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Introduction

The main purpose of this paper is to construct elliptic complexes on
symmetric spaces of inner type, which are very analogous to Dolbeault complexes.
When a symmetric space of the above type has a homogeneous vector bundle

satisfying a certain condition, we can canonically associate to it an elliptic
complex with length of half a dimension of the space, whose first term coincides
with the given vector bundle (Theorem 3.1). In particular, if the symmetric
space has an invariant complex structure, one can see that the elliptic complex
associated in such a way is no other than the Dolbeault complex for the given

holomorphic vector bundle.

In more detail, let X=G/K be a symmetric space of inner type, i.e., (G, K)
is a symmetric pair and rank G=rank K. To an irreducible X-module V,
there is the homogeneous vector bundle C[S over ^associated. When we denote

by £P the complex cotangent bundle over X, we define an invariant first order
differential operator

as the covariant differentiation induced from the invariant connection determined
by the Cartan decomposition of the Lie algebra of G with respect to (G, K).
Here C°°( ) denotes the space of infinitely differentiable sections of a vector
bundle. It is known that this operator extends uniquely to a differential

operator

such that Dq(sφ)=DQs/\φ+sdφ for JGΞC00^), φ^C°°(f\9S). For a lexico-
graphical order of the root system of the complexification of the Lie algebra of G,

we choose a homogeneous vector bundle CUQCLCV® /\93? for every #>1,
satisfying the following property. First it holds
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putting cVq

differential operators

=C[;9 we then obtain invariant first order

S)q

by the quotient of DQ for every

Then the resulting sequence

0 0

is an elliptic complex over X under a certain condition on the ^-module V

(Definition 1, §2), when a lexicographical order of the root system is chosen

appropriately ("admissible" in Definition 3, §3). Here the length of the complex

s n=

The arguments in §2 are devoted to the preparations for determining cϋg

where the generalized Borel-Weil theorem proved by Bott plays a fundamental

role, and in §3 we construct the above elliptic complexes (Theorem 3.1). Even

if X is not symmetric or a lexicographical order of the root system is not ad-
missible, we obtain an elliptic complex consisting of two homogeneous vector

bundles determined by an irreducible ^-module, which is similar to the elliptic
complex over a symmetric space described as above. Here we consider such

a homogeneous space X=G]K that G is a connected real semi-simple Lie
group, K a connected compact subgroup and rank G=rank K. In fact, the

indices of these elliptic complexes are calculated in quite the same way (§§4, 5).
Therefore we do not assume that the homogeneous space X is symmetric till §5

except in §3.
In §4, the homogeneous indices of the elliptic complexes constructed in §3

are calculated in case G is compact by means of Bott's theorem in [5] (Theorem

4.2). This result is very analogous to the Borel-Weil-Bott theorem for a compact

kahlerian homogeneous space. In fact, the homogeneous index of our elliptic

complex associated to an irreducible ^-module is equal to the element de-
termined by one irreducible G-module in the character ring of G. In §5,

we shall first generalize Hirzebruch's proportionality principle to the case of
general elliptic complexes on a compact locally homogeneous space (Theorem

5.2) and then calculate the indices of the elliptic complexes constructed in §3
over such a space (Theorem 5.3). We use the index theorem of Atiy ah- Singer
[1] for this purpose. If the theory of automorphic functions on a real symmetric

space of inner type would be meaningful, the results in §5 might give some

indications to it.
Now let X=G/K be a symmetric space of inner type again, Fλ the irre-

ducible jSC-module with lowest weight λ+2p{ where p{ is half a sum of positive
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compact roots under some order of the root system. W. Schmid considered in
[16], [17] an invariant first order differential operator

where ^ΪΛ is the associated homogeneous vector bundle to Fλ,
 c(?\ determined by

Cΐ/x through the above order of the root system. He proved the ellipticity of this
operator 3) under certain regularity conditions, which we shall show in §§2, 3
under the weaker condition than his. The differential operator 3) is equal
to the operator 3T of the first term in our elliptic complex when the order is
admissible. As a matter of fact, this work is stimulated by his in this sense.
The ellipticity of 3) under the weaker condition improves most of his results.
We shall illustrate it in §6. Especially, the following result seems to be some-
what striking. Introducing an invariant volume element on X, one can consider
square-integrable sections of ^Vλ. We denote by φλ the linear space consisting

of the square-integrable sections of C[Sλ annihilated by 3). When 3) is elliptic,
ξ>λ has a structure of Hubert space, which gives a unitary representation of

G. When the group G is assumed to be a type of the generalized Lorentz
groups with a compact Cartan subgroup, it follows from Schmid's argument in
[16] and our estimate for the ellipticity of 3) that all the unitary representations

of the discrete series of G are exhibited by these ξ>λ where λ runs over an
appropriate domain (Theorem 6.3 and its Corollary).

In concluding the introduction, it is a pleasant duty for the author to ex-

press his gratitude to Professors S. Murakami and M. Takeuchi for helpful

discussions with them. Especially, an arrangement of §2 and the proof of
Lemma 3.2 are indebted to Prof. M. Takeuchi. The author also thanks to

Prof. M. Ise who communicated the reference related to §5, and to Prof.

W. Schmid who kindly pointed out an oversight in §3 in the first manu-

script.

1. Preliminaries and notation

Let g0 be a real semi-simple Lie algebra, I0 a compactly imbedded

subalgebra of g0, i.e., ί0 generates a compact subgroup in the adjoint group of g0.
We assume, throughout this paper, that rank g0=rank I0 and keep fixed a Cartan
subalgebra §0 of g0 contained in Ϊ0. Denote by B the killing form of g0. Then

the restriction of B to the subalgebra I0 is a negative-definite invariant bilinear
form on f 0 (Helgason [9]). Therefore we have a direct sum decomposition

[Ϊ0,

where £>0 is the orthogonal complement of f 0 in g0 with respect to B. We notice
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that the restriction of B to p0 is non-degenerate and Ϊ0-invariant, hence we shall

often identify £0 with its dual space pcf by B.
Denote the complexifications of g0, Ϊ0, £)0 and p0 by g, I, £) and p respectively.

Through the adjoint action of ϊi), we have a root space decomposition

where Δ denotes the root system of g for f}, g* the one-dimensional eigenspace for

a root α^Δ. Since the Lie algebra t) is also a Cartan subalgebra of ϊ and the

subspace p is stable under the action of §, the root vector space g* is contained

either in ϊ or in £. Hence we have

Σ

P = Σ 9β

/9eΔp

and a disjoint union

Δ = Δf U ΔP ,

where we put

Δf =

We now consider a compact connected Lie group K whose Lie algebra is
Ϊ0. Let H be the Cartan subgroup of K corresponding to the Cartan subalgebra

f)0, Λ the character group of the toral group H. Then Λ is identified with
a lattice in §Λ> the dual space of §Λ=^/IΓΐ ΐ)0. One can regard the root

system Δ as a subset in Λ. If we denote by σ the conjugation of g with
respect to a real form g0, then for every root vector space g* we have

because a has imaginary values on the real part ί)0. We fix, once and for all, a

lexicographical order on the vector space ϊjj and denote by Δ+, Δjf", Δ* the
subsets consisting of the positive roots of Δ, Δf, Δp with respect to this order.
As usual, when we refer to the highest or the lowest weight of a g (or f)-

module, it means to be the highest or the lowest element with respect to the

above order on f)^ among the set of the weights of the representation. The

Killing form B induces a positive-definite inner product ( , ) on $£ and we

shall call λeΛ singular if (λ, α)=0 for some αeΔ (resp. Δf), regular if (λ, α)
Φθ for all αeΔ (resp. Δf), dominant if (λ, α)>0 for all αeΔ+ (resp. Δf

+),
with respect to g (resp. f). It is well known that XeΛ is the highest weight

of some representation if and only if λ is dominant. We choose Borel sub-

algebras b, b' of the complex Lie algebras g, ϊ such as
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Σ β"

' = 5θ Σ

We shall now recall Bott's generalized Borel-Weil theorem for compact Lie

groups. Let Kc be the complexification of the compact Lie group K, B' the

Borel subgroup of Kc whose Lie algebra is b'. Then the homogeneous space

S=K/H is diffeomorphic to the complex manifold KC/B'. We shall hereafter

fix the choice of a complex structure on S with this identification. Further note

that dimc S is equal to the number of elements of the set Δf

+, and put s=dimc S.

For a character λeΛ of H, λ can be extended uniquely to the holomorphic

character of #', which is denoted by the same letter λ. If we denote by Lλ a
homogeneous line boundle over S=KC/B' associated to λ, then Lλ is a holo-

morphic line bundle on which Kc acts as an automorphism group. Hence
the cohomology group H*(S9 Lλ), with coefficients in the sheaf of germs of

holomorphic sections of Lλ, has a structure of a ^Γc-module. We denote by

Wκ the Weyl group of K, by n(w) the index of w<=WKy i.e., the number of

elements of the set {αeΔf | wa<0}, and put

Pi = \ Σ a .
2.

We then know the following Borel-Weil theorem proved by Bott.

Theorem 1.1 (Bott [4]). For a character XeΛ, let Lλ be the associate

homogeneous line bundle over S. As for the Kc-module H*(S, Lλ), the following
holds. If \-\-pi is singular, then

H*(S, Lλ) = 0 for every q .

7/λ-|-pf is regular, then there exists the unique element w^. Wκsuch that w(λ+Pι) is

dominant y and we have

Hq(S, Lλ) = 0 for every q^n(w) .

For q=n(w), Hnσv\S, Lλ) is an irreducible Kc -module with highest weight
w(\-\-pι)— Pf. Here the words "singular, regular and dominant" mean so with

respect to f .

