 such that, for A€A, if (A, a)<—c* for all
a Ay, then ) satisfies the vanishing conditions in ii) for all gq.

DeriNiTION 1. We shall say that N A satisfies the condition (b) (resp.
(#)), if ) satisfies the vanishing conditions in Proposition 2.4, i) (resp. ii))
for all . Choose the numbers ¢’ ¢* as above. Then we may say that if (A, &)
>cb (resp. if (A, a)<—c¥) for all aAf, then \ satisfies the condition (b)

(resp. (#))-

3. Construction of elliptic complexes

This section will be devoted to the construction of elliptic complexes. As
for the notion of differential operators on vector bundles and their symbols, we
refer the reader to Palais [15], Chapt. IV.

Let G be a connected real semi-simple Lie group with a compact Cartan
subgroup. We denote by g, the Lie algebra corresponding to G. We shall
consider a compactly imbedded subalgebra ¥, in g, whose rank is maximal as in
§1. Then the connected Lie group K generated by f, is compact and a
maximal torus contained in K is seen to be a Cartan subgroup of G (see [16],
§2). We fix a compact Cartan subgroup H of G contained in K and keep the
other situation and notation as in the previous sections. We notice that, in
the root space decomposition

g="5® > g°
aEA
in §1, B(g® ¢?)=+0 if and only if a=—B. Hence we choose a root vector
E,=g” for ¢ € A such that

B(Em, Eg) = 8‘,, -B
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To a complex K-module V, one can associate the differentiable homogeneous
vector bundle €/ over X=G/K. We denote by C~(¢{/) the space of the infinitely
differentiable sections of €{” and identify C=(¢)/) with the following subspace of
the infinitely differentiable V-valued functions on G

oo

C
C (V)= {s:G—> V| s(gk) = k7's(g) forgeG, keK}.
For a vector valued function s on G and X g, we put
v(X)s = Xs,

where s— Xs denotes the operation of X as a left-invariant complex vector field
on G. Define p as in §1 and let YR A 2P be the homogeneous vector bundle
associated to a K-module V® A for ¢=0, 1,---, 2n. Choosing a base {Eﬂ}ﬂeAp
of p as before, we shall define a G-invariant differential operator

D?: CH(VRNP) = CH(VRNP)
by D= 3 v(Es)RQE(E_g), where &(E_g) is the exterior multiplication by
€A
E_gep. Particularly for ¢=0, &(E_s) should be a mere tensoring operator by

E_g. In effect, let s be a V® A 7p-valued function on G such that s(gk)=Fk"s(g)
for geG, ke K. Then it is easily checked that D% has the same property since

2 EB®E‘ﬁ S Z kEﬂ®kE—5 for kEK.
BEA, Be sy

Thus D7 is a well-defined differential operator from CIV® AP to VR A P.
We note that this definition of D? is independent of the choice of the base
{EB}ﬁEAp as far as B(E,, Eg)=$§, _p for a, BEAp. As for the symbol of D?,
we regard p, as the tangent space at the origin eK < X and identify p, with its
dual space through the restriction B|p, of the Killing form. Thus we may
also regard p, as the cotangent space at the origin. Then for a cotangent
vector £ p,, the symbol map

at(DN): VRAD = VRAT D
of D? at the origin appears to be
(D7) = 1RQ¢&(E),

where £, is considered as an element of p. In fact, if we take a function f on
X such that f(eK)=0 and £=(df).x, then we have

D(fs) =fD"S+BZA (Eef)AQE(E p))s
Eap

for s€ C*(CVQ@ A?P). On the other hand, we may consider that
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df = 33 (Esf)E ¢
Beay

under the identification of & with the complex cotangent bundle of X by the
Killing form, since Xf=0 for X&t and B(E,, Eg)=35, _s. Therefore we

obtain

Dq(fs)eK = (1 ®8(§))(33K) ’

which implies our assertion.

Now, suppose that there is given an irreducible K-module ¥, whose highest
weight is A (here the order on h% is fixed as in §1). By Theorem 1.1, we
then have a K-module isomorphism

Vi = H'(S, L).

Then it induces the K-module isomorphism

Pq: VAQ A*p — H'(S, Li\® \“P)
for every ¢. We put
U = @;'(H(S, L\QN?)) for ¢>0

as a K-submodule of V,® A%%. Here we notice that the determination of
the K-submodule U{ is independent of the choice of the isomorphism
Vi=H"(S, L)) because of the irreducibility of V, and Schur’s lemma. Next,
we define a K-module V¢ by

Vi=V.QAP/U{ for¢>0,

and V3=V, for ¢g=0. Assume that the highest weight A=A satisfies the
condition (h) in Definition 1 in §2. Then, by Propositions 2.3, i) and 2.4, i),
we have a K-module isomorphism

Ve~ H'(S, L@ AP.)

and, by the diagram (IIY), a commutative diagram of K-modules for £,

0 0 0
t 1 1
0_)V)\_) V}\ —> e —> V’; —0
1 1 t
0—*VT'>‘—>VA§§D—>'"—>VMX%/\"P—>'" (IIIK),
0 — U/{ —>eee—> U:\' —> e
1 1

0 0
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where both the columns and rows are all exact if £50 in p,. As noticed in
Remark in §2, a diagram

1 q
1828 s, Lo nerP)

R 1Q¢ R
H(S, Ly A 228 fos, Ly Arp

H(S, LyQ \P)

is commutative, and therefore the map

VaQAD = VQAD

in the diagram (III}) is nothing but the exterior multiplication 1®&(E) by
g€p,. We denote by of the map V{—V{" in (III}). Thus if A satisfies the
condition (p), then we have the exact sequence

o o} )
0> Vy—H V25 sV 0

for £40 in p,, where n:% dimp X.

Alternatively, if we denote by V, an irreducible K-module whose lowest
weight is A+2py (py is as in §1), then we have a K-module isomorphism

Vi HS, L) .

When Ae A satisfies the condition (§) in Definition 1, in the same way we
have a commutative diagram of exact sequences for £=0 in p,

0 0 0
1 1 1
1 ) 1
0—)?&—) VA{@p")"'_)V}\@}/\”p_)'“ (III)’\)’

0 — U)l\ —>iee—> UK —> e
1 1
0 0
where
U{ = H*(S, Lya®QN?)
Ve =~ H¥S, L,® AP.)
as K-modules and the map Vi@ A=V, Q A?"p is 1QE(E) for E€p,. This

follows similarly from Propositions 2.3, ii) and 2.4, ii).

DEerINITION 2. Let V), be an irreducible K-module whose highest (resp.
lowest) weight is \ (resp. A4-2py). Assume that A& A satisfies the condition ()
(resp. (4)) in Definition 1 in §2. We then obtain a commutative diagram
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(IIT}) (resp. (III%)) consisting of exact sequences for £40 in p,. We shall call
the exact sequence in (III}) (resp. (III%))

0 1
O¢ 1 9¢
00— V)\————> V’\-—>...—> V:—>O

the canonical (b) (resp. (§))-sequence associated to V.

