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Cluster Sets of Analytic Functions in Open Riemann
Surfaces with Regular Metrics. I

By Zenjiro KURAMOCHI

The purpose of the present paper is to extend the theory of the
cluster sets investigated only in case of domains of planar character under
some conditions to the case of abstract Riemann surfaces under weaker
conditions.

Let R* 2R be abstract Riemann surfaces and let {R}} and {R,}
(R¥=R,) be their exhaustions with compact relative boundaries {9R¥}
and {9OR,} respectively. Let {2;} be a sequence: z; € R*. If any compact
surface of R* has only a finite number of points of {z;}, we say that
{z;} converges to the ideal boundary of R*.

Regular metrics of R*.

1) Stoilow’s metric. R*— R} is composed of a finite number of
disjoint non compact surfaces {G;}. Let G, (=1, 2,---) be a sequence
of non compact surfaces with compact relative boundary such that
G, OG,., >G,,, ", [”\G,,:O. Two sequences {G.} and {Gj} are called

equivalent, if and only if, for any given number #, there exists a number
n such that G: DOG), and vice versa. We make an ideal boundary point
(component) correspond to a class of equivalent sequences and denote the
set of all ideal boundary point by B*. A metric is introduced on R*+ B*,
It is clear that R*+B* and B* are closed and compact, and that B* is
totally disconnected. The topology induced by this metric is homeomorphic
to the original topology in R*.

2) Martin’s metric. Let R* be a Riemann surface with positive
boundary. (If K* is a Riemann surface with null-boundary, R*— R¥ has
positive boundary. Consider R*—R¥ as R*). Let G(z-p,) (p, is a fixed
point) be the Green’s function. Let {p;} be a sequence of points of R*

having no point of accumulation in R*. If a sequence {K(z, p;)} (K(z, b:)
= _G(z,_p,)) converges to a harmonic function in every compact set in R*,

N G(pi’ po)

{p;} is called fundamental. Two fundamental sequences are called equi-
valent, if their corresponding K(z, p;); have the same limit. The class
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of all fundamental sequences equivalent to a given one determines an
ideal boundary point of R*. The set of all the ideal boundary points of
R* will be denoted by B* and the set R*+B* by R*. The domain of
definition of K(z, p) may now be extended by writting K{(z, p)=1lim K(z, p;)

(z€ R*, pe R*). The distance of two points p, and p, of R* is defined by

K(z, p) K(z, p.)
5 _ 1 _
(pn pz) ze ISQ?IBRGK 1+K(z, p1) 1 +K(Z, pz)

It is clear that R* and B* are closed and compact.

Let N(z, p) be a positive harmonic function in R*—R¥ such that
N(z, p)=0 on 9R¥ and N(z, p) has one logarithmic singularity at p and
N(z, p) has the minimal Dirichlet integral®. We use N(z, p) instead of
K(z, p). Then we have another topology which is equivalent in case
of a Riemann surface with null-boundary to the topology induced by
K(z, p), but it is not the case always®. In the above topology R*— R§+ B*
and B* are always closed and compact.

3) Green’s distance. Let R* be a Riemann surface (if R* is a
Riemann surface with null-boundary, consider R* — R¥ as R*) with positive
boundary and let G(z, p,) be the Green’s function. Let / be a curve in

R*. We define the length of / by S dle €& potikZ r0 | where h(z, p,) is
l

the conjugate harmonic function of G(z, p,). For two points p, and p,
of R* the distance 6(p,, p,) is defined by the infinimum of the length of
all curves connecting p, with p, in R*. Now all the boundary points are
defined by completion of R* with respect to this metric. It is clear that
R*+ B* and B* are closed but not always compact. Suppose that a topology
induced by K(z, p), N(z, p) or Green’s distance is defined only in
B*+R*—R§. In this case the topology is homeomorphic to the original
topology in R*—R§. We extend the above topolgy to R* so that the
extended topolgy is homeomorphic to the original in R*.

4) Teichmiiller’s metric. Let R be a covering surface over R* with
a metric & (as a special case, R R*). Let p, and p, be two points of R.
We define the distance between p, and p, by the infinimum of diameters
of the projections of all curves connecting p, with p, in R and define
all the boundary points B (usually called accessible boundary points)

1) Dirichlet integral is taken in a neighbourhood of p with respect to N(z, p)+log|z—p]|.