REMARK. This theorem gives an explicit construction of all irreducible
X^-modules. For example, the irreducible ^c-module with highest weight

λ is given by H°(S, Lλ), and the one with lowest weight μ is given by HS(S, Lμ-2pl)

where ί=dimc*S.
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2. Exact sequences of homogeneous vector bundles and their
cohomology groups

In this section, we shall treat certain sequences of homogeneous vector

bundles over the flag manifold S=KC/B' and their cohomology groups. These

arguments prepare a decomposition law and exact sequences of Kc (or K)-
modules, which will be indispensable for the construction of elliptic complexes.

We retain the situation and notation introduced in §1.

Let p be the X^-module defined in § 1. We denote by P the homogeneous

vector bundle over S associated to the B'-module p induced by the restriction
of Kc to B'. Then P is a holomorphically trivial bundle. In fact, the homo-

geneous vector bundle P is, by definition, the quotient space of Kc X p by the

equivalence relation:

(kb, X)~(k, bX) for k^Kc, b^Bf, ^<Ξp,

where X\-^bX is the action of b^B' on X^$ with respect to the B '-module
structure of p. We shall denote by KCX B'$ this expression of P as a quotient

space. Then the map kB'\-*(k, k~lX) of S to KCXB'$ is well-defined for a

fixed X^fy and is a holomorphic section of P' which vanishes nowhere if ^ΓΦO.
Denote by sx^H°(Sy P) this holomorphic section determined by X^$. Then
the map X\-+sx gives a ^c-module isomorphism

ϊ « H°(S, P)

and a trivialization of P as a holomorphic vector bundle. When we put p_ =

p Π b, where b is a Borel subalgebra of g defined in § 1, p_ is a P'-submodule of p.

Define p+=p/p_ as the quotient β'-module. Denoting by n the number of
elements of the set Δ*, we then see

dimc p_ = dimc p+ = n .

We denote by πq a canonical projection Λ^^Λ^p+ of the #-th exterior

product of p onto that of }>+, by n* the kernel of πq (n°={0}, n1—p_). We

then have an exact sequence of B '-modules,

Hence, denoting by P+, Nq the homogeneous vector bundles over S associated

to p+, π9, we have an exact sequence as ^c-homogeneous vector bundles over S,

Next we define a vector bundle map
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αf: /\9P-+ /\g+1P for £<GΞp

as follows. We express /\9Py /\g+lP as the quotient spaces KcXB'/\g\),
KcXB'/\9+1$ respectively. Consider the map

αf : Kcx Λ gp -» Kcx Λg+1$ for

defined by αf((£, ^))=(&, ^ft'1?)^), where 6(k~lξ) is the exterior multipli-
cation on Λ£ by k~lξ^$. Then αf clearly determines a well-defined map αf :

KcXB'/\9)p-+KcXBf/\9+1)i>9 and consequently a vector bundle map αf: /\gP

Then we have

Lemma 2.1. 7/ ξ φO m p, ί/^w ίλ* sequence

w exact, where 1 denotes the trivial line bundle with fibre C.

The lemma is clear from the property of exterior multiplications and the

fact that Λ qP is holomorphically trivial.

We note that al(N9)dNg+1 for every gcΞp, where Nq, N9+1 are regarded

as the subbundles in Λ 9P, Λ 9+lP. In fact, the canonical projection τrg+l : Λ *+lP

-+/\9+1P+ is given by π'+1((k, X))=(k, π9+1X)(ΞKcX B'Λ«+1$+ for (k, X)

<=KcXB'/\9+1$, making use of the projection πg+1: Λ g+1$^ Λ *+1ϊ>+ defined
before. Hence, if (k, X)<=KCX Bm

g, then

*<+1oal((k, X)) = (ft, 0) ,

since 7r
9+l°ag

ξ((k,X))=(k,ε(πl(k-1ξ))π9X) and ^J5T=0 for ^Γeπ^. Thus we

have

Here we put β\ — a\ | Λ^^, the restriction of a\ to the subbundle N*. We clearly

have

/9f+1°/3f = 0 .

Moreover, one can therefore define the vector bundle map

7f: Λ?P+- Λί+1P+

as the quotient map of αf by /3f, and we clearly have

-yf »oγf = 0 .

Thus we obtain the following commutative diagram of the homogeneous vector
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bundles over S for

0
t

\np+
t

Λ"P
t

Nn

t
0

.-» 0
t

_^Λ.-Hp_.

ί

-> ./V"+1 ->•
ί
0

0
ί

— > A 2nP
t

•— > JV2n

ί
0

'-*0

-*0

0 0
t t γ\ -)

t ΐ α1 a
0 -> 1 ->P —I*...-!̂  Λ»p -^Λn+1P->•••->Λ2WP^ 0 ( I )

j-jr-^i...^
t
0

We already know the exactness of the column short sequences and the row

af-sequence if ^Φθ in p (Lemma 2.1). Further we have

Proposition 2.1. Identify $0 canonίcally with the real subspace of its

complexification p. // f φO in p0, then in the above diagram (I) the βf-
sequence and the γf-sequence are both exact.

Proof. First observe the following fact.

Lemma 2.2. Assume that the af-sequence is exact. Then the βf-sequence

is exact if and only if the ^-sequence is exact.

Proof. For a vector bundle E over S, we denote by Es the fibre of E over

s e S. Fix s e S and let 5ί5, *β5, $βί" be the complexes consisting of the sequences

of vector spaces

0 - C -> P5 ->--> (Λ2MP)5 - 0,

0 - C - (P+). — --> (Λ2wP+)5 -> 0 ,

respectively. We then have a short exact sequence

0 - Ks - φs -> W - 0

of the three complexes in view of the diagram (I). By the assumption, we see

that the cohomology group of the complex ?$s vanishes. Considering the

cohomology exact sequence associated to the above short exact sequence, we see

that #''(3fc,)=0 if and only if H'-\φϊ)=Q. This implies Lemma 2.2.

We shall return to the proof of Proposition 2.1. Take x^N9+l such that

β^+1(x)=0 for a fixed ξ Φθ in £0. By the exactness of the αf-sequence, there

exist X £ Ξ / \ « $ y k<=Kc such that x=(k, ε(k~lξ)X)^KcχBm
9+1=N«+1 where

l. It suffices to show that there exists X0^ng such that
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In fact, if we take (k, X0)^Kcx Bm«=N9

y then β\((k, X0))=x, which will

imply the exactness of the /:?* -sequence.

In the first place, suppose k^K, the compact form of Kc. We consider
the next direct decomposition as an //-module

where q* is the subspace ^ gβlΛ Λg^ of Λ9P spanned by the q-ύi

exterior products of the root vectors for the roots belonging to Δ*. We note

that q* is isomorphic to Λg$+ as //-modules. In particular for 5=!, we have

where q1— 2 Qβ ^ we denote by σ the conjugation of p with respect
fetf

to the real form p0, then we have

σp_ = q1 ,

since σgβ— g~β as noticed in §1. We decompose ξ^$ according to the above

decomposition and put ξ=ξ_-\-ξ+ where f _ep_,f+eq 1. If ?ep0> then σξ=ξ\
hence we have σ?_— ξ+. Thus f Φθ for ξ<^$Q if and only if £±ΦO. Since p0

is a ^-module, we have

fork^K

when £ΦO in p0. The decomposition of Jf e Λ^P is also denoted by

x = x_+x+

where X_<=n«, X+<=c\«. Then we have

Suppose 6(k-lξ)XGUg+1. Then it holds that 6((k-^)+)X+&ng+1 since

On the other hand, we have 8((k~lξ)+)X+(Ξqg+\ which implies ε((k~lξ)+)X+

=Q. Therefore there exists Fe Λ*"1^ such that X+=8((k~lξ)+)Y if f Φθ in

p0. Put ^0=^Γ_— 8((k-lξ)_)Y<=n«. We then have £(A-1f)J5
Thus the assertion has been shown for k^K.

For k^Kc, we put k=k'b where ^'e^ and *e£'. If ̂

then 8(k'-lξ)bX<=ng+l since π^+1 is a ^'-module. Hence there exists Y0^n"

such that 8(k'-lξ)Y0=8(k'-lξ)bX. If we put X^b^Y,, then X0eπ^ and
8(k~lξ)XQ=8(k~1ξ)X. This shows the assertion in general. Thus one can



126 R. HOTTA

see the exactness of the βf-sequence for £ΦO in p0, which implies Proposi-
tion 2.1 in view of Lemma 2.2.

Proposition 2.2. Let

sequence of holomorphίc vector bundles Egy <?=0, 1 , , m o^^r α complex
manifold X of dimension s. Then the following holds.

i) If H{(X, Eq)=Q for any />0 and every q, then the induced sequence

0 - H°(X, E0) — — #»(*, £w) - 0

ii) If H\Xy Eg)=0 for any i<s and every q, then the induced sequence

. TJSf v E1 \ . TJSf V 37 \ ^ Π
—> ti ^-A, J-Ό) —^ * —^ rl \A-> -β9 n) —^ U

is also exact.

Proof. The fact i) is rather natural in the view-point of homological
algebra. Here we shall show ii). Note that the exactness of the sequence of
vector bundles implies by the induction on q that the map φq: Eg^E9+l in
the given sequence is of constant rank for every q. Therefore one can consider

the kernel of φq (—the image of φg~l) as a holomorphic vector subbundle of
Eq, which is denoted by Ker φq. We intend to show that the sequence

TJSf V 17 \ ' * Tj sf V 37 \ '* TJSf v 37 \Γί ^-Λ, £Lq_l) > Πί \-Λ., fLgJ > f± ^^L, £Lg+ί)

is exact when H*~\X, Ker95^+2)=0. Consider the following three exact

sequences

0 -> Ker φq~l > E9_l > Ker φq -> 0 ^ '

0 -> Ker φq -^—+ Eg —> Ker φ«+1 -> 0 ^ 2 ^

0 -> Ker φ*+l -?—+ Eg+1 -—> Ker φ«+2 -> 0 ^ 3 ^ '

From (1) and (2), we have a commutative diagram

HS(X, Eg^) ^̂  HS(X, Ker φ*}

HS(X,
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where yi"1 is surjective, which implies that

the image of ^|~1=the image of i$.