Most of our future arguments are valid for both (h) and (#) cases. Con-
sequently, when we do not refer to (b) or (#) for simplification, it will be valid
for either case.

The situations being kept as above, we denote by U$, C{’? the homogeneous
vector bundles over X associated to the K-module U{, V{. Regarding U{ as a
subbundle of CVA@Q A?P, hence C=(Uf) as a subspace of C=(CVAQ A‘P), we
see that

DYC(U)< C~(UL™)
for every q. In fact, »(Eg)®1 transforms the space of U{-valued functions on G
into themselves. On the other hand, the exterior multiplication by an element of
p transforms U§ into U{™ as noticed in §2. Therefore the above inclusion
relation holds. Choose a splitting injection 7: V{—V,Q A of the exact
sequence of K-modules

0— Ul— Vx@A%— V0.

Denoting by 7 and p? the injection C*(CV§)—C=(CV,r® A‘P) induced from
the above splitting and the projection C*(IAR A‘P)—C~(V4), we define a
G-invariant differential operator

97 C(CVY) — C(VE™)
by @?=p?**oD?i?. Then 97 is clearly independent of the choice of a splitting 9.

Lemma 3.1. The symbol map of D? at the origin eK € X for £, is the
map

cf: V{—Vi"
in the canonical sequence associated to V.

Proof. The operator ¢? and p?** are of order zero as differential operators.
Since o¢(D?)=1R¢E(E) and the diagram

Ve ot Vet
A > A
'a

1®¢
Va@ A% —®—(_E>) VAQ A p
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is commutative, our assertion is clear.

RemMArRk 1. When we look back upon the construction of the differential
operators 9)?, these operators depend on the choice of a lexicographical order
of the root system. It does not hold that 97" 9?=0 in general, but we shall
see that in case of symmetric spaces it holds if we choose a special order of the
root system.

We recall that the homogeneous space X=G /K is called symmetric (of inner
type) if
[pO) p 0] C f0

in the decomposition of g,in §1. We then have [p, p]Jcf. For a symmetric pair
(80> £o), we shall consider the following special order of the root system A of g.

DrrINITION 3. We shall call a lexicographical order of A admissible
with respect to a symmetric pair (g,, f,) of inner type, when

Bt BeE v+,
for Bx [RRREY IBq» Yis s Vs in A; and q:‘,:r
The existence of such an order is guaranteed by the following lemma.

Lemma 3.2 (Takeuchi). There exists an admissible lexicographical order
with respect to a symmetric pair of inner type.

Proof. We may assume that g, is simple without loss of generality. Let .
be the Cartan involution of a symmetric pair (g,, f,) of inner type. Then one
can choose a system of simple roots [I={«, ,-:*, @,} such as the following holds
(Borel-Siebenthal [3], Murakami [14], Théoréme 1). Let m, ,---, m, be the posi-
tive integers such that Zi] m;; is the highest root in A with respect to IT.  If we

choose such an appropriate number & as m,=1 or 2, then we have
t=-exp2z/—1ad H,,
where H, &Yy is defied as a;(HJ:—%Sik for i=1,.--, L

We shall now show that the lexicographical order determined by the above
system of simple roots is admissible. Let E; be a root vector for a root

l
B= 3 n;a; which is positive with respect to the above order. We then have

i=1
‘E‘3 — env—mkEs ,

extending ¢ to an involution on g complex linearly. Hence it follows that
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m, =0 mod2 if BEA},
n=1 mod2 if B€A},

because c(=1on f, and tk=—1 on p. Since 0=n,=<2, we see that a positive root

B; [Zn,.a,- is in Ay if and only if m,=1. Therefore, with respect to this

order, if 83,,--+, B, are in A;, then the coefficient of e« in B,+ -+ B, is q.
This shows Lemma 3.2.

Theorem 3.1. Suppose that X=G|K is a symmetric space (of inner type)
and choose an admissible lexicographical order of the root system with respect to the
symmetric pair. Let V) be an irreducible K-module whose highest (resp. lowest)
weight is N (resp. N+2py). If A satisfies the condition (b) (resp. (#)), then the
sequence constructed above

@0 @1 @n—l
0= C*(Vh) = C=(V}) — =+ = CH(VR) = 0

is an elliptic complex over X whose symbol sequence for £y, at the origin is
the canonical (b) (resp. (#))-sequence associated to V. Here n:—%— dimp X.

Proof. We have already shown in Lemma 3.1 that the symbol sequence for
£y, at the origin is the canonical sequence associated to V) and it is exact
for £40. Since each 97 is an invariant differential operator on homogeneous
vector bundles, the sequence in the theorem will be an elliptic complex if we
show that it is a differential complex. Thus it only remains to show that
9?0 P?=0 under the conditions of the theorem. For s& C*(¢}’}), we have

D% = p?*'oDIs4r?+o D%

where 77** is the projection from C*(CV\® A?"'P) onto C=(U$*) by fixing
some splitting 7*': Vi"'—=>V,@ A?'p.  Since D?"(C=(ULH))c C=(VL*?), we
then have

PpHPo DT o DYofls — PP DITofeH o ptt o Dojds
for s& C=(¢V’3), which implies
Do D = prt20 DI o D%0i?
On the other hand, it holds that
1
DDt =1 5V w({Ep, ED@E-)E(E-,).
’ P

Here we see that [Eg, E,]t since [p, p]Cf by the assumption. Therefore
the differential operator D ?"*oD? becomes of order zero. Since p?*? and i? are
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of order zero, D" 9? is also of order zero, that is, induced by some vector
bundle map p?: YVI->CPL2 Moreover 9D 'og)? is G-invariant, hence
p?: CPY{—-CP¢*? is induced by a K-module homomorphism

q. +2
p7 VI VI

Thus in order to show that 9)?"'09?=0), it suffices to show that p?=0. By
Proposition 2.4, the highest (resp. lowest) weight of an irreducible component
of V{is A+Bi+ -+ +B, (resp. A+2pt+ B+ - +8,) where B,,:++, B,EA, are
mutually distinct in case (p) (resp. (§)). Because the order of A is admissible, no
irreducible component of V'{ is equivalent to any irreducible component of V{*2
Hence there exists no non-zero K-module homomorphism from V¢ into V{*?,
which implies p?=0. Thus we complete the proof of Theorem 3.1.