2) We understand by 7;>T; that T, is finer than T;. Let T,, T}, Ty, and T, be
topologies of Stoilow and of Martin induced by K(z, p) and N(z, p) and Green’s distance. Then
T, <Tg <Tw<T.
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by completion of R with respect to this metric. Then R+B and B are
closed but not always compact.

If the distance 6(p,, p,) >0 for any points p, and p, of R*+ B* such
that there exists a compact domain or a non compact one G with compact
relative boundary oG with G>p;: p;—~p, € B* and G% p,: p,— p,, and if
the topology induced by this metric is homeomorphic to the original
topology in R*, we say ¢ a regular metric. We see easily that the above
metrics are regular.

Exceptional set. & (sef of capacity zero), € 45, &, (set of areal measure
zero). Let F be a closed set in the w-plane. If there exists no non-
constant bounded analytic function in CF®, we say F E,5. It is clear
that &, € ,,G,.

In the following 94 means the boundary of a set A in R*+ B* and
OA means the relative boundary of A, i.e. 9A=24AN\R.

Negligible set. 3, (set of capacity zero)®, Nyg, Nas. Let F be a
closed set in R*+B*. If there exists no non-constant bounded harmonic
function which vanishes on 9G and bounded analytic function with vani-
shing real part on 9G in any non compact domain G respectively such
that (0GN\B)CF, we say FC Nyp and FC N, respectively, where B
is the boundary of R. It is clear 9, Ny N yp.

Let R be a Riemann surface, B its boundary, and let R*("OR) be
another Riemann surface with boundary B*. We suppose that a regular
metric 8 is given on R*+ B* such that K*+ B* is closed and compact
with respect to this metric. Let 2z, be a non isolated boundary point of
R. We denote the part of R contained in E[z: (2, 2,)< 7] by R, and
that of B in E[z: 8(z, 2,)<r] by B,. Let w=f(z) be a one valued
meromorphic function in R and let W, be the set of values taken by
w=f(2) in R,. Put

lrig} W, = Hg(z,)> .

Let E be a negligible set mentioned above which is a closed and

totally disconnected set® on B such that z,¢€ E.

3) CA means the complementary set of a set A.

4) See Z. Kuramochi: Mass distribution on the ideal boundary, II. Osaka Math. 8, 1956.

5) A means the closure of a set A.

6) In our topology, there exists a continuum C &,.

Let V,(p) be a neighbourhood of p such that V,(p)=E[2€ R*: 8(z, p)<r]. Let p be a
point of F. If for any given number #’, there exists V,(p) such that (3V,(p) F)=0: »<7,
we call F a totally disconnected set in R*.
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Let VAB—E)= 3> Hg(£)
¢ECB,—B)
and 1ing1 VAB—E) = Hp_g(2,) -

Then it is clear that Hgx(z,) and Hpz z(z,) are closed and that

Hg(z) D Hp_g(2,).
We shall prove

Theorem 1. Let K* be a Riemann surface with a regular metric &
such that R*-+ B* is closed and compact with respect to 6 metric. Let f(2)
be a meromorphic function in a Riemann surface RC R*. Take E a
closed and totally disconmected set in B such that EC Uyp ( DONyg ONY).
Suppose that z,€ (E/\B) and that z, is not an isolated point of B—E. Then

HR(ZO)_HB,E(ZD) is open.

Theorem 2. Suppose that Hp(z,)—Hg (2,) is non empty. Let Q be
one of the components of Hp(2,)—Hp_g(2,). Then in any small neighbourhood
of 2,, f(2) takes any value of Q infinitely often except at a set F of capacity
zero for EC Nyp and f(2) takes infinitely often except at a set F G, for
EC N g and f(2) takes at least once except at a set G,z for EC N 5.

Up to the present, the theory of cluster sets is investigated only in
case of planar domain. This is the case of R of z-closed Riemann surface.
There are two typical methods to prove Theorem 1. The one is of
Beurling-Kunugui-Tsuji and the other is that of Toki. But in all cases
the condition that the domain is planar and EC 0, seems to be essential.
On the other hand, if Theorme 1 is proved, it is easily seen that
Theorem 2 holds for general Riemann surfaces. Theorem 1 is proved by
Iversen, Kunugui and Toki when FE is a single point z, and is proved by
Tsuji in case of EC_ &, and by Ohtsuka” in case of EC §,, respectively.
Further extensions were done by many authors under some additional
conditions. :

We shall use the following

Lemma 1° Let G be a non compact domain in R such that (9G\B)
CNysgNap) and let f(2) be an analytic function on G. Suppose that f(G)
1S a covering surface over the w-plane. Then every connected piece r such

7) F. Iversen: Sur quelques propriétés des fonctions monogénes au voisinage d’'un point
singulier, Ofv. af Finska Vet-Soc. Forh. 58, 1916.