From (2) and (3), we have a commutative diagram

H'(X, Eg)-^H

On the other hand, in view of the cohomology exact sequence induced from

(3), ί|+1 is injective if H-l(X, Ker^^+2)-0. This implies

the kernel of 9^= the kernel of ;|,

which shows the assertion since

the kernel of j| =the image of i J

by (2). In order to prove the proposition, it remains to deduce the vanishing

of the cohomology groups of Ker 9?* from that of E*. For q sufficiently large,

for example q>m, we have Ker φg=Q. Suppose H{(X, Ker φ9+l)=Q for

i<s—l. Then H*(X, Ker φg)= 0 for i<s from the cohomology exact sequence
related to (3) and the assumption. Therefore, by the induction on q, we have

H*(X, Ker φg) = 0 for i<s and every q .

This implies Proposition 2.2.

Let a be a J£ c-module and consider α as a B '-module by the restriction.

Then we know that the associated homogeneous vector bundle A=KcxB'd over

S is holomorphically trivial and H°(S, A)^a as X^-modules. Suppose that
there is given another homogeneous vector bundle E over S. In general, the

cup product with respect to coefficients in sheaves

H'(S, E)®H\S, A) -> H'(S, E®A)

gives a ^c-module homomorphism. In our case this homomorphism becomes

to be a J^c-module isomorphism because of the triviality of A. Thus we have

a Kc -module isomorphism

H'(S, E®A) ^ H'(S, E)®a .

This isomorphism is unique up to identifications of H°(S, A) with α.

REMARK. Fix an identification $^H°(Sy P) as defined in the beginning

of this section. Then the identification /\g$^H°(S, /\qP) is canonically

induced. Defining αf for £ep as before, we see easily that for a homogeneous
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vector bundle E, the diagram

H'(S,

is commutative, where the column isomorphisms are as above.

Now we take a character λeΛ of the maximal torus H of K, and consider
the homogeneous line bundle Lλ over 5 associated to λeΛ as in §1. By
tensoring of Lλ to the diagram (I), we obtain the following commutative diagram

0 0
1 I

I I ~*

I I I

i i i
0

I I I
0 -^£χ® ΛΓ"+1-»Lλ® Λ "+1P -» 0

f I

i i
0 0

As for the cohomology groups of the vector bundles in (Iλ), we have

Proposition 2.3. Suppose fφO in p0. Then the following holds.
i) // H{(S, Lλ)=0 and Hl(S, Lλ<g>7V9)=0 for any i>0 αwrf eφery

ίw ίAe commutative diagram

0 0
1 I

0 ^ #°(S,Lλ) - H°(S,LJ -0
1 I I

0-*H°(S, L^N1)- H\S,L^®P) -» H\S, L^®P+) -0
I I I (ΠJ),

i i i
4 I I
i i 0

all the column and row sequences are exact.
ii) If Hl(S, Lλ®Λ?P+)=0 for any i<s and every q, then in the com-

mutative diagram
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0 o
1 4

0 -> Hs(S,Lλ) - H*(S,LJ -0
4 I 4

S, Lλ®Λr')-> H°(S,Lλ®P) -> H*(S, Lλ®P+) -* 0
1 4 I (Πl),

i i i
^#S(S, Lλ® Λ"P) -> HS(S, Lλ® Λ"P+H 0

I 4

all the column and row sequences are exact, where s=dimc S.

Proof. As for i), the assumption implies //'(S, Lλ® /\^P)^Hi(S, Lλ®
/\gP+) for any />0 in view of the cohomology exact sequence related to the
row short exact sequence of (Iλ). On the other hand, H^S, Lλ(& /\9P)

s£H'(S, Lλ)<g)Λ*£ since P is trivial. Thus Hf(S, Lλ® Λ«P+)=H*(S, Lλ®
AgP)=0 for any />0 and every q. This implies i) by Proposition 2.2, i).
The proof of ii) is quite similar to that of i), using Proposition 2.2, ii).

REMARK. In the diagram (II") and (III), the row three-term sequences
consist of jK^c-module homomorphisms, but the column sequences are not so.

Finally, we shall discuss the vanishing conditions in Proposition 2.3. For
this purpose, we make use of Schmid's method in [16]. Let us introduce the
Grothendieck group R(K) of finite-dimensional ^-modules, which is regarded
as the free abelian group generated by the set of equivalence classes of irreducible
^-modules. Suppose that a homogeneous vector bundle E over S is given. We
shall correspond to E the Euler characteristic

= Σ (-1)'[#'(S, E)](=R(K) ,
, =o

where [V] denotes the element of R(K) corresponding to a ^-module V. If
Q-+E'^E->E"^Q is an exact sequence of homogeneous vector bundles over
S as holomorphic A^-vector bundles, then we have l)C(E) = l)C(Er)+X(Efr) in
R(K). Here we shall show the following proposition partly due to W. Schmid.

Proposition 2.4.
i) Suppose that

for all

whenever βί , , /3reΔ^ are mutually distinct for every r*ζq. Then
Hl(S, Lλ(g)ΛΓ)=0 and H*(S, Lx® /\rP+)=Qfor any />0 and every r^q. More-

over, the irreducible components of the K-module H°(S, Lλ(g> /\9P+) consist of the
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K-modules with highest weights λ+βH ----- \-βq where βλ , , βg^Δ* are mutually

distinct.

ii) (Schmid [16], Lemma 5.5). Suppose that

whenever β19 , /8 f feΔp are mutually distinct. Then H*(S, LX®
9P+)=0 for

any i<s, and the irreducible components of K-module HS(S, Lλ®/\QP+) consist of

the K-modules with lowest weights λ+2pf+y51H ----- \-βq where βl , , βq^Δ$ are

mutually distinct.

Proof. There exists a sequence of holomorphic homogeneous vector

subbundles

0 = JEoC^c — c£/ = Lλ®Ng

such that Lλ.=Ei/Ei_l is the homogeneous line bundle associated to a holo-

morphic character λ t-eΛ of B' because of the solvability of B' . We clearly

have

where βly ,βr^Δ$ are mutually distinct and if r= q, then all the signs in

the above formula are not positive. Consider the exact sequence

0 -*£,_!->£,-* L λ <->0.

Then we have H*(S, Et)^H*(S, Lλ.) for p>0 when H*(S, £^=0 for p>0.

Using Theorem 1.1 of Bott, we therefore have

H*(S, Lλ®JV f f) = 0 for^»0

inductively by the assumption. Moreover this clearly implies the assertion

also in case that r^q. The vanishing of /f'(S, L^®/\rP+) is deduced from

that of H*(S, Lλ(g)7Vr) in view of the cohomology exact sequence.

Next, Lλ® /\9P+ has also an sequence of the subbundles

0 = F0cF,c -c:Fm - Lλ

such that Lλ .= FJ IFJ_1 is the homogeneous line bundle associated to the character

where ̂  , , /3^eΔj are mutually distinct. We then have

<8> Λ ̂ P+) - Σ X(Lλy) in
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By the vanishing condition, we have

+) = [H*(S,

and

*(!*,) =

Thus we have

which shows our assertion i). As for ii), the vanishing is due to Schmid.

The proof of the rest part is similar to that of i).

Related to the conditions in Proposition 2.4, i), we easily see that there

exists a positive number cb>0 such that, for λeΛ, if (λ, a)>c}> for all α^ΔjΓ,

then λ satisfies the vanishing conditions in i) for all q. Similarly, there

exists a positive number £*>0 such that, for λeΛ, if (λ, #)< — e* for all

j!", then λ satisfies the vanishing conditions in ii) for all q.

DEFINITION 1. We shall say that λeΛ satisfies the condition (\>) (resp.
(#)), if λ satisfies the vanishing conditions in Proposition 2.4, i) (resp. ii))

for all q. Choose the numbers £b, c* as above. Then we may say that if (X, α)
>c* (resp. if (λ, ά)<— c*) for all αreΔjί", then λ satisfies the condition (|?)

(resp. (#)).

3. Construction of elliptic complexes

This section will be devoted to the construction of elliptic complexes. As

for the notion of differential operators on vector bundles and their symbols, we

refer the reader to Palais [15], Chapt. IV.
Let G be a connected real semi-simple Lie group with a compact Cartan

subgroup. We denote by cj0 the Lie algebra corresponding to G. We shall

consider a compactly imbedded subalgebra Ϊ0 in g0 whose rank is maximal as in
§1. Then the connected Lie group K generated by I0 is compact and a

maximal torus contained in K is seen to be a Cartan subgroup of G (see [16],

§2). We fix a compact Cartan subgroup H of G contained in K and keep the

other situation and notation as in the previous sections. We notice that, in

the root space decomposition

8 = ΐ)θ ΣΔ8*

in §1, £(gΛ, gβ)φO if and only if a=—β. Hence we choose a root vector
E^Q" for αeΔ such that
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To a complex ^-module F, one can associate the differ entiable homogeneous
vector bundle °^ over X= G/K. We denote by C°°(q/7) the space of the infinitely
differentiable sections of C{? and identify C°°(CV) with the following subspace of
the infinitely differentiable V- valued functions on G;

= {s : G - >V\ s(gk) = k^s(g) for g^ G, kt=K} .