RemARK 2. When X is hermitian symmetric, one can choose an admissible
lexicographical order of the root system such as m,=1 in the proof of Lemma 3.2.
Under this order, the B’-modules p_, p, in §2 are moreover K-modules, and
we have a K-module decomposition

b= P+@D_

Considering p, as the holomorphic tangent space of X at the origin, one can
give a G-invariant complex structure on X, and our vector bundle €1/, is endowed
with the structure of a holomorphic vector bundle over X. Then our differential
complex in Theorem 3.1 becomes the so-called Dolbeault complex (9-complex)
associated to the holomorphic vector bundle €V in either case (p) or (#). In
fact, the B’-module p, is, then, a K¢-module and therefore we have an iso-
morphism as K¢-modules

HY(S, L@ AP,) = HY(S, L)@ AP,
which gives an isomorphism as K-modules:
Vi= V@A, .
Therefore 1=~CIAQ NP, is regarded as the vector bundle of anti-

holomorphic cotangent vectors of X of type (0, g). Under this circumstance,
it is seen that

D= 3 B )QEES)

ﬂeAp

and this is exactly the Cauchy-Riemann operator 9.

In case that X=G/K is not symmetric or a lexicographical order is not
admissible, we shall consider the following differential operator between two
hermitian vector bundles. We give V) and p K-invariant hermitian inner
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products, which make €1, @ A% a homogeneous vector bundle with an invariant
hermitian metric. This induces an invariant hermitian metric on €’{; in
this way consider €1 as a hermitian vector bundle. We put

W= & VI (A=)

g=0 mod 2

W= & .

g=1 mod 2

These are hermitian vector bundles over X with the hermitian metrics induced
by those of ¢V§, ¢=0, 1,---, n. Endowing X with an invariant volume element,
one can define the formal adjoint operator of 9?:

*Pr: C2(CVE) — C=(VY) .
The symbol map of *9)? for £, at the origin is
—tof: VI = VY,

where *of denotes the adjoint of of: V{— V{** (see Palais [15]). We define
a G-invariant differential operator

L C(W35) = C =(HW3)
by the formula
"E(so’ S50y sk) = (Qoso‘l’*g)lsz 'ty @k—zsk—z'l—*gk_lsk) ’

where s, C*(CV%) and k:Z[%]. Then the symbol map of £ for E€p, at
the origin o¢(L): D ) Vi— & V{(V3=V,) is clearly given by
g=0 mod 2

g=1 mod 2
O'E(I)(‘v()’ .vl PR ‘vk) — (0’27}0—*0';7]2 PR O-E_z'vk_z—‘*a'g“l‘vk) .

It is easy from the exactness of the canonical sequence associated to V', to see
that, for £=0 in p,, o¢(L) is bijective, which shows that [ is an invariant
elliptic operator from G5 to 3.

DerFINITION 4. Let V), be an irreducible K-module whose highest (resp.
lowest) weight is A (resp. A+2py). Assume that A & A satisfies the condition (b)
(resp. (#)). We then obtain the elliptic complex

9 P
0— C(CV,) —> C=(V}) —> - = C=(V3) — 0
when X is symmetric and the lexicographical order of the root system is ad-
misssible, or

L
0= CH(WR) — C(WR) — 0
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otherwise. We shall call the above elliptic complex the (b) (resp. (#))-complex
associated to the homogeneous vector bundle CV/,.

Remark 3. The invariant operator D°: C=(C{/,)—C=(CV,QP) is con-
sidered as an invariant connection on the homogeneous vector bundle C{/,,
under the identification & with the complex contagent bundle of X. One can
see that an connection D° extends uniquely to an differential operator

D?: C*(V,Q NP = C=*(AV,Q N7 P)
such that
D(sp) = D’s A\@+sdp for s& C*(V,), pe C=(A'P)

and D?"%oD? is an operator of order zero (Bott-Chern [6]). When X is
symmetric, we can see that D?=D*. If we adopt D? instead of D?, it may
be possible to construct an differential complex even in case that X is non-
symmetric.

4. The index of elliptic complexes over compact homogeneous
spaces

In this section, we shall chalculate the indices of the elliptic complexes
constructed in §3, making use of Bott’s theorem in [5]. We shall review this
theorem for invariant elliptic operators.

Let M be a compact connected Lie group. We denote by R(M) the
Grothendieck ring of M, i.e., the free abelian group generated by the equivalence
classes of finite-dimensional irreducible M-modules with the multiplicative
structure induced by tensor products. For an M-module V, we denote by
[V]€ R(M) the element of R(M) determined by V. One can define a symmetric
bilinear form < , > on R(M) by

V], [WDm = dimec Homy, (V, W),

for M-modules V, W. If K is another compact connected Lie group and
@: K—>M is a homomorphism, then by the restriction it induces the canonical
homomorphism

o*: R(M) — R(K).

When we denote by J(M) the equivalence classes of irreducible M-modules,
we have R(M)= Z( )Zx, where Z is the ring of integers. We define the
reIM

formal ring R(M)= 1II Zx and regard R(M) as a subring of R(M). Then
xeI(M)
for a homomorphism @: K—M, we define the formal induced representation
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px: R(K) — R(M)
by @«(y) = §(M)<¢*x’ yoxx for yeR(K), where an element in IAQ(M) is

xe
denoted by an infinite sum.

Now, let K be a connected closed subgroup of M, V7 a finite-dimensional
K-module for ¢=0,1,---,n. We denote by C{/? the homogeneous vector
bundle over the compact homogeneous space X=M/K associated to the
K-module I’?. For an M-invariant elliptic complex over X

QO @1 @ﬂ—l
0 = Co(V") — CHWV) — - = C=(A™) =0,

a vector space
HY(CP*) = Ker 97/Im 97

is a finite-dimensional M-module for each ¢, since X is compact. We then
define the homogeneous index X(C{/*)e R(M) of this elliptic complex by

XV*) = 23 (1 TH(V)].
9=0
The following theorem for the homogeneous index is due to Bott.
Theorem 4.1 (Bott [5]). Let
0 — C=(CV) = = C=(CP") = 0
be an invariant elliptic complex over X—=M|K, where CV° ,---, C" are the homo-
geneous vector bundles associated to K-modules V°,---, V*. Define the homo-
geneous symbol o(CV*)€ R(K) by o(CV*)= N (—1)V. If i: R(K)—R(M)
7=0

is the formal induced homomorphism determined by the inclusion i: K—M, then
the following holds:

@) iy o(CV*)eR(M)
b) X(V*) = iy o(CV¥).

RemMaRk. In [5], the theorem is stated in case that n=1. The above
generalization is easy in the usual manner of reducing of the problem of index
on an elliptic complex to that on an elliptic operator between two vector bundles.