A. Beurling: Etudes sur un probléme de majoration. Thése de Upsal, 1933.

K. Kunugui: Sur un théoréme de MM. Seidel-Beurling. Proc. Acad. Tokyo, 15, 1939.

T. Toki: On the behaviour of a meromorphic function in the neighbourhood of a trans-

cendental singularity. Proc. Acad. Tokyo, 17, 1941.

M. Tsuji: On the cluser set of a meromorphic function, Proc. Acad. Tokyo, 19, 1943.

M. Ohtsuka: On exceptional values of a meromorphic function, Nagoya. Math. 9. 1955.

8) Z. Kuramochi: Representation of Riemann surfaces: Osaka Math. 11, 1959.
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that r has no common point with f(9G) over a circle K: |w—w,|<r covers
K except at most for a set C €, (€, p) and n(w)= sup n(w) < oo except at an
F, of capacity zero (totally discommected F, of areal measure zero), where
n(w) is the number of times when w is covered by \r. If sup m(w)< oo, then
the F, reduces to a closed set.

Lemma 2. Let G be a non compact domain in R with compact relative
boundary OG such that (9GN\B)C Rus(Nap), and let f(2) be a bounded
analytic function on G. Then sup n(w)< . n(w)=sup n(w) except at most
at a closed set G, (a closed and totally disconnected set C §,) and n(w)=1
in Q except on a closed set CC (€ p5) for Q such that sup n(w)=1, where
Q is a component of the complementary set of f(OG).

Lemma 3. Let { be a connected piece over a civcle K such that sup
n(w)<_ oo and n(w)= sup n(w) except at a closed and totally disconnected set
F. Let p, and p, be two boundary points such that projections of p, and
p, are both contained in K and proj p,=\-proj p,. Then 6(p,, p,) >0 for
every regular metric.

Let D=E[w: w(w)=sup n(w)]. Since H=E[w: n(w)< sup n(w)] is
closed and totally disconnected, we can find neighbourhoods V, and V,
of proj p, and proj p, such that @V, D(i=1, 2,) and V,\V,=0. Then
every connected piece {r over V; has a compact relative boundary. Hence

(1, p2) >0.

Lemma 4. Let G be a non compact domain such that (G \B)_E
C Nap and that OG is composed of two kinds of analytic curves L and BB
(L+B=9G), where L is composed of a finite number of analytic curves
L, L, ,L; and every endpoint of L, is situated on B. Suppose that G
is represented as a covering surface v over a circle K: |w—uw,|< 7 by
f(2) and that f(B) lies on OK and f(int L)) K, where int L;=L—end
points of L;. If 4 does not cover any open set & in K, then S?p n(w) < oo.

Proof. Let Q,, ,, --- be components of K—f(L). Then L is compact.
We can deform L slightly so that the number of {Q;} is finite: Q,, Q,, -+,
Q,. Clearly there exists a component 2, of {,} such that & Q,. First
we shall show n(w)=0 in Q,. To the contrary, suppose that there exists
a connected piece Y’ over ,. Then (o' \B)C ECN,z. Hence by
F (o) 20, n(w)=sup n(w)=1 except at most a set &, by Lemma 1.
This is a contradicrion. Hence n(w)=0 in Q, by #(w)=0in &. Next let
Q, be another of {Q;} such that 2Q,/N\92,-=0. Let w, and v(w,) and w,
and »(w,) be two points and two neighbourhoods (w, € v(w,) 2, and
w, € v(w,) Q) in a neighbourhoods of (02,/\2Q,) so that by a slight
deformation of L »(w,) and »(w,) may be contained in the same component
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&/, where €’ is a component of K—f(L’), where L’ are curves of L after
a slight deformation. Then we see that |supn(w)—supn(w)|< co. On the
l)(wz)

L)

other hand, the number of components is finite. Hence sup n(w)<_ co.
K

Proof of Theorem 1. If the values taken by f(2) in every neigh-
bourhood of 2z, is dense in the w-plane, our assertion is trivial. Hence
we suppose that f(z) is bounded in a neighbourhood of z,. Put
K z2)=E[z€ R*: 8(2, 2)<_1/n]. If Hy_u(z,)=H(z,), our assertion is trivial.
We suppose 0==Hg(2,) —Hg_g(2,) > w,. We shall show w,€int Hgp(z,).