For a vector valued function s on G and ^Γecj, we put

where sh^Xs denotes the operation of X as a left-invariant complex vector field
on G. Define p as in §1 and let CV® /\gS> be the homogeneous vector bundle

associated to a ^-module V® Λ"$ for j=0, 1 , , 2n. Choosing a base {E
of p as before, we shall define a G-invariant differential operator

by Z)*= 2 v(Eβ)®8(E_β), where £(£_β) is the exterior multiplication by

Particularly for #=0, £(E_β) should be a mere tensoring operator by
E_β. In effect, let s be a K® Λ ^-valued function on G such that s(gk)=k~1s(g)
for ^e G, k^K. Then it is easily checked that Dqs has the same property since

Eβ®E_β= Σ kEβ®kE_β fo

Thus ZK is a well-defined differential operator from q^7® Λ9^ to
We note that this definition of Dq is independent of the choice of the base

{Eβ}j9ξΞΔp as far as B(EΛ, Eβ)=SΛt_β for α, /SeΔp. As for the symbol of D*9

we regard p0 as the tangent space at the origin eK^X and identify p0 with its
dual space through the restriction B\$Q of the Killing form. Thus we may
also regard p0 as the cotangent space at the origin. Then for a cotangent

vector fepo> the symbol map

of Dq at the origin appears to be

σ£D )= l®e(f),

where ξ^$0 is considered as an element of p. In fact, if we take a function/on
X such that/(*/£)=0 and ξ=(df)eK, then we have

Dq(fs)=fDqs+

for ίeC°°((^[7(g)/\qg*). On the other hand, we may consider that
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df=

under the identification of 3? with the complex cotangent bundle of X by the
Killing form, since Xf= 0 for X<=ΐ and B(EΛ, Eβ)= SΛt _β. Therefore we
obtain

which implies our assertion.
Now, suppose that there is given an irreducible /^-module Fλ whose highest

weight is λ (here the order on Ij£ is fixed as in §1). By Theorem 1.1, we
then have a ^-module isomorphism

Then it induces the ^-module isomorphism

φq: Vλ® Λ <\> -̂  /ί0(5, Lλ® Λ

for every .̂ We put

for

as a /^-submodule of Fλ®Λ^p. Here we notice that the determination of
the ^-sub module Uq

λ is independent of the choice of the isomorphism
Vλ^H°(S, Lλ) because of the irreducibility of Fλ and Schur's lemma. Next,
we define a ^-module V{ by

VI = F λ ®ΛWλ for?>0,

and V°λ=Vλ for q=Q. Assume that the highest weight λeΛ satisfies the
condition (|?) in Definition 1 in §2. Then, by Propositions 2.3, i) and 2.4, i),
we have a ^-module isomorphism

and, by the diagram (IIJ), a commutative diagram of /<C-modules for

0 0 0

t. ^ ^f* ί" t"

t ί t tr

ί" ~* ~* t'

0 0
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where both the columns and rows are all exact if ξ Φ 0 in p0. As noticed in

Remark in §2, a diagram

H\S, Lλ® Λ'P) (1 — S* H\S, Lλ

H\S9 Lλ)® Λ

is commutative, and therefore the map

in the diagram (IΠJ) is nothing but the exterior multiplication l®£(f) by

fepo We denote by σf the map V^V[+1 in (IΠί). Thus if λ satisfies the
condition (t>), then we have the exact sequence

for ξ Φθ in p0, where w= — dimΛ X.

Alternatively, if we denote by Fλ an irreducible ^-module whose lowest

weight is λ+2pf (pt is as in §1), then we have a ^-module isomorphism

Vλ ^ HS(S, Lλ) .

When λeΛ satisfies the condition (#) in Definition 1, in the same way we

have a commutative diagram of exact sequences for ξ Φθ in £0

0
ί
τλ

tλ

0 -

0

!!

7^ ~* ~*

λί
uϊ
t
0

0
ίf

t"
/σ\

λQ9 t

\
ϋ*
t
0

(ΠIJ),

where

E/J

as ^-modules and the map Vx® f\q^->VK® f\q+l^ is 1®£(£) for ?ep0. This
follows similarly from Propositions 2.3, ii) and 2.4, ii).

DEFINITION 2. Let V\ be an irreducible ^-module whose highest (resp.
lowest) weight is λ (resp. λ+2pf). Assume that λ^Λ satisfies the condition (\>)

(resp. (#)) in Definition 1 in §2. We then obtain a commutative diagram
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(ΠIJO (resp. (Ill*)) consisting of exact sequences for £ΦO in J)0. We shall call
the exact sequence in (IΠJ) (resp.

the canonical (\>) (resp. (%))-sequence associated to Vλ.

Most of our future arguments are valid for both (|?) and (#) cases. Con-
sequently, when we do not refer to (|?) or (#) for simplification, it will be valid
for either case.

The situations being kept as above, we denote by 'UJ, ̂ Vq the homogeneous
vector bundles over X associated to the X-module f/J, V9

K. Regarding *t7J as a

subbundle of cVλ®/\*&, hence C°°(ΊJl) as a subspace of C°°(CVK® /\q&\ we
see that

for every q. In fact, v(Eβ)® 1 transforms the space of U9

λ- valued functions on G
into themselves. On the other hand, the exterior multiplication by an element of
p transforms Uq

λ into U%+1 as noticed in §2. Therefore the above inclusion
relation holds. Choose a splitting injection iq: V(-*V^® /\q$ of the exact
sequence of ^-modules

Denoting by iq and p9 the injection C^cl^^C^q^^A^) induced from
the above splitting and the projection C~(^λ(g)Λ*ίP)^C~(Ci;j), we define a
G-invariant differential operator

3) : C

by <3)q=pq+loDq°iq. Then 3)q is clearly independent of the choice of a splitting i9.

Lemma 3.1. The symbol map of 3)q at the origin eK^X for £ep0 ώ the

map
— Q. JfV > ffQ+l

in the canonical sequence associated to V\.

Proof. The operator ί9 and p9+1 are of order zero as differential operators.

Since σξ(D9)=l®ε(ξ) and the diagram

l ®6(ξ)



136 R. HOTTA

is commutative, our assertion is clear.

REMARK 1. When we look back upon the construction of the differential

operators S)q, these operators depend on the choice of a lexicographical order
of the root system. It does not hold that <Dg+l°<3)9=0 in general, but we shall
see that in case of symmetric spaces it holds if we choose a special order of the

root system.

We recall that the homogeneous space X = GjK is called symmetric (of inner
type) if

in the decomposition of g0

 m § 1 We then have [p, p] c ϊ. For a symmetric pair
(flo> ϊo)> we shall consider the following special order of the root system Δ of g.

DEFINITION 3. We shall call a lexicographical order of Δ admissible
with respect to a symmetric pair (g0, Ϊ0) of inner type, when

for βl , , βqy T! , , γr in Δ+ and q^r.

The existence of such an order is guaranteed by the following lemma.

Lemma 3.2 (Takeuchi). There exists an admissible lexicographical order
with respect to a symmetric pair of inner type.

Proof. We may assume that g0 is simple without loss of generality. Let ι
be the Cartan involution of a symmetric pair (g0, Ϊ0) of inner type. Then one

can choose a system of simple roots Π={al , , α/} such as the following holds
(Borel-Siebenthal [3], Murakami [14], Theoreme 1). Let mί , , ml be the posi-

/
tive integers such that yi m^i is the highest root in Δ with respect to Π. If we

choose such an appropriate number k as mk= 1 or 2, then we have

i — exp 2π\/ Hi ad Hl ,

where HL<=$R is defied as a^H,)^ — Sίk for ί=l ,••-., /.

We shall now show that the lexicographical order determined by the above
system of simple roots is admissible. Let Eβ be a root vector for a root

/
β— Σ niaί which is positive with respect to the above order. We then have

extending ι to an involution on g complex linearly. Hence it follows that
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nk = 0 mod 2 if

nk = 1 mod 2 if ,

because j— 1 on ϊ, and ι= — l on p. Since 0^/2^2, we see that a positive root
/

β=Σniai is m Δp if and only if nk=l. Therefore, with respect to this

order, if βl,~ yβg are in Δ*, then the coefficient of ak in β^-\ ----- \-βgisq.

This shows Lemma 3.2.

Theorem 3.1. Suppose that X=G/K is a symmetric space (of inner type)

and choose an admissible lexicographical order of the root system with respect to the

symmetric pair. Let Vλ be an irreducible K-module whose highest (resp. lowest)

weight is X (resp. λ+2pf). // λ satisfies the condition (t>) (resp. (#)), then the

sequence constructed above

0 - C~cvλ) i C~(cfi) -̂  - ̂ -> C-q/; - 0

w arc elliptic complex over X whose symbol sequence for ξ^$0 at the origin is

the canonical ([?) (resp. ($))-sequence associated to Fλ. Here n= — dimΛ^.

Proof. We have already shown in Lemma 3.1 that the symbol sequence for
lepo at the origin is the canonical sequence associated to Fλ and it is exact

for ξ Φ 0. Since each 3)q is an invariant differential operator on homogeneous

vector bundles, the sequence in the theorem will be an elliptic complex if we
show that it is a differential complex. Thus it only remains to show that
^+1o^=Q under the conditions of the theorem. For jeC^c^J), we have

Dqs = pg+loD9s+r«+1oDgs

where rq+1 is the projection from C°°(q7λ(g)Λ^+15>) onto C°°(CUJ+1) by fixing
some splitting i*+1: Vq

λ

+l^Vλ® /\g+1$. Since DQ+\C~(^l^))ciC~(^l+2\ we
then have

for ίeC°°(cl^J), which implies

3)*+l°g)

On the other hand, it holds that

Here we see that [Eβί Ey]<=t since [p, p]cϊ by the assumption. Therefore

the differential operator D g+loD9 becomes of order zero. Since pq+2 and iq are
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of order zero, 3)q^°S)q is also of order zero, that is, induced by some vector
bundle map pq: CVI~+CVI+2. Moreover 3)q^°£)q is G-invariant, hence
p^: C{7j— >C(7^2 is induced by a ^-module homomorphism

Thus in order to show that 3)q+l°ίDq=0, it suffices to show that fi*= 0. By

Proposition 2.4, the highest (resp. lowest) weight of an irreducible component

of VI is λ+&+ •••+#, (resp. λ+2pf+/31H ----- \-βg) where ft ,-,£«eΔ+ are

mutually distinct in case ([>) (resp. (#)). Because the order of Δ is admissible, no

irreducible component of Vq

λ is equivalent to any irreducible component of Vq

λ

+2.