Now, we assume that a connected compact Lie group M is semi-simple and
a connected closed subgroup K of M is of maximal rank. Fix a Cartan subgroup
H of M in K, and keep the other situation and notation as in §§1, 2, 3, substitut-
ing M for G. Given an irreducible K-module V, whose highest (resp. lowest)
weight \ (resp. A-+2py) satisfies the condition (h) (resp. (#)), we have an invariant
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elliptic complex called the (b) (resp. (#))-complex associated to the homogeneous
vector bundle <{/, in Definition 4 in §3. More precisely, if X=M|K is
symmetric and the order is admissible, then we have an invariant elliptic
complex

0 1

), 9
0= C(E) = CH(V}) =+ = C(AR) = 0

where nz—;— dimg X, and otherwise, an invariant elliptic operator

L
CoH(W) — C=(WR)
under a K-invariant hermitian inner products on V, and p. For the sake of
notational simplification we denote by X(CV¥)eR(M) and o(CV¥)eR(K)

the homogeneous index and the homogeneous symbol of the above (h) (resp.
(#))-complex associated to {/,, whether X is symmetric or not.

Lemma 4.1. The homogeneous symbol of the (b)-complex 1is
o( V1) = 3 (—1)TH(S, L& AP )IER(K),

and that of the (§)-complex is
(V) = 2 (~)[H(S, L APIERK).

Proof. Recall that V{=HS, L,Q A?’P,) where =0 in (p)-case or
i=s in (§)-case. Lemma 4.1 is then clear from the definition of homogeneous
symbols in Theorem 4.1.

We consider the inclusion maps

H—K—M,
J Z
and endow S=K/H and Y=M/H with the complex structures determined
by the fixed order on the root system A of M. For a finite-dimensional complex

H-module e, one can associate the holomorphic homogeneous vector bundles
ES,E¥on S, Y. Put

o= 2] +gm
ae st
which is H-module, and let N, be the differentiable homogeneous vector bundle
over S associated to the H-module n,, which is, here, regarded as the anti-
holomorphic cotangent bundle of S. Then the Dolbeault complex associated to
the holomorphic vector bundle ES is
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0 — C=(ES) -—a—> C=(ES®QN,) —a—) e > C(ESQA°NL)— 0
and its homogeneous symbol is
oo(e) = Z} (—1)[e® APn,]€R(H) .
Similarly, the homogeneous symbol of the Dolbeault complex associated to
EY is
oy(€) = 3 (—1)[e@ A, Dp, )< R(H).
We then have

oyp(€) = 3 (—1)7os(e® A%,) in R(H).

9=0

By Theorem 4.1, we have
jxos(€) = 23 (~1Y[HA(S, E9)eR(K).

Therefore by Lemma 4.1 and Proposition 2.4, we have
Lemma 4.2. Let |, be an irreducible H-module whose character N A
satisfies the condition (h) (resp. (8)). Then we have
Jxoy(h) = o(VX) (resp. (—1)'a (V%))
where CU¥ is the (b) (resp. (§))-complex associated to C/,.

With these preparations, we have the following theorem for the homo-
geneous index of (h)- or (#)-complex.

Theorem 4.2. Let CU¥ be a (h) (resp. (#))-complex associated to V),
>, a. Then the homogeneous index X(V¥)ER(M) is given by

aEA

the following formulae. If N—+p is singular with respect to M, then in either
case

and pz%

XV =0.

If N+p is regular with respect to M, then there exists the unique element w of
the Weyl group of M such that w(\-+p)—p is dominant with respect to M.
We then have

(V) = (= 1) [w(r+-p)—p] (resp. (—1) **[w(X+p)—p])

where n(w) denotes the number of elements of the set {a = A" |wa <0}, [p]e R(M)
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for uE A the equivalence class of the irreducible M-module whose highest weight is
nEA.

Proof. By Theorem 4.1,
X(CVE) = ino(CVH) .
Therefore by Lemma 4.2, we have

X(CVE) = (iof)xay(Ly) in (h)-case

or
X(VE) = (=1)(Fsoy(ly)  in (#)-case,

since (iof)xX¥=1x°j4xx for x& R(H) when both sides have the meaning. Applying
Theorem 4.1 to the inclusion 7oj: H—>M, it holds

(iofaory(l) = 35 (—)HY, LDIER(M),

where LY is the holomorphic homogeneous line bundle over Y=M/H associated
to A& A. Thus by Theorem 1.1*’, Theorem 4.2 is now clear.

5. The index of elliptic complexes over compact locally homo-
geneous spaces; proportionality principle

In this section, we shall generalize Hirzebruch’s proportionality principle
(see Hirzebruch [10], Ise [12], Griffiths [7]) for elliptic complexes and evaluate
the indices of the (h)- or (#)-complexes constructed in §3 over compact locally
homogeneous spaces. For this purpose, we make use of a variant of the index
theorem due to Atiyah-Singer [1].

Let K be a compact Lie group, V a fixed real oriented K-module. We shall
then say that an oriented manifold X has a K-structure when there exists a
principal K-bundle P over X such that

PxV ~TX

as oriented vector bundles. Here PX V' denotes the vector bundle over X
associated to P by the K-module V, TX the tangent bundle of X. Then we
have a canonical homomorphism

*) The referee pointed out the following matter. Instead of utilizing Theorem 1.1, one
can complete the proof of the theorem straight from the Weyl’s character formula. In fact, by
means of Weyl’s integral formula (see [5], Theorem B), (io7)x07(IA) can be calculated
directly and in view of the character formula, it is seen to coincide with the element of R(M)
stated in Theorem 4.2.
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ap: Ku(V) = K ((Px V) = K(TX),

where K g(+) denotes the usual equivariant K-functor for the compact group
K, K(TX) the K-group of TX. For an elliptic complex on X, we shall say
that its symbol class is associated to the K-structure when the symbol class in
K(TX) belongs to the image of ap. Here we have considered symbol classes
as elements of K(7'X) through an identification of 7°X with the cotangent bundle
of X by means of an adequate Riemann metric (see [1]). Now suppose dimp X
=2n, n integer, and fix a K-invariant inner product on the oriented K-
module V. We then have a representation

p: K — SO(2n).

Denoting by H¥(Q), H%o,w(Q) the rings of characteristic classes of K, SO(2n)
with coeficient field @ of the rational numbers, we have the induced homo-
morphism

P*: HEo0,m(Q) — H;?(Q) .
For p*(e)e H(Q) where e< H*,(,,,(Q) denotes the Euler class, one can see that
p*(e) # 0

if a maximal torus of K fixes no non-zero vector in V. Let E°,.--, E’ be
complex K-modules, &°,::-, &% the associated vector bundles over X and
suppose that

0—C=(&") —>-—>C~(&)—0
is an elliptic complex whose symbol class is associated to the K-structure. De-
noting by ch E‘e H¥(Q) the Chern character of the K-module E*, one knows
that fl_] (—1) ch Eile H¥(Q) is then divisible by p*(e)e H¥(Q) when p*(e)=0,
i=0

and we have a characteristic class

z;; (—1y ch Ef
o

According to [1], we shall call the Todd class of TX®C the Index class of X and
denote it by J(X).
We then know

eHE Q).