Put X  Hg(¢)=M,. Then by w,¢ H,_x(2,), there exists a number

LEWBETDME,)

n, such that w,¢ M, . Put dist (w,, M,)=p>0. Since E is closed
and totally disconnected, we can find a domain D in R* such that
K, (2) DD DK, \(2,) and OD/\E=0 and that f(2)=l=w, on 9D/\R. Then
there exists a number p, >0 such that |f(z)—w,|=p, >0 for z€ (@DN\R).
Otherwise, there exists a sequence {z;}: f(z;)—w,: z;€9D. {z;} tends
to a point 2 €(@D/\B). This implies by D/\OPE=0 that w,€ Hg():
¢ e B—E. This contradicts dist (w,, M,,) >p, >0. Since w, € Hg(z,), there
exists a sequence {z;} in R such that {z;} tends to z,: f(z;)—>w,. Let
K: |w—w,|< p<_min(p,, p,) and consider f(R) over K. Then there exists
at least one connected pieces ,, 4, - over K. Let A, A, .- be the
inverse images of connected pieces {yr,} such that A;/\A,=0 and that
A; contains at least one z;.

Case 1. The number of A, is infinite for a certain #,. In this case.
we shall show that {A;} —z,. If it were not so, there are infinite number
of A, such that {A;} tends to B and each A; has at least one point z¥
outside a certain K,,..(z,)(m_>n,). Let D be a domain in R*+ B* such that
DK, (2) K, (2), DDK,.(2) and OD/\E-|-0. Then since {z;}—z
and z¥ is outside K,,.,(z,), every A, intersects oD at ¢;. Hence there
exists a subsequence {¢;} of {&;} such that {{}} —¢&, € (K,(2,)\(B—E),
[lim f(¢7) —w,| < p. This contradicts dist (( SV H(), wyy=p,- Thus

B-H)NK,,
{A;} tends to z,. Now every A satisfies the condition (@A \B)E.
Hence by Lemma 1 every A covers K except for a closed set < €,p.
Hence there is a dense set in K of points which is covered by f(2)
infinitely many times in every neighbourhood of z,. Thus w, € int Hp(2,)
and B(Hg(2,)) CB(Hp_g(2,)).

Case 2. The number of {A;} is finite for a certain #,. Since
lim z;=2,, there exists at least one A containing a subsequence {z;} of

{z;}. Let A be one of them. (9A N\B)CE implies that A covers K
except for a closed set C &,;. We shall show sup #'(w)= oo, where #'(w)
is the number of times when w is covered by A. First we shall show
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(éK[\ 2,)==0. Assume 5A—[\ 2,=0. Since there exists {z;} such that z;— z,,
there exists a number / such that K,(z,) int A. On the other hand, since
2,€ B—E there exists a point z¥€ intA(z*c(B—E)). Let {z¥} be a
sequence such that zf—2*. Then |lim f(2¥)—w,|< p. This contradicts
dist ( N Hg(¢), w)=p,. Hence 9A N\ z,==0. Next assume sup #'(w)

CECB=EIME np
< oo in K. Then F=FE[w:n(w)< sup n(w)] is closed and totally disco
nnected by Lemma 1. There exists only inner points of R on
D=E[w: n(w)= supn(w)]. We can find a neighbourhood V(w, of w,
such that 9V(w, D and dist (9V(w,), F)>0. Let A, be the image of
a connected piece over V(w,) such that A™>A, and it contains a subse-

quence {27} of {z;}. Then similarly a‘,f\zo#o. On the other hand,

9V(w,) D implies that 9A, is compact in R, whence by the regularity

of metric dist (@A, z,)>0. This is a contradiction. Hence sup #'(w)= oo.
K

We shall show that every point w of K is contained in Hg(2,). Otherwise
suppose that Hp(z,)S=K. Then since Hg(z,) is closed, there exists an open
set & in K such that f(z) does not cover & for z€ (A K,,(2,) for a certain
m. Let D be a domain such that K, (z) >K,(2) >DDDK,,.,(z) and

©DN\E=0. Then A/\9D does not tend to B because | Hg({)—w,| >>p,: £ €

(BN K,,(2,)). Hence ODN\A is closed and compact in R. Then we can
deform 9D slightly so that 9(A/\D)—9A is composed of a finite number
of analytic curves D,, L,, -+, L. Let © be a components of K—f(L):

f] L;=L. We can deform L slightly so that (L) # w, and w,€ Q. Hence
as above sgp w'(w)=occ in £, where »'(w) is the number of times when w

is covered by D/\A. On the other hand, f(A/\D) does not cover an
open set . Hence by Lemma 4 sup #')w)<_c in K. This is a contradic-
tion. Hence the set of values taken by f(2) in any R/\K,(z,) is dense
in K. Thus K Hg(z,) and w,€ int Hg(z,). From case 1 and 2 we have

9) Cf. Theorem 5 for Lemma 1, Theorem 13 for Lemm 2.