Hence there exists no non-zero ^-module homomorphism from V\ into FJ+2,

which implies β*=Q. Thus we complete the proof of Theorem 3.1.

REMARK 2. When X is hermitian symmetric, one can choose an admissible
lexicographical order of the root system such as mk= 1 in the proof of Lemma 3.2.

Under this order, the S'-modules p_, p+ in §2 are moreover ^-modules, and

we have a j^-module decomposition

Considering p+ as the holomorphic tangent space of X at the origin, one can

give a G-invariant complex structure on Xy and our vector bundle ̂ x is endowed

with the structure of a holomorphic vector bundle over X . Then our differential

complex in Theorem 3.1 becomes the so-called Dolbeault complex (3-complex)

associated to the holomorphic vector bundle ^λ in either case (t>) or (#). In

fact, the B '-module p+ is, then, a Jffc-module and therefore we have an iso-

morphism as 7£c-modules

λ® Λ qP+) ^ #'

which gives an isomorphism as ^-modules :

Therefore C[^^C[^λ® /\q$>

+ is regarded as the vector bundle of anti-

holomorphic cotangent vectors of X of type (0, q). Under this circumstance,

it is seen that

and this is exactly the Cauchy-Riemann operator 8.
In case that X—G/K is not symmetric or a lexicographical order is not

admissible, we shall consider the following differential operator between two

hermitian vector bundles. We give Fλ and £ /^-invariant hermitian inner
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products, which make ^χ® Ag3? a homogeneous vector bundle with an invariant

hermitian metric. This induces an invariant hermitian metric on c^J; m

this way consider C^l as a hermitian vector bundle. We put

0 = 1 mod 2

These are hermitian vector bundles over X with the hermitian metrics induced

by those of ci^J, <?— 0, 1 , , rc. Endowing ^Γ with an invariant volume element,

one can define the formal adjoint operator of 3)q\

The symbol map of *SDq for £ep0 at the origin is

where *σf denotes the adjoint of σ\ : Vq

λ -» F£+1 (see Palais [15]). We define

a G-invariant differential operator

by the formula

where fffeC°°(Cl^) and Λ=2Γ— 1 Then the symbol map of J7 for ξ <=& at

the origin σέ(J?): 0 KJ-> 0 .ΓJ (F2=Kλ) is clearly given by
0=0 mod 2 q = l mod 2

It is easy from the exactness of the canonical sequence associated to Vλ to see

that, for £ΦO in p0> <rt(-C) is bijective, which shows that X is an invariant

elliptic operator from WA to WJ

DEFINITION 4. Let Fλ be an irreducible ^-module whose highest (resp.

lowest) weight is λ (resp. λ+2pι). Assume that λeΛ satisfies the condition (t>)
(resp. (if)). We then obtain the elliptic complex

o - c~(q;λ -̂  c-(cι;i -̂ > - - cq^) - o

when JΓ is symmetric and the lexicographical order of the root system is ad-

misssible, or

0 - C~Wί -̂ £ C~ W -> 0
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otherwise. We shall call the above elliptic complex the (t>) (resp. ($))-complex
associated to the homogeneous vector bundle °^λ.

REMARK 3. The invariant operator Z)°: C00(cl7λ)->C00(q^λ®S)) is con-
sidered as an invariant connection on the homogeneous vector bundle OSλ9

under the identification £P with the complex contagent bundle of X. One can
see that an connection Z)° extends uniquely to an differential operator

such that

Dq(sφ) = D°S/\φ + sdφ for

and Dq+1°D9 is an operator of order zero (Bott-Chern [6]). When X is
symmetric, we can see that D9=D9. If we adopt Dq instead of Dg, it may
be possible to construct an differential complex even in case that X is non-

symmetric.

4. The index of elliptic complexes over compact homogeneous

spaces

In this section, we shall chalculate the indices of the elliptic complexes
constructed in §3, making use of Bott's theorem in [5]. We shall review this
theorem for invariant elliptic operators.

Let M be a compact connected Lie group. We denote by R(M) the
Grothendieck ring of M, i.e., the free abelian group generated by the equivalence
classes of finite-dimensional irreducible M-modules with the multiplicative
structure induced by tensor products. For an M-module V, we denote by
[V]^R(M) the element of R(M) determined by V. One can define a symmetric

bilinear form < , >M on R(M) by

<[V], [W]>M = dimc HomM (V, W) ,

for M-modules V, W. If K is another compact connected Lie group and
φ : K-+M is a homomorphism, then by the restriction it induces the canonical
homomorphism

φ*:R(M)-+R(K).

When we denote by S(M] the equivalence classes of irreducible M-modules,
we have R(M)= Σ Zx, where Z is the ring of integers. We define the

X€ΞJ(M)

formal ring R(M)= Π Zx and regard R(M) as a subring of /?(M). Then
X£ΞJ(M)

for a homomorphism φ: K—>M, we define the formal induced representation
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by φ*(y) = Σ <<p*x, yyκx for y(=R(K), where an element in R(M) is

denoted by an infinite sum.

Now, let K be a connected closed subgroup of M, Vq a finite-dimensional

K-module for q= 0, l, ,n. We denote by <:Vg the homogeneous vector

bundle over the compact homogeneous space X=M/K associated to the

^-module V9. For an M-invariant elliptic complex over X

ύf φ1 Φ"-1

0 -> C"(CV°) - > C~(q^) - > ... - » C°°(ci7") -> 0 ,

a vector space

is a finite-dimensional M-module for each ,̂ since JΓ is compact. We then

define the homogeneous index %(CI7*)e/?(M) of this elliptic complex by

9=0

The following theorem for the homogeneous index is due to Bott.

Theorem 4.1 (Bott [5]). Let

0 -> C°°c^0 -> ---- > C°°ct7w -̂  0

fo αw invariant elliptic complex over X=M/K, where c[^° , , CΪ7M are ίAe homo-

geneous vector bundles associated to K-modules F° , , Vn. Define the homo-

geneous symbol σ(CV*)ς=R(K) by σ(Cl7*)= Σ (-l)ff[Γη. // ί#: R(K)-+&(M)
9=0

/V ίAe formal induced homomorphίsm determined by the inclusion i: K-^M, then

the following holds:

a) i* σ(CV*)^R(M)

b) x(cι;*) = /* σ(q;*).

REMARK. In [5], the theorem is stated in case that n=l. The above

generalization is easy in the usual manner of reducing of the problem of index

on an elliptic complex to that on an elliptic operator between two vector bundles.

Now, we assume that a connected compact Lie group M is semi-simple and

a connected closed subgroup K of M is of maximal rank. Fix a Cartan subgroup

H of M in K, and keep the other situation and notation as in §§ 1, 2, 3, substitut-

ing M for G. Given an irreducible ^-module Vλ whose highest (resp. lowest)

weight λ (resp. λ+2pf) satisfies the condition ([?) (resp. (#)), we have an invariant
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elliptic complex called the (|?) (resp. (#))-complex associated to the homogeneous
vector bundle Q λ̂ in Definition 4 in §3. More precisely, if X=M/K is
symmetric and the order is admissible, then we have an invariant elliptic
complex

S? Φλ

0 - C" - > C ~ ; I - , ... _ C~CVΐ -> 0

where n= — dimΛ X, and otherwise, an invariant elliptic operator

under a ^-invariant hermitian inner products on Vλ and p. For the sake of
notational simplification we denote by %(^*)ejR(M) and σ(CVf)^R(K)
the homogeneous index and the homogeneous symbol of the above ([?) (resp.
(#))-complex associated to ̂ 7λ, whether X is symmetric or not.

Lemma 4.1. The homogeneous symbol of the (\>)-complex is

σ(cv*) = Σ (-\γ[JP(St
9=0

and that of the (#)-complex is

= Σ (-1Y[H (S,

Proof. Recall that V*λ^H'(S, Lλ®/\gP+) where ί=0 in (b)-case or
i=j in (ίf)-case. Lemma 4.1 is then clear from the definition of homogeneous
symbols in Theorem 4. 1 .

We consider the inclusion maps

H -^K— τ-vM,
J l

and endow S=KJH and Y=M/H with the complex structures determined
by the fixed order on the root system Δ of M. For a finite-dimensional complex
//-module e, one can associate the holomorphic homogeneous vector bundles
Es, EY on S, Y. Put

"+= Σ 9"

which is //-module, and let TV + be the differ entίable homogeneous vector bundle
over S associated to the //-module π+, which is, here, regarded as the anti-
holomorphic cotangent bundle of S. Then the Dolbeault complex associated to
the holomorphic vector bundle Es is
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9 9
0 -̂  C"(ES) - > C™(ES®N+) - »• ---- > C~(ES®/\*N+) -» 0

and its homogeneous symbol is

^s(e) = Σ (-l)*[e®Λ'n+]e/?(fl) .
ί— 0

Similarly, the homogeneous symbol of the Dolbeault complex associated to
£yis

= ΣX-l)'[e®Λ'(n+ΘP+

We then have

Me) = Σ (-l)
<?=0

By Theorem 4.1, we have

= Σ (-

Therefore by Lemma 4.1 and Proposition 2.4, we have

Lemma 4.2. L^ Iλ fo an irreducible H -module whose character

satisfies the condition ([?) (resp. (#)).

w the (j?) (r^ίp. (^-complex associated to Cί7λ.

With these preparations, we have the following theorem for the homo-

geneous index of (b)- or (#)-comρlex.

Theorem 4.2. Let ^Vf be a (t>) (resp. ($))-complex associated to cl/?

λ,

p= — Σ α. TA^w ίA^ homogeneous index %(C17J) e Λ(M) w ^fo^n fry
2 *eΔ +

following formulae. If λ+p ίi singular zυith respect to M, then in either

case

= 0 .