Theorem 5.1 (Atiyah-Singer [1], Proposition 2.17). Let X be an oriented
compact manifold of dimension 2n with a K-structure, i.e., there exist a principal
K-bundle P over X and a real oriented K-module V such that TX is associated to P
by V. Assume that maximal torus of K has no fixed non-zero vector in V., Let
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E° ,---, E? be complex K-modules, £° ,---, E* the associated vector bundles and sup-
pose

0 — C=(E) =+ C7(E = 0

is an elliptic complex whose symbol class is associated to the K-structure. Then the
index of this complex is given by

SYch E
(- @),

where {-}[X] denotes the evaluation of a cohomology class on the fundamental
cycle of X.

Here we shall recall some fundamental results on the expression of char-
acteristic classes by means of differential forms (see, for example, Kobayashi-
Nomizu [13], Chapt. XII). For a compact Lie group K, let ¥, be its Lie algebra,
S(t¥)X the ring of polynomials on f, invariant under the adjoint action of K.
We then have a canonical identification

SEtH* =~ HYR),

of S(t¥)¥ with the ring of characteristic classes of K with coefficient field R of
the real numbers. Let P be a differentiable principal K-bundle over a differ-
entiable manifold X. If we give a connection § on P, then one can define
the curvature form () of 4, which is an exterior differential 2-form on P with
values in the Lie algebra f,. For f& S(t¥)X, f(x(0)) is an exterior differential
form on P, which is moreover closed and projectable to X. Thus we have a de
Rham cohomology class

(O] H*(X, R),

which is known to be independent of the choice of the connection §. In
effect, for ce H¥(R) we denote by f.= S(t¥)* the invariant polynomial by the
above identification. Then one knows that

o(P) = [f(x(0))]

in the cohomology group H*(X, R). This map fi—[f(x(6))] is an algebra
homomorphism from S(f¥)¥ into H*(X, R) called the Weil homomorphism.
We shall use this expression of characteristic classes.

Let G be a non-compact connected semi-simple Lie group with a faithful
representation, K its compact connected subgroup. Assume, as in the previous
sections, that G has a Cartan subgroup contained in K. Let " be a discrete
subgroup of G' and suppose that T" acts freely and properly discontinuously on
the homogeneous space X=G/K, and the quotient I'\G is compact (the
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existence of such a group is guaranteed by Borel [2]). Thus we have a compact
locally homogeneous manifold X=T\X, and a principal K-bundle .P=T\G
over 1 X. Let V°,---, V! be complex K-modules, C{°,.--, C}” the associated
homogeneous vector bundles over X. For a G-invariant differential operator

i C=(CVH) — C=(CVit),
we have a differential operator
o Ds OV = C (V)
over .X, where .C/? is a vector bundle over X, obtained by the quotient of

CP* by I'.  We notice that (1 is also regarded as the associated vector bundle
to a principal K-bundle P by the K-module V. When a differential complex

0 = C=(:CV*) —-eo— C=(: V) — 0

over X is given by the above procedure out of G-invariant operators from
C=(“V%) into C=(C**") for each 7, we shall call this complex an invariant differ-
ential complex over ..X.

We now denote by M the compact Lie group which is dual to the non-
compact semi-simple group G (see Helgason [9]). Then one can consider
K also as a subgroup of M. Thus we get the compact homogeneous space
X=M|K, soto say ‘“‘a dual compact form” corresponding to X. For K-modules
Vi,., V¢, we denote by c» ... i the associated homogeneous vector bundles
over the compact form X. A differential complex

0 — C=(CP) == C=(cP') - 0

is then called fnvariant when each differential operator C=(C{#)—C=(C{7i+")

is M-invariant.
Under these situations, we obtain the following analogy to Hirzebruch’s

proportional principle.

Theorem 5.2. Let V°,.--, V! be K-modules and suppose that there associate,
as above, two invariant elliptic complexes

10— C(x V) =-oo—= C=(V*)—0  over . X

and
0= Co(A) v CH(A) =0 over X,

v X, X being as before. Then, as for the indices X(:V*), X(CU*) of these elliptic
complexes, we have
E(:X)

a0t XV

X(rCV*) =
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where E(+X), E(X ) denote the Euler numbers of X, X respectively.
Proof. Let g, £, be the Lie algebras of G, K,

Go = f069130

the decomposition in §1. Choose a maximal compact subgroup KOK of G
and denote its Lie algebra by {,. Then we have a Cartan decomposition

g, = LPh, ,
and we can regard that
m, = E®V =15,
where m, denotes the Lie algebra of M. We easily see that

P, = Eo N po@ﬁo

and when we put

i’o = %oﬂ po@\/jl f’o;

we have
m, = £,DP, .

Denoting by ¢ the Cartan involution of the above Cartan decomposition
go="F,PP,, we define a K-invariant inner product on p, by

(X, Y)= —B(X, .Y) for X, Yep,,

where B denotes the Killing form of g,. We also define a K-invariant inner
product on §, by

(X, Y)=—B(X, Y) for X, Yeb,,
where B also denotes the Killing form of m,. If we decompose Xe&p, as
X=X 0BX,, XIEEOQDO, X, €5,

then the map X,PX,—~X,P v/ —1 X, is an isometry of p, onto P, as K-modules.
We fix the orientations of p, and £, such that this map is an isomorphism as
oriented K-modules, which determine the orientations of +X and X. 'Then, for
the two orthogonal representations

p: K — SO(2n) on p,
and
6: K — SO(2n) on§,,

we have p*(e)=p*(e) in H¥(Q), where p*, p* are induced by p, 4 and e is the



ELLipTic CoMPLEXES ON CERTAIN HOMOGENEOUS SPACES 149

Euler class in H¥5,.,(Q).
We shall introduce invariant connections on the principal K-bundles

P=T\G over - X and P=M over X as follows. Let

0:80—~> 1,
and

6:m, —>t,
be the projection such that Ker §=p, and Ker 6=$,. Since 0,8 are K-
module homomorphisms, the projections 6, 0 give the invariant connections on
P, P respectively. In order to give explicit formulae of the curvature
forms, we extend the above connections to those with complex coefficients,
i.e., both 8 and O extends to the projection g—f whose kernel is p, where
g, f, b are the complexifications of g,, £, b, and g is identified with the com-
plexification of m,. We denoAte by the same letters 6, 0 the connections with
complex coeficients on P, P respectively defined by the above projection.
Choose a base {H,, E,} of g such that {H,} forms a base of the fixed Cartan
subalgebra b of g contained in £, E, a root vector for a root a€ A, and put

[Ey Eg] = N, gEy if vy =a+4B€A,
[Em E_,]=H,eY.
The dual base of {H;, E,} then gives complex valued invariant 1-forms on the