10) 4 means the closure of 4 with respect to & metric.

11) We can construct a new domain D* such that 4 oD* (M B=0, DD D* an@(D*ﬂA) —04
i§ 5 composed of a finite number of analytic curves. Since oD is closed, Bﬂ(éDﬂZ):O and
(0DN34)CR. Let p be a point € (DM 4)C R. Then there exists a neighbourhood v(p) of
p such that v(p) is mapped conformally by f(z) such that f(04\v(p)) is contained in the
set E[ |w—w,|=p]. Hence for sufficiently small v(p), f(v(p) () 04) consists of only one analytic
curve @ (may have some number of branches). Hence if there are infinite number of components
B1s B2y -+ of (0(4(\D)—04) M v(p), then there exists a number 7, such that g; (i=1¢,) has its
end points on «(\v(p). In this case, we replace B; (1=i,) by a new curve B such that
B(C OD*, where D* is a new domain such that K, ,(2,) C D*C DC Kn(2o), 4(\0D* () B=O0.
But 4 ﬂéD is covered by a system of a finite number of neighbourhoods of v(p) with the
property that (0D*(4) N wv(p) consists of a finite number of analytic curves. Hence D* is

a new domain such that 4 0D* (N B=0, D*C D and 9(D* () 4) —04) consists of a finite number
of analytic curves L,, L,, - L;. Put D=D*.
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B(Hg(2,)) < B(Hpg_x(2,)) .

Proof of Theorem 2. Let Q be a component of Hx(2,)— Hpg_g(2,).
Let A be the inverse image of a connected piece Y over . Then OA
does not fall in £ and sup #(w)= o as above. Hence we have Theorem 2
by Lemma 1.

Let R be a Riemann surface. Suppose that R*+ B* is closed and
not compact with respect to a regular metric 6. If any compact set of
R* 4+ B* has only a finite number of points of the sequence z,, 2,,-:-, we say
that {z;} determines a non accessible boundary point (N.A.B.P.). Let NB
be the set of all the N.A.B.P.s and let K,(z,)=E[z€ R*+B*: 8(z, z,)<r],
where K,(z,) is not always compact.

Put Hg(&)= Q}(Z}f(z)) for &€ R*+ B* and Hg(¢) for ¢ € (K,(z,) [ \N.B)

the set of all values w such that there exists a divergent sequence {z;}:
z;€ K,(z,) and lim f(z;) —w, where NB/\K,(2,) is a set of N.A.B.P.s such
that 2z;,€ K, (2) and {z;} determines a N.A.B.P. Put Hyg. g g(2)
. [\OHR(;‘), where the summation is over (B+NB—E)/\K,(z,). Then we

can prove similarly the following :

Theorem 1. Let z2,€¢ B and E be a closed and totally disconmnected
set on B such that EC &,z and 2,6 B—E. Then

B(Hg(2,)) C B(Hyp. 5_£(20)) -

Theorem 2. (=Theorem 2).

As an application we shall consider an extension of Lindelof’s theorem.
Let R be a Riemann surface with compact relative boundary OR such
that R has only one ideal boundary component p (€ @,5) with finite or
infinite genus. Let L,, L,,---,L, be curves in R tending to p.

Theorem 3. Let f(2) be a bounded analytic function in R—Zt] L, If
f(2) converges along L;, then f(2)=f(2) - =f(2)=w, and f(z2) converges
ZeL,; Z€L, €,
to w, uniformly in R as z tends to p.
In fact, H(p) =w,+w,+w,+ --- +w,=B(Hs (p) DOB(Hg(p)) implies

Lyt Lyt 4L
that H(p) is one point and w,=w, --- w,.

ReEMARK. This theorem does not hold for bounded harmonic function
in R with infinite genus. Let U(z) be a bounded harmonic function in
13
R (not only in R—>)L). If the harmonic dimension of p is larger than
one, U(z) does not converge as z— p.

(Received March 23, 1959)