If λ+p ι!y regular with respect to M, then there exists the unique element w of

the Weyl group of M such that w(\-\-ρ)—ρ is dominant with respect to M.
We then have

)-p] (resp. (-1) *+Λ

where n(w) denotes the number of elements of the set {αeΔ+ 1 wa<0},
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for μ,eΛ the equivalence class of the irreducible M-module whose highest weight is

Proof. By Theorem 4.1,

X

Therefore by Lemma 4.2, we have

%(q7*) = (ioj)t<ry(lj in (b)-case

or

in (fl)-case,

since (i°j)*x=i* oj^x for x<=R(H) when both sides have the meaning. Applying

Theorem 4.1 to the inclusion ιoj: H-+M, it holds

= Σ (-mH'(
9=0

where L% is the holomorphic homogeneous line bundle over Y=M/H associated

to λeΛ. Thus by Theorem l.l*0, Theorem 4.2 is now clear.

5. The index of elliptic complexes over compact locally homo-
geneous spaces proportionality principle

In this section, we shall generalize Hirzebruch's proportionality principle

(see Hirzebruch [10], Ise [12], Griffiths [7]) for elliptic complexes and evaluate

the indices of the ([?)- or (#)-complexes constructed in §3 over compact locally

homogeneous spaces. For this purpose, we make use of a variant of the index

theorem due to Atiyah- Singer [1].
Let K be a compact Lie group, V a fixed real oriented ^-module. We shall

then say that an oriented manifold X has a ^-structure when there exists a

principal /^-bundle P over X such that

as oriented vector bundles. Here PxκV denotes the vector bundle over X

associated to P by the ^-module V, TX the tangent bundle of X. Then we

have a canonical homomorphism

*) The referee pointed out the following matter. Instead of utilizing Theorem 1.1, one
can complete the proof of the theorem straight from the WeyΓs character formula. In fact, by
means of WeyΓs integral formula (see [5], Theorem B), (i°j)*σγ(l\) can be calculated
directly and in view of the character formula, it is seen to coincide with the element of R(M)
stated in Theorem 4.2.
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aP: KK(V) - Kκ(Px V) = K(TX) ,

where Kκ( ) denotes the usual equivariant ^-functor for the compact group

Ky K(TX) the ^-group of TX. For an elliptic complex on X, we shall say

that its symbol class is associated to the K-structure when the symbol class in
K(TX) belongs to the image of ap. Here we have considered symbol classes
as elements of K(TX) through an identification of TX with the cotangent bundle
of X by means of an adequate Riemann metric (see [1]). Now suppose dimΛ X

=2ny n integer, and fix a J^-invariant inner product on the oriented K-
module V. We then have a representation

Denoting by H%(Q\ #*0c2»)(Q) tne rings of characteristic classes of K, SO(2n)
with coefficient field Q of the rational numbers, we have the induced homo-
morphism

For ρ*(e)^H$(Q) where e^H^2n^(Q) denotes the Euler class, one can see that

P*(e) Φ 0

if a maximal torus of K fixes no non-zero vector in V. Let E° ,-•,£* be

complex ^-modules, £Q , , 8l the associated vector bundles over X and

suppose that

o -* c°°(?0 -»...-* c~ει -* o

is an elliptic complex whose symbol class is associated to the ^-structure. De-
noting by chE*^H$(Q) the Chern character of the ^-module E\ one knows

that Σ(-l)'ch£ '<EΞ#£(Q) is then divisible by p*(e)^H$(Q) when p*(*)φO,
ί=0

and we have a characteristic class

According to [1], we shall call the Todd class of TX®C the Index class of X and

denote it by <4(X).
We then know

Theorem 5.1 (Atiyah-Singer [1], Proposition 2.17). Let X be an oriented

compact manifold of dimension 2n with a K-structure, i.e., there exist a principal

K-bundle P over X and a real oriented K-module V such that TX is associated to P

by V. Assume that maximal torus of K has no fixed non-zero vector in V, Let
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EQ , , El be complex K-modules, β° , , 6l the associated vector bundles and sup-

pose

o -̂  c~ε° -»••.-» c~βι -* o
w <z« elliptic complex whose symbol class is associated to the K-structure. Then the

index of this complex is given by

where [ }\X] denotes the evaluation of a cohomology class on the fundamental
cycle of X.

Here we shall recall some fundamental results on the expression of char-

acteristic classes by means of differential forms (see, for example, Kobayashi-
Nomizu [13], Chapt. XII). For a compact Lie group K, let Ϊ0 be its Lie algebra,

S(ΐ$)κ the ring of polynomials on Ϊ0 invariant under the adjoint action of K.

We then have a canonical identification

of S(l$ )κ with the ring of characteristic classes of K with coefficient field R of

the real numbers. Let P be a diίferentiable principal X-bundle over a differ-

entiable manifold X. If we give a connection θ on P, then one can define

the curvature form κ(θ) of θ, which is an exterior differential 2-form on P with

values in the Lie algebra Ϊ0. For /e S(tf)κ , f(κ(θ)) is an exterior differential

form on P, which is moreover closed and projectable to X. Thus we have a de

Rham cohomology class

[f(κ(θ))]^H*(X, R) ,

which is known to be independent of the choice of the connection θ. In

effect, for c^H$(R) we denote by fc<=S(t$)κ the invariant polynomial by the

above identification. Then one knows that

in the cohomology group H*(X, R). This map /^[/(#(0))] is an algebra
homomorphism from S(l$)κ into H*(X, R) called the Weil homomorphism.

We shall use this expression of characteristic classes.

Let G be a non-compact connected semi-simple Lie group with a faithful

representation, K its compact connected subgroup. Assume, as in the previous

sections, that G has a Cartan subgroup contained in K. Let Γ be a discrete

subgroup of G and suppose that Γ acts freely and properly discontinuously on

the homogeneous space X=G/K, and the quotient Γ\G is compact (the
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existence of such a group is guaranteed by Borel [2]). Thus we have a compact
locally homogeneous manifold ΓX= Γ\X> and a principal ^-bundle ΓP=Γ\G
over ΓX. Let F°, , V1 be complex j^-modules, ^V , , cί/v the associated
homogeneous vector bundles over X. For a G-invariant differential operator

we have a differential operator

over ΓX9 where T

cVi is a vector bundle over ΓJ¥", obtained by the quotient of
cVi by Γ. We notice that τ^Vi is also regarded as the associated vector bundle
to a principal jf£-bundle ΓP by the ^-module V*. When a differential complex

o - C" rci° ->•••-» c~Γq7' -> o

over Γ^Γ is given by the above procedure out of G-invariant operators from
C°°(c(7i') into C°°(cl/7ί"+1) for each /, we shall call this complex an invariant differ-
ential complex over ΓX.

We now denote by M the compact Lie group which is dual to the non-
compact semi-simple group G (see Helgason [9]). Then one can consider
K also as a subgroup of M. Thus we get the compact homogeneous space
&=M/K,"so to say '"a dual compact form" corresponding to X. For ^-modules

V* >"', Vl> we denote by cfy° i ffy1 the associated homogeneous vector bundles
over the compact form X. A differential complex

Q -> C°°Φ° ->...-^ C~Φ' -> 0

is then called invariant when each differential operator C°°((Φ'ί')^'C00(ct7/+1)

is M-invariant.
Under these situations, we obtain the following analogy to Hirzebruch's

proportional principle.

Theorem 5.2. Let V° , , V1 be K-modules and suppose that there associate,
as above, two invariant elliptic complexes

..-+C°°(Γcvt^Q overTX

and

0 -* C°°(Φ0) ̂  . -> C~(Φ') -> 0 over X ,

ΓX9 X being as before. Then, as for the indices Xd^ l^*), ^(Φ*) of these elliptic
complexes, we have
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where E(ΓX), E(X) denote the Euler numbers of ΓX, X respectively.

Proof. Let g0, I0 be the Lie algebras of G, K,

the decomposition in §1. Choose a maximal compact subgroup K^>K of G

and denote its Lie algebra by Ϊ0. Then we have a Cartan decomposition

CJo = ϊoθPo >

and we can regard that

where m0 denotes the Lie algebra of M. We easily see that

t>o
and when we put

&= fo

we have

Denoting by i the Cartan involution of the above Cartan decomposition

flo^ϊoΦpoj we define a ^-invariant inner product on p0 by

(X, Y) = -B(X, ιY) for X, YΪΞ$O ,

where B denotes the Killing form of g0. We also define a ^-invariant inner

product on £0 by

(X, Y) = ~B(X, Y) for X,

where B also denotes the Killing form of m0. If we decompose X^$0 as

then the map X^X^X^ V^l ^2 ιs an isometry of p0 onto f>0 as ̂ -modules.
We fix the orientations of p0 and ^0 such that this map is an isomorphism as
oriented ^-modules, which determine the orientations of ΓX and X. Then, for
the two orthogonal representations

p : K -» SO(2n) on p0

and

ό:K-> SO(2n) on £0 ,

we have ρ*(e)=fr*(e) in H£(Q), where /o*, β* are induced by /o, β and e is the
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Euler class in
We shall introduce invariant connections on the principal ^-bundles

ΓP=Γ\G over ΓX and P=M over X as follows. Let

0:g 0-ϊ 0

and
< 0 : m 0 - > f 0

be the projection such that Ker#— p0 and Ker#=£>0. Since θ, & are K-
module homomorphisms, the projections θ, θ give the invariant connections on

ΓP, P respectively. In order to give explicit formulae of the curvature
forms, we extend the above connections to those with complex coefficients,
i.e., both θ and $ extends to the projection g-^ϊ whose kernel is p, where
g, ϊ, p are the complexifications of g0, f0, p0 and g is identified with the com-
plexification of m0. We denote by the same letters θ, $ the connections with
complex coefficients on ΓP, P respectively defined by the above projection.
Choose a base {#,, EΛ} of g such that {Hf} forms a base of the fixed Cartan
subalgebra £) of g contained in f, EΛ a root vector for a root αeΔ, and put