Lie groups G, M. Here we notice that an invariant 1-form on G determines
the 1-form on P=T'\G. Denote by {w,}sca) {®a}sca the systems of complex
valued 1-forms on P=T\G, P=M such hat w,, &, are determined by the
dual of E,. Then we see easily from the Cartan structural equation that the
curvature forms «(d), x(é) on P, P are, as f-valued 2-forms,

0(0) = 3 Hyr 0, Ao_,+ N Ny pEoip 0, \wp

asAf at+peay
a,ﬂeAp,a<ﬂ
k@) = 3 HyduNbdat 3 Ny pEarpbdaAds
asAy a+BE A
o, ferg,a<lp

where Ap, Ay denote the subsets of A defined in §1.
Thus for a K-invariant polynomial f& S(£*)¥, if we have

fO) = 2 Capwom A Aoy,
al JEXTN akEAp
al< ...<ak

where ¢,,..,,€C, then

fe@) = 2 CapaBaAr Ao,

al PR akEAp
al< ...<a’k
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That is, f(x(6)) is transferred to f(/c(é)) through the substitution w, by &,.

With these preparations, we shall prove the theorem, making use of Theorem
5.1. We notice first that the symbol class of an invariant elliptic complex is
associated to the K-structure. In fact, through the identification §, with its
dual §¥, the symbol map for £, at the origin

ot Vi Vit
satisfies
okt = katk™ for ke K

by the invariance of the differential operator. On the other hand, the symbol
sequence
ot o
0=V —V'— > V! =0
is exact for £+0 in p, from the ellipticity, this sequence represents an element
a(V¥)e Kk(P,). We see easily that the symbol class of the invariant elliptic
complex

0 — C=(CIP) — e C=(CPF) — 0
is the image of o(V*) by
ap: Ki(h) = Kx(Pxp,) = K(TX)

defined at the beginning of this section. In case of .X| it is quite similar to see
so. Next, the maximal torus H of K has no non-zero fixed vector in p, and §,.
In fact, if X, or §,, and A X=X for every hc H, then X is contained in the
centralizer of the Cartan subalgebra §. Hence X &0, which implies X=0.
Therefore the conditions of Theorem 5.1 are satisfied in our case.

Now the assumption being as in the theorem, the characteristic classes

l
SY(—1)ich Vi SI(—1y ch V*
t=0 =0
p*(e) ’ p*(e)
coincide for the oriented manifolds X, X since p*(e)=p*(e) as noticed before.
Denote this characteristic class by ve H(Q) and through the extension of the

coefficient from @ to C, consider v as an element of S(f*)X=~H#(C). Then
we have

in H¥(Q)

o(eP) = [ €H*(+ X, C)
o(P) = [v((V) e H*(X, C),

where in the left-hand sides v is considered as in H¥(C), in the right-hand
sides in S(f*)%. On the other hand, though the Index class J is, by definition,
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in H¥.,(Q), by the reduction of O(2r) to K we get
Jx=p*IEHZQ),

where p is the composition K—SO(2n)—O(2n). Therefore one can use the
similar expression of the Index class by the de Rham cohomology class as
follows. When we denote by i S(f*)® the corresponding element to
I HE(C), we then have

I X) = [{(c(O)]€H*(+X, C)
I(X) = [i(=()]eH*(X, C).

Compare the differential forms o(x(6))-(x(6)) and v(x(d))-i(x(d)). Then,
from the fact noticed before, if

v(k(0)Ur(0) = X Capa@a N Ao,
au"‘;akEAp
a>->ay

where ¢, .., EC, then

o(w(0)- (@) = 2 _, Cormcba\ " Aba, -
1977 %k P
a;>>a

Now we denote by ceC the common coeflicients of the highest terms of the
above differential forms and put

© = 0y A A0y AO_gy A+ AO_y,
&= By A Ny ANG_gy N N _gy

where {a -, a,j=4, and a,>-->a, Then by Theorem 5.1 we have

X V%) = (17| o(e()-i(u(6) = (~17e| o

. rX
X( V%) = (— 1| o) i) = (—1ycf 0.
Therefore we have
X = (] off axcm,
where S @ / 53{& is independent of the elliptic complexes. If we choose the de
Rham cormplexes for C[*, .CI/*, then we have

X(CP*) = E(X)
X(FCV*) = E([‘X) .
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We know by Hopf-Samelson [11] that
E(X) = #| W/ W | >0

where Wy, W g denote the Weyl groups of M, K. Hence we have

| w/SAX:E(I.X)/E(X),
rX x
which implies Theorem 5.2.
The following two corollaries* are also analogous to Hirzebruch [10].

Corollary 1. Let m be the number of the positive non-compact roots**> of
G. Then the sign of the Euler number E(;X) of the compact locally homogeneous
spaces X coincides with (—1)". In particular, notice that if X is symmetric, then

1 .
=_—d X.
m 3 img

Corollary 2. Let T,, T, be two discrete subgroups of G such that
r X=T\X, r,X=T\X are compact manifolds, - CV*, ,CV* the invariant elliptic
complexes over r X, , X associated to the same family of K-modules V* ,---, V.
Denoting by v,, v, the volumes of + X, 1, X with respect to the same invariant volume
element of X, we have

X(rV*) =X (V") -

Proof of Corollaries 1 and 2. 'The notation being as in the proof of Theorem
5.2, let o be the conjugation of g with respect to the real form g, One can
then choose the root vectors of g such that cE,=—FE_, if a is a compact root,
cE,=E_, if a is a non-compact root (Helgason [9]). Therefore we may choose
a base of p, consisting of the vectors such as

Xo=V—-1(E.+E_,), Y,=E,—E_,
where a runs over compact roots,
Xw: Em+E—w’ Yw: \/jl (Em_E—m)

where a runs over non-compact roots. The base of fj, then consists of

*) As for the proportionality principle for the Euler number, see also S. Bochner, Euler-
Poincaré characteristic for locally homogeneous and complex spaces, Ann. of Math. 51 (1950), 241-
261. This reference was communicated by Prof. M. Ise.

**)  Let (G, K) be a symmetric pair of inner type which is of non-compact type, and At,
Ap the sets of roots determined by the symmetric pair (go, t). An element of At (resp. Ap) is then
said to be a compact (resp. noncompact) root of G.
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X,, Y, where @ runs over compact roots, \/—1X,, \/—1 Y, where a runs
over non-compact roots. Let ¢@,, ¢, be the invariant 1-forms on G dual to
X,, Y, for a= Ay, and denote by the same letters the ones on P=T\G deter-
mined by ¢,, ¢,. We then have

H %/\sb.,,—( 2V —1)" I oaN\o_g,

where w, for € €Ay is as in the proof of Theorem 5.2. We choose an orien-
tation of X such that

g II @uA\ps>0.
Xac Af
Denoting by ¢,, ¢, the invariant 1-forms on P=M dual to X,, Y, or
v =1 X, v/ —1 Y, accordingly whether ¢ is compact or non-compact, the
orientation of X should then be chosen such as

S I PAda>0.