[EΛ9 Eβ] = NΛtβE, if γ =

The dual base of {Hi9 E#} then gives complex valued invariant 1-forms on the
Lie groups G, M. Here we notice that an invariant 1-form on G determines
the 1-form on ΓP=Γ\G. Denote by {ω JΛeΔ, {ώΛ}Λ€ΞΔί the systems of complex
valued 1-forms on ΓP=Γ\G, P=M such hat ωrt, ώΛ are determined by the
dual of E«. Then we see easily from the Cartan structural equation that the
curvature forms /e(0), κ(ό) on ΓP, P are, as ϊ-valued 2-forms,

= Σ

= Σ

where Δp, Δf denote the subsets of Δ defined in §1.
Thus for a ^-invariant polynomial f^S(l*)κ, if we have

f(K(θ))=
«i,
«!<

where έ:Λl...ΛjkeC, then

= Σ
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That is, /(#(#)) is transferred to /(#($)) through the substitution ωrt by ώΛ.
With these preparations, we shall prove the theorem, making use of Theorem

5.1. We notice first that the symbol class of an invariant elliptic complex is
associated to the ^-structure. In fact, through the identification £0 with its
dual φff, the symbol map for £e£0 at the origin

satisfies

by the invariance of the differential operator. On the other hand, the symbol
sequence

is exact for £ Φ 0 in £0 from the ellipticity , this sequence represents an element
σ(V*)^Kκ($0). We see easily that the symbol class of the invariant elliptic
complex

o -> c~Φ° ->...-> c°°Φ' -> o

is the image of σ(V*) by

af. Kκ(h) - KK(P x ft,) * K(T±)

defined at the beginning of this section. In case of ΓX, it is quite similar to see
so. Next, the maximal torus H of K has no non-zero fixed vector in £0 and £0.
In fact, if X^$0 or £0, and hX=X for every h^Hy then X is contained in the
centralizer of the Cartan subalgebra fy. Hence ^Γef), which implies -XΓ=0.
Therefore the conditions of Theorem 5.1 are satisfied in our case.

Now the assumption being as in the theorem, the characteristic classes

Σ (-1)'" ch V Σ (-I)'' ch V
ί=0 -̂ — '

coincide for the oriented manifolds ΓX, X since 'p*(e)=β*(e) as noticed before.
Denote this characteristic class by v^H£(Q) and through the extension of the
coefficient from Q to C, consider v as an element of S(l*)κ^H%(C). Then
we have

, C)

where in the left-hand sides v is considered as in H$(C), in the right-hand
sides in S(t *)κ. On the other hand, though the Index class S is, by definition,
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in #oc2rt)(Q), by the reduction of O(2n) to K we get

where p is the composition K^SO(2ri)^O(2n). Therefore one can use the
similar expression of the Index class by the de Rham cohomology class as
follows. When we denote by i^S(l*)κ the corresponding element to

)y we then have

Compare the differential forms v(/c(θ)) i(/c(θ)) and v(κ(U)) i(κ(d)).. Then,
from the fact noticed before, if

«!>->«*

where cΛl...Λk^C, then

Now we denote by ceC the common coefficients of the highest terms of the
above differential forms and put

llΛ — Λω_Λ l

ώ = ΔβlΛ ΛΔ β n ΛΔ_ Λ Λ Λ ΛΔ- Λl

where {α j , αM}=Δp and α1> >αM. Then by Theorem 5.1 we have

X(ΓCV*) = (-ir\ v(K(θ)) i(K(θ)) =(-l)"c{ ω
J r̂  J Γx

Therefore we have

ω/(Λώ)%(Φ*),
/ JX

where \ ω / \ ώ is independent of the elliptic complexes. If we choose the de
JΓx I Jx

Rham complexes for cp*, r^*) then we have

= E(X)

) = E(ΓX) .
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We know by Hopf-Samelson [11] that

where WM, Wκ denote the Weyl groups of Λf, K. Hence we have

which implies Theorem 5.2.

The following two corollaries'10 are also analogous to Hirzebruch [10].

Corollary 1. Let m be the number of the positive non-compact roots**^ of

G. Then the sign of the Euler number E(ΓX) of the compact locally homogeneous

spaces ΓX coincides with (— l)m. In particular, notice that if X is symmetric, then

m = — diniβ X.
LJ

Corollary 2. Let ΓΊ, Γ2 be two discrete subgroups of G such that

ΓιX=Γ1\Xy ΓzX=Γ2\X are compact manifolds, Γl

c^7*, r2

c^* the invariant elliptic
complexes over ΓlX, ΓzX associated to the same family of K-modules V1 , , V1.

Denoting by v19 v2 the volumes of ΓlX, YXwiih respect to the same invariant volume
element of X, we have

Proof of Corollaries 1 and 2. The notation being as in the proof of Theorem
5.2, let σ be the conjugation of g with respect to the real form g0. One can

then choose the root vectors of g such that σEΛ=—E_Λ if a is a compact root,
σEa=E_Λ if α is a non-compact root (Helgason [9]). Therefore we may choose

a base of p0 consisting of the vectors such as

XΛ = v/^T (EΛ+E_Λ) , YΛ = E«-E_Λ

where a runs over compact roots,

XΛ = EΛ+E_Λ , YΛ = v/^ΐ (EΛ-E_Λ)

where α runs over non-compact roots. The base of f>0 then consists of

*) As for the proportionality principle for the Euler number, see also S. Bochner, Euler-

Poincare characteristic for locally homogeneous and complex spaces, Ann. of Math. 51 (1950), 241-

261. This reference was communicated by Prof. M. Ise.
**) Let (G, K) be a symmetric pair of inner type which is of non-compact type, and Δf,

Δp the sets of roots determined by the symmetric pair (g0» W An element of Δf (resp. Δp) is then

said to be a compact (resp. noncompact) root of G.
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X«> Y<* where a runs over compact roots, \/ — T XΛ> V^ϊ Y# where a runs
over non-compact roots. Let φΛ, ψΛ be the invariant 1-forms on G dual to

XΛ, YΛ for # eΔp, and denote by the same letters the ones on ΓP=Γ\G deter-
mined by φΛ, ψa. We then have

=T)" Π

where α>Λ for αeΔp is as in the proof of Theorem 5.2. We choose an orien-
tation of ΓX such that

Π

Denoting by φΛ, φΛ the invariant 1-forms on P = M dual to XΛ9 YΛ or
Y/IΓy XΛ9 \/ — l YΛ accordingly whether a is compact or non-compact, the

orientation of X should then be chosen such as

ί Π

JXCt

Now we have

Π a

where ωΛ is as before, m the number of the positive non-compact roots of G.

Seeing that

ω = Π
«<ΞΔ

ώ= Π

we have

which implies Corollary 1 from the last formula in the proof of Theorem 5.2.

The invariant volume element of X is unique up to scalar multiplications,
and therefore we may assume that the volume element of X is Π

Hence Corollary 2 is straightforward from the proof of Theorem 5.2.

We shall now apply Theorem 5.2 to the invariant elliptic complex (t>)

or ($) constructed in §3. Given an irreducible ^-module V\ whose highest

(resp. lowest) weight λ (resp. λ+2/θf) satisfies the condition (t>) (resp. (#)), we

have the invariant elliptic (t>) (resp. (#))-complex on ΓX
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0 -> C~(ΓCΐ7λ) -*...-* C-(rqtf!) - 0

if Jί is symmetric and the order is admissible,

0 -> C-(Γ<»>J) -> C-irWJ) - 0

otherwise.
As for the index of this elliptic complex, we have

Theorem 5.3. Let X(τ£VT) be the index of the (b) (resp. (^-complex on ΓX.

If λ+peΛ is singular with respect to g, then

is regular with respect to g, then

Π(λ+p,α)

Π (p, a)
ΛSΔ +

/ Π (λ+p, α)
mp. (— 1)̂ Γ

 <t<ΞΔ+

\ Π (p, α)
ΛSΔ +

where

c -.
Γ E(X) *\WM/WK\

and s is the number of elements of the set Δj " .

Proof. For w EΞ W^MJ we see easily that

Π (λ+p,w-1α) = (-l)»w Π (λ+p,α).
β»=Δ+ «eΔ +

From this fact together with H. WeyΓs dimension formula, Theorem 5.3 is

clear in view of Theorems 4.2 and 5.2.

6. Some remarks on Schmid's results

In Theorem 3.1 we have constructed an elliptic complex associated to a

homogeneous vector bundle over a symmetric space of inner type. This elliptic

complex is determined by an admissible lexicographical order of the root system

(Definition 3, §3). But the invariant first order differential operator ST is
defined for an arbitrary lexicographical order in §3 and it is elliptic under the

condition in Definition 1 in §2. The works of W. Schmid [16], [17] are greatly

indebted to the ellipticity of this operator ΦQ in (#)-case, and he proved- the

ellipticity of Sf under a condition stronger than our condition ($). Therefore,

most of his results are improved and we shall here illustrate it.