XaEAp

Now we have

II éw/\‘/}m_ (—1)m( 2\/—1) n (,b Ao ® )

where &, is as before, m the number of the positive non-compact roots of G.
Seeing that
o= II wzNAw_,
ae A;

d= II d Nd_4,
aEA;

r(f,offe)=o,

which implies Corollary 1 from the last formula in the proof of Theorem 5.2.
The invariant volume element of X is unique up to scalar multiplications,

and therefore we may assume that the volume element of X is II @, A¢,.
acAf
P

Hence Corollary 2 is straightforward from the proof of Theorem 5.2.

we have

We shall now apply Theorem 5.2 to the invariant elliptic complex (b)
or (#) constructed in §3. Given an irreducible K-module ¥, whose highest
(resp. lowest) weight A (resp. A+ 2py) satisfies the condition (h) (resp. (#)), we
have the invariant elliptic (b) (resp. (#))-complex on X
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0 — C=(+V,) == C=(V3) — 0
if X is symmetric and the order is admissible,
0—=C(:5) — C=(xW3) — 0

otherwise.
As for the index of this elliptic complex, we have

Theorem 5.3. Let X(:CV¥) be the index of the (b) (resp. (#))-complex on - X.
If A\pE A is singular with respect to g, then '

X VE) =0.
If \4pE A is regular with respect to g, then

I (M p, a)
X(pq/f) == CI‘ !;EA+
I (p, @)

e=ATt

( I (M p, a))

resp. (—1)%cr ae:ﬁ )

oAt

where

_BeX) _ EX)
EX) | WulWl

Cr

and s is the number of elements of the set Af.
Proof. For we W)y, we see easily that
II (A p, w'a)=(—1)"* II (A+p, @).
a=a" @ept

From this fact together with H. Weyl’s dimension formula, Theorem 5.3 is
clear in view of Theorems 4.2 and 5.2.

6. Some remarks on Schmid’s results

In Theorem 3.1 we have constructed an elliptic complex associated to a
homogeneous vector bundle over a symmetric space of inner type. This elliptic
complex is determined by an admissible lexicographical order of the root system
(Definition 3, §3). But the invariant first order differential operator 9)° is
defined for an arbitrary lexicographical order in §3 and it is elliptic under the
condition in Definition 1 in §2. The works of W. Schmid [16], [17] are greatly
indebted to the ellipticity of this operator 9" in (#)-case, and he proved- the
ellipticity of 9° under a condition stronger than our condition (#). Therefore,
most of his results are improved and we shall here illustrate it.
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We shall first recall some of his results in [16], [17]. Let G be a non-
compact connected semi-simple Lie group with a compact Cartan subgroup H,
which will be fixed once and for all. We fix a maximal compact subgroup
K containing H. We denote by g, £, §, the Lie algebras of G, K, H, and by
g, £, b their complexifications. Consider the root system A of g with respect
to ) and fix an arbitrary order on A from now on. One can then endow the
manifold D=G/H with a G-invariant complex structure such that the holomor-
phic tangent space at the origin eH corresponds tomZAL g”, where A" denotes

the set of positive roots, g* the root vector space for ¢ = A" as before. Denote
by Af the set of positive compact roots, by s the number of elements of Ayf.
Then the complex manifold D is (s41)-complete in the sense of Andreotti-
Grauert ([17], Theorem 1).

Asin§1, let A be the character group of H identified with a lattice in the dual
space of hp=+/—11,. For A& A, we denote by L, the associated homogeneous
line bundle on D, which has a structure of a holomorphic line bundle. If we
denote by H%(D, L,) the g-th cohomology group with coefficients in the sheaf of
germs of holomorphic sections of L,, then H?(D, L,) is a G-module with respect
to the left translations. Under these circumstances, he obtained

Theorem 6.1 (Schmid [16], Theorem 6.1). There exists a positive number
b>0 such that the following holds: if (A, a)<<—b for every a < Af, then

iy HYD, L,)=0 for every q=s, and H*(D, L)) is an infinite dimensional
Fréchet space on which G acts continuously. Moreover every vector in H°(D, L))
is a differentiable vector for the action of G.

ii) There exist closed K-invariant subspaces I, (1=0, 1, 2,---) of H¥(D, L,)
such that

cH,c-cH.cH,=HD, L)),

each i, is of finite codimension in H*(D, L), and X.9,.,C K, for every X g,
where X. 9., denotes the image the infinitesimal action of X to the vectors in
;. Moreover, for pe A dominant with respect to K, the irreducible K-modules
with highest weight w occurs in the finite dimensional K-module H,| 9., with
multiplicity

(— 1)2;&(- 1)"Q,(z+pr—w(p+p1)) .

Here for ve A, Q,(v) denotes the number of distinct ways in which v can be
expressed precisely as a sum of positive non-compact roots, and Wy the Weyl group
of K,

ReMARK 1. According to his proof in [16], the number 4>0 in Theorem
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6.1 must be chosen larger than the number ¢* in the condition () of Definition
1,§2.

We now consider the symmetric space (of inner type) X=G/K and the
irreducible K-module V, with Jowest weight A+2py. If A satisfies the con-
dition (#), in §3 we obtain the invariant differential operator

9°: C=(Vh) = C=(Vy),

which is elliptic by Lemma 3.1 whether the order is admissible or not. Here
the ellipticity means that for every non-zero cotangent vector of X, the symbol
map is injective. 'This differential operator 9° coincides with Schmid’s operator
D in [16], [17] and we put D=9 hereafter. He showed the ellipticity of 9
by direct computations of estimate under the stronger condition than our con-
dition (#) (see [16], Lemma 7.2). It reads that there exists a positive number
b'>0 such that if (A, a)<—b" for every a= A", then 9 is elliptic. In com-
parison with this, we thus have the following key lemma.

Lemma 6.1. Let ¢t be the number as in Definition 1, §2. If (n, a)<—c*

for every a s Af, then Schmid’s operator
D: C=(CYy) = C=(Vy)
is elliptic.

Now we denote by &, the null space of 9), which is a Fréchet space as a
closed subspace of C~ ({/y) and is a G-module. The assumption being the
same as in Theorem 6.1, H*(D, L,) is topologically isomorphic to &, as G-module
([16], Lemma 7.1). By this isomorphism, the subspace %, in Theorem 6.1

corresponds to the subspace of &y consisting of the sections which vanish to
order [ at the origin eK = X. Therefore, when 9 is elliptic, we see easily that

EO I, = {0}

by the regularity theorem. By Lemma 6.1 and Remark 1 to Theorem 6.1, we
see that 9 is elliptic under the same condition in Theorem 6.1. The fact that
N 9,={0} deduces the next theorem as Schmid worked in [16], §6.
1=0

Theorem 6.2. Under the same condition as in Theorem 6.1, the following holds.

As for the restriction to K of the G-module H*(D, L), the irreducible K-module with
highest weight pe A occurs with finite multiplicity

(=173 3 (A pe—wl(utpr)) -

There exists a non-zero K-invariant, K-irreducible subspace of H*(D, L)) which is
contained in every nom-zero, closed, G-invariant subspace.
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REMARK 2. Schmid’s condition in this theorem is stronger than ours as
stated before Lemma 6.1. Notice that our condition is related only to the
compact positive roots but his to all the positive roots. Thus it is not too much
to say that this is one of the improvements.

Next, we shall refer to the construction of unitary representations of G by
means of the null space of 9. Introduce a G-invariant hermitian metric ( , )
on ¢/,, induced by a K-invariant hermitian inner product on V,, and a G-
invariant volume element dv on X. We denote by 9, the space of sections

s, such that S (s, s)dv<<co. Then fors, s'€9Dy
X
< S (s, $")dv
X

defines an inner product on §,. If 9 is elliptic, then 9, is a Hilbert space
by the regularity theorem. When £, is non-trivial, the G-action on 9, gives a
unitary representation of G.

From now on, we shall particularly consider the generalized Lorentz groups
with compact Cartan subgroups. That is, let G be the identity component of
SO(2n, 1), or its two-fold universal covering group (we assume #>>2). 'The rank
of G and half a dimension of the symmetric space X=G/K (a hyperboloid of one
sheet) are then n. For the root system of g, we know that one can choose the
base {e,, -, e,} of h& such that

1,
2(2n—1)

Ap = {e;, —e;|1<i<n}

Ar = {£(ete;) | 1<i<j<n}.

(e ej) =

With respect to this base the Weyl groups W of g consists of the transformations
e;—E;ex;, where 7 denotes a permutation in {1,--+, n} and §,=41. The Weyl

group Wy of t consists of the elements of I such that 1 &;=1, which shows

i=1

that the number of the cosets of W/W is 2. Moreover it is known that all the
elements of W are generated by the automorphisms of G. By means of these
explicitations, it is easy to see that any order of A is admissible in this case.
Therefore any Schmid’s operator &) is the first term of the (#)-complex in
Theorem 3.1. The following lemma is included implicitely in Lemma 8.2 [16],
but we shall give the proof for the sake of completeness.

Lemma 6.2. Let A& A and p:—; Da. If —(n+p) is regular and
asSA”t

dominant with respect to g, i.e., (A +p, a)<<O for every a =A™, then )\ satisfies
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the condition (§) in Definition 1, §2. In particular, we then have the elliptic
operator 9.

Proof. In view of the above remark it suffices to show the statement for
some fixed order of A. Hence we introduce an order on 9§ so that

AT = {e;, e;+e|1<i<n, 1<k<j<n},
and prove the lemma for this order.

Let x:ﬁ mee;A. Then it holds 2(a, \)/(a, @)'€ Z for every aE Ay,

=1
which implies that either all m; must be integral or all m; must be strictly semi-
integral. Moreover, —(A+p) is regular and dominant if and only if m, <1,
m,<m,—2, my<m,—2,---,m,<m,_,—2. Using the description of the elements
of Af, Aj by e;, one can then easily check that this satisfies the condition

#), ie.,
(Apr+B, -+ By, a)g() or all (,YEAFr
whenever B, ,--+, B, Aj are distinct.

According to the proof of Theorem 8.1 in [16], Schmid showed the
following facts. Let A& A and assume that —(\-p) is regular and dominant
with respect to g. If the differential operator 9 is elliptic, then the action of G .
on the Hilbert space O, determines an irreducible unitary representation which be-
longs to the discrete series, and its character is Oy, in the sense of Harish-Chandra.
Moreover, in the restriction of this representation to the maximal compact
subgroup K, the irreducible K-module with the highest weght p= A, occurs
with multiplicity

23 (=10, (M +pr—w(ntpr) »
wEW K 1=0

where the notation is asin Theorem 6.1. Combining with these results of
Schmid and Lemma 6.2, we have

Theorem 6.3. Let G be the identity component of the generalized Lorentz
group SO(2n, 1), or its two-fold universal covering group, an order on the root
system A fixed. For any N A such that (A+p, a)<O for every asA*, the
Hilbert space 9, constructed above gives an irreducible unitary representation of
G belonging to the discrete series and its character is ®y,,. Moreover as for the
restriction of this representation to the maximal compact subgroup K, we have the
multiplicity formula described above.

Combining with Harish-Chandra’s classification theory of the discrete
series, this improvement of Schmid’s theorem (Theorem 8.1 [16], Theorem 4 [17])
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implies the following result which seems to be rather striking. For peA
which is regular, we choose an order on the root system A so that (u, @)
<0 for every aA*. Put A=pu—p and consider a unitary K-module V',
whose lowest weight is A+2p;. We then obtain the Hilbert space 9, con-
sisting of the square-integrable sections in the null space of the elliptic operator
9 on the hermitian vector bundle €{/,. By Theorem 6.3, 9, then determines an
irreducible unitary representation of G belonging to the discrete series, whose
character is 8,. In view of Theorem 16 in Harish-Chandra [8], we can state:

Corollary. One can realize all the irreducible unitary representations
belonging to the discrete series of the identity component of the generalized Lorentz
group SO(2n, 1) or its two-fold universal covering group by means of the Hilbert
spaces constructed in Theorem 6.3,
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Added in proof. Theorem 6.3 in §6, has been generalized for general
semi-simple Lie groups with compact Cartan subgroups, under a certain
regularity condition for A& A. This is stated as follows. Notation being as in
§6, let = A be a regular character with respect to g and then choose an order
on A such that {¢=A|(u, @)<0} be a positive root system. Put A= u—p and
consider the Schmid’s operator &) in Lemma 6.1 for A and the above order.
There then exists a non-negative comstant ¢ such that the square-integrable null
space D, of D gives an irreducible unitary representation belonging to the discrete
series, whose character is (—1)°0@,, when |(u, a)| >c for every a=A. (Notice
that (—1)°=1 in case of the Lorentz group.)

This makes it possible to realize “most” discrete series representations for
semi-simple Lie groups, in view of Theorem 16 in [8]. 'The above result was
communicated without proof in the letter from Prof. Schmid, and the author
has proved it independently. The author’s proof is carried out through the
method of alternating sum developed by M.S. Narasimhan and K. Okamoto
(Ann. of Math. 91 (1970), 486-511). Moreover, this method allows us to realize
the discrete series in another way, i.e. on certain eigenspaces of the Casimir
operator over the symmetric space.