ELLIPTIC COMPLEXES ON CERTAIN HOMOGENEOUS SPACES 155

We shall first recall some of his results in [16], [17]. Let G be a non-
compact connected semi-simple Lie group with a compact Cartan subgroup Hy

which will be fixed once and for all. We fix a maximal compact subgroup
K containing H. We denote by g0, Ϊ0, ί)0 the Lie algebras of G, K, H, and by
g, f, § their complexifications. Consider the root system Δ of g with respect
to § and fix an arbitrary order on Δ from now on. One can then endow the
manifold D=G/H with a G-invariant complex structure such that the holomor-
phic tangent space at the origin eH corresponds to 2 g*, where Δ+ denotes

«eΔ +

the set of positive roots, gΛ the root vector space for αeΔ+ as before. Denote
by Δf the set of positive compact roots, by s the number of elements of Δf .
Then the complex manifold D is (s+ Incomplete in the sense of Andreotti-

Grauert ([17], Theorem 1).
As in § 1, let Λ be the character group of H identified with a lattice in the dual

space of $R=\/ — 1 £)0 For λeΛ, we denote by Lλ the associated homogeneous
line bundle on Z), which has a structure of a holomorphic line bundle. If we
denote by H9(D, Lλ) the ^-th cohomology group with coefficients in the sheaf of
germs of holomorphic sections of Lλ, then Hg(Dy Lλ) is a G-module with respect
to the left translations. Under these circumstances, he obtained

Theorem 6.1 (Schmid [16], Theorem 6.1). There exists a positive number
6>0 such that the following holds: if (λ, ά)<— b for every αeΔf, then

i) Hq(D, Lλ)=Q for every q^s, and HS(D, Lλ) is an infinite dimensional
Frechet space on which G acts continuously. Moreover every vector in HS(D, Lλ)
is a dίfferentίable vector for the action of G.

ii) There exist closed K-invariant subspaces MI (/=0, 1, 2, •••) of HS(D, Lλ)

such that

HS(D, Lλ) ,

each MI is of finite codimension in HS(D, Lλ), and X.Mί+lc:Mι for every X eg0,
where X.Mί+l denotes the image the infinitesimal action of X to the vectors in
MI+Γ Moreover, for μ,eΛ dominant with respect to K, the irreducible K-modules
with highest weight μ occurs in the finite dimensional K-module MιjMι+λ with

multiplicity

(-1)5 Σ (-l)M

Here for z>eΛ, Qι(v) denotes the number of distinct ways in which v can be
expressed precisely as a sum of positive non- compact roots, and Wκ the Weyl group

ofK,

Σ

REMARK 1. According to his proof in [16], the number ό>0 in Theorem
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6.1 must be chosen larger than the number c* in the condition (#) of Definition

1,§2.

We now consider the symmetric space (of inner type) X=G/K and the
irreducible ^-module Vλ with lowest weight λ+2pf. If λ satisfies the con-
dition (Jj:), in §3 we obtain the invariant differential operator

which is elliptic by Lemma 3.1 whether the order is admissible or not. Here
the ellipticity means that for every non-zero cotangent vector of X, the symbol

map is injective. This differential operator QT coincides with Schmid's operator

3) in [16], [17] and we put S)=3T hereafter. He showed the ellipticity of 3)
by direct computations of estimate under the stronger condition than our con-
dition (#) (see [16], Lemma 7.2). It reads that there exists a positive number

b'>0 such that if (λ, α)< — V for every αeΔ+, then 3) is elliptic. In com-
parison with this, we thus have the following key lemma.

Lemma 6.1. Let c* be the number as in Definition 1, §2. If (λ, α)< — £*
for every αe Δf, then Schmidts operator

is elliptic.

Now we denote by £?λ the null space of .2), which is a Frechet space as a

closed subspace of C°° (CIΛ) and is a G-module. The assumption being the
same as in Theorem 6.1, HS(D, Lλ) is topologically isomorphic to £Fλ as G-module
([16], Lemma 7.1). By this isomorphism, the subspace <3it in Theorem 6.1

corresponds to the subspace of £?\ consisting of the sections which vanish to
order / at the origin eK^X. Therefore, when 3) is elliptic, we see easily that

n c#, = {0}
/ = 0

by the regularity theorem. By Lemma 6.1 and Remark 1 to Theorem 6.1, we
see that 3) is elliptic under the same condition in Theorem 6.1. The fact that

Π c^/={0} deduces the next theorem as Schmid worked in [16], §6.
/=o

Theorem 6.2. Under the same condition as in Theorem 6.1, the following holds.
As for the restriction to K of the G-module HS(D, Lλ), the irreducible K-module with
highest weight μ,G:Λ occurs with finite multiplicity

(~i)s Σ Σί-iΓ Wλ+Pi-wί/t+Pί)).
u>^WK /=o

There exists a non-zero K-invariant, K-irreducible subspace of HS(D, Lλ) which is
contained in every non-zero, closed, G-invariant subspace.
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REMARK 2. SchmicΓs condition in this theorem is stronger than ours as

stated before Lemma 6.1. Notice that our condition is related only to the
compact positive roots but his to all the positive roots. Thus it is not too much
to say that this is one of the improvements.

Next, we shall refer to the construction of unitary representations of G by

means of the null space of 3). Introduce a G-invariant hermitian metric ( , )
on CIΛ, induced by a ^-invariant hermitian inner product on Fλ, and a G-
invariant volume element dv on X. We denote by ξ>λ the space of sections

such that I (s, s)dv<°°. Then for s, s'<=ξ?λJx λ

<Jf s'y = I (ί, s')dv

defines an inner product on ξ>λ. If .2) is elliptic, then ξ>λ is a Hubert space
by the regularity theorem. When ξ>λ is non-trivial, the G-action on ξ>λ gives a
unitary representation of G.

From now on, we shall particularly consider the generalized Lorentz groups

with compact Cartan subgroups. That is, let G be the identity component of
SO(2ny 1), or its two-fold universal covering group (we assume n^2). The rank
of G and half a dimension of the symmetric space X= G/K (a hyperboloid of one
sheet) are then n. For the root system of g, we know that one can choose the

base {eί9 •••, en} of f)| such that

With respect to this base the Weyl groups W of g consists of the transformations

£/1—> £; tfflrcί) where π denotes a permutation in {!,•••, n} and 8~±l. The Weyl
n

group Wκ of ϊ consists of the elements of W such that Π £,-=!, which shows
ί = l

that the number of the cosets of W/Wκ is 2. Moreover it is known that all the

elements of W are generated by the automorphisms of G. By means of these
explicitations, it is easy to see that any order of Δ is admissible in this case.
Therefore any Schmid's operator 3) is the first term of the (#)-complex in
Theorem 3.1. The following lemma is included implicitely in Lemma 8.2 [16],
but we shall give the proof for the sake of completeness.

Lemma 6.2. Let λeΛ and p—— ]>] a. If — (λ + p) is regular and
2 ΛSΔ +

dominant with respect to g, i.e., (λ+/o, α)<0 for every αeΔ+, then λ satisfies
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the condition (#) in Definition 1, §2. In particular, we then have the elliptic
operator S).

Proof. In view of the above remark it suffices to show the statement for
some fixed order of Δ. Hence we introduce an order on $% so that

and prove the lemma for this order.

Let λ=Σ w. ̂ eΛ. Then it holds 2(α, λ)/(α, a)~^Z for every
ί = l

which implies that either all m{ must be integral or all mf must be strictly semi-
integral. Moreover, — (λ+p) is regular and dominant if and only if w^l,
m2^ml — 2, τw3<w2 — 2, , mntζmn_l — 2. Using the description of the elements
of Δf , Δp by ef, one can then easily check that this satisfies the condition

(#), i.e.,

(λ+pf+A+' +A,, α)<0 or all

whenever /^ , , /β^eΔ are distinct.

According to the proof of Theorem 8.1 in [16], Schmid showed the
following facts. Let λeΛ and assume that — (λ+p) is regular and dominant
with respect to g. If the differential operator Q is elliptic, then the action of G
on the Hilbert space ξ>λ determines an irreducible unitary representation which be-
longs to the discrete series, and its character is θ\+p in the sense of Harίsh-Chandra.
Moreover, in the restriction of this representation to the maximal compact
subgroup K, the irreducible ^-module with the highest weght μ,eΛ, occurs
with multiplicity

where the notation is as in Theorem 6.1. Combining with these results of
Schmid and Lemma 6.2, we have

Theorem 6.3. Let G be the identity component of the generalized Lorentz
group SO(2ny 1), or its two-fold universal covering group, an order on the root
system Δ fixed. For any λeΛ such that (λ+p, α)<0 for every αeΔ+, the
Hilbert space ξ>λ constructed above gives an irreducible unitary representation of
G belonging to the discrete series and its character is Θλ+p. Moreover as for the
restriction of this representation to the maximal compact subgroup K, we have the
multiplicity formula described above.

Combining with Harish-Chandra's classification theory of the discrete
series, this improvement of Schmid's theorem (Theorem 8,1 [16], Theorem 4 [1 7])
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implies the following result which seems to be rather striking. For μ<=Λ

which is regular, we choose an order on the root system Δ so that (μ,, a)

<0 for every αeΔ+. Put \ = μ—ρ and consider a unitary ^-module Vκ

whose lowest weight is \-\-2pi. We then obtain the Hubert space ξ>λ con-

sisting of the square-integrable sections in the null space of the elliptic operator

3) on the hermitian vector bundle ̂ λ. By Theorem 6.3, ξ>λ then determines an

irreducible unitary representation of G belonging to the discrete series, whose

character is Θμ. In view of Theorem 16 in Harish-Chandra [8], we can state:

Corollary. One can realize all the irreducible unitary representations

belonging to the discrete series of the identity component of the generalized Lorentz

group SO(2n, I) or its two-fold universal covering group by means of the Plilbert

spaces constructed in Theorem 6.3.
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Added in proof. Theorem 6.3 in §6, has been generalized for general

semi-simple Lie groups with compact Cartan subgroups, under a certain
regularity condition for λ^Λ. This is stated as follows. Notation being as in
§6, let μ,eΛ be a regular character with respect to g and then choose an order
on Δ such that {αeΔ|(μ, tf)<0} be a positive root system. Put λ = μ —p and
consider the Schmid's operator 3) in Lemma 6.1 for λ and the above order.
There then exists a non-negative constant c such that the square-ίntegrable null
space ξ>λ of 3) gives an irreducible unitary representation belonging to the discrete

series, whose character is ( —l)sθμ, when \(μ, a)\ >c for every α^Δ. (Notice
that (— l)s= 1 in case of the Lorentz group.)

This makes it possible to realize "most" discrete series representations for
semi-simple Lie groups, in view of Theorem 16 in [8]. The above result was
communicated without proof in the letter from Prof. Schmid, and the author
has proved it independently. The author's proof is carried out through the
method of alternating sum developed by M.S. Narasimhan and K. Okamoto

(Ann. of Math. 91 (1970), 486-511). Moreover, this method allows us to realize
the discrete series in another way, i.e. on certain eigenspaces of the Casimir
operator over the symmetric space.




