<table>
<thead>
<tr>
<th>Title</th>
<th>The maximal quotient ring of a left H-ring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kado, Jiro</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 27(2) P.247-P.251</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1990</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/9705</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/9705</td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive: OUKA
http://ir.library.osaka-u.ac.jp/dspace/

Osaka University
THE MAXIMAL QUOTIENT RING OF A LEFT H-RING

Dedicated to Professor Hiroyuki Tachikawa on his sixtieth birthday

JIRO KADO

(Received March 20, 1989)

In [2], M. Harada has introduced two new artinian rings which are closely related to QF-rings; one is a left artinian ring whose non-small left module contains a non-zero injective submodule and the other is a left artinian ring whose non-cosmall left module contains a non-zero projective summand. K. Oshiro called the first ring a left H-ring and the second one a left co-H-ring ([3]). However, later in [5], he showed that a ring R is a left H-ring if and only if it is a right co-H-ring. QF-rings and Nakayama (artinian serial) rings are left and right H-rings ([3]). As the maximal quotient rings of Nakayama rings are Nakayama, it is natural to ask whether the maximal quotient rings of left H-rings are left H-rings. In this note, we show that this problem is affirmative, by determining the structure of the maximal quotient rings of left H-rings.

1. Preliminaries

Throughout this paper, we assume that all rings R considered are associative rings with identity and all R-modules are unital. Let M be a R-module. We use $J(M)$ and $S(M)$ to denote its Jacobson radical and its socle, respectively.

Definition [3]. A module is non-small if it is not a small submodule of its injective hull. We say that a ring R is a left H-ring if R is a left artinian ring satisfying the condition that every non-small left R-module contains a non-zero injective submodule.

We note that a left H-ring is also right artinian by [7, Th. 3]. In [5], for a left H-ring R, K. Oshiro gave the following theorem, by using M. Harada’s results of [2, Th. 3.6.]: a ring R is a left H-ring if and only if it is left artinian and its complete set E of orthogonal primitive idempotents is arranged as $E=\{e_{1i}, \ldots, e_{i_{n(i)}}, \ldots, e_{m1}, \ldots, e_{mn(n)}\}$ for which

1. each $e_{ii}R$ is injective,
2. for each i, $e_{ik}R \cong e_{ik}R$ or $J(e_{ik-1}R) \cong e_{ik}R$ for $k=2, \ldots, n(i)$, and
3. $e_{ik}R \cong e_{ij}R$ if $i \neq j$.

As a left H-ring is a QF-3 ring by [4], the maximal left quotient ring and the maximal right quotient ring of a left H-ring coincide by [9, Th. 1.4]. From now on, let Q be the maximal left quotient ring of a left H-ring R. We shall study the structure of Q. Since maximal quotient rings and left H-rings are Morita-invariant [7], in order to investigate the problem whether Q is a left H-ring or not, we may restrict our attention to basic left H-rings. Therefore, hereafter, we assume that R is a basic left H-ring and E is a complete set of orthogonal primitive idempotents of R. Then E is arranged as $E = \{e_{11}, \cdots, e_{1n(1)}, \cdots, e_{m1}, \cdots, e_{mn(m)}\}$ for which

1. each $e_{ii}R$ is injective,
2. for each i, $J(e_{ik}R) = e_{ik}R$ for $k=2, \cdots, n(i)$.

Definition [10, p. 153]. A primitive idempotent e is called S-primitive if the simple module $eR/eJ(R)$ is isomorphic to a minimal right ideal.

We shall use the H.H. Storrer's characterization of the maximal quotient ring of a perfect ring [10].

Since each $e_{ii}R (i=1, \cdots, m)$ is injective, there exists a unique g_i in E such that $(e_{ii}R; Rg_i)$ is an injective pair, that is, $S(e_{ii}R) \cong g_iR/J(g_iR)$ and $S(Rg_i) \cong Re_{ii}/J(Re_{ii})$ (cf. K.R. Fuller [1, Th. 3.1]). Each pair $\{e_{ii}, g_i\} (i=1, \cdots, m)$ is very important for studying left H-rings.

Now we shall determine all S-primitive idempotents in E. Let e be an idempotent in E. It is known that e is S-primitive if and only if $S(Rg)e \neq 0$ [10, Lemma 2.3]. Since $S(Rg) = \bigoplus_{i, j} S(e_{ij}R)$, $S(e_{ii}R) \cong S(e_{ij}R)$ for $i \neq j$, and $S(e_{ii}R) = S(e_{ii}R)$, we have $S(Rg)e = 0$ if and only if $S(e_{ii}R)e = 0$ for a unique i. Therefore e is an S-primitive idempotent if and only if $e = g_i$ for some i. Then $E' = \{g_1, \cdots, g_m\}$ is the set of all S-primitive idempotents in E. Put $g = g_1 + \cdots + g_m$ and $D = RgR$. Storrer has shown that $D = RgR$ is the minimal dense ideal of R and Q is isomorphic to $\text{Hom}_{R}(D_R, D_R) = \text{Hom}_{R}(D_R, R_R)$ by [10, Prop. 1.2 and Th. 2.5]. Since R is a two-sided artinian ring, Q is a left artinian ring by [10, Prop. 3.1].

Lemma 1. For each e in E, e is also a primitive idempotent in Q. Therefore $S(eQ)$ is a simple Q-module.

Proof. Since eR is a uniform right ideal, eQ is also a uniform right ideal of Q by [30, Prop. 4.4]. Thus eQ is indecomposable.

By the above lemma, we know that $E = \{e_{11}, \cdots, e_{1n(1)}, \cdots, e_{m1}, \cdots, e_{mn(m)}\}$ is also a complete set of orthogonal primitive idempotents of Q. We shall prove that Q is left H-ring by showing that E satisfies the conditions (1), (2) and (3) of left H-rings. We again note that left H-rings are also right artinian by
[7, Th. 3] and the maximal quotient ring \(Q \) of \(R \) is a left artinian ring.

Proposition 2. In the maximal quotient ring \(Q \), \((e^n_i Q; Qg_i)\) is an injective pair for \(i=1, \cdots, m \). Consequently \(e^n_i Q \) and \(Qg_i \) are injective \(Q \)-modules.

Proof. By assumption, let \(\phi: g_i R \rightarrow S(e^n_i R) \) be an epimorphism. \(\phi \) extends uniquely to a \(Q \)-homomorphism \(\phi^*: g_i Q \rightarrow S(e^n_i Q) \) by [10, Prop. 4.3]. Since \(S(e^n_i R)Q = S(e^n_i Q) \), \(\phi^* \) is also an epimorphism and hence \(g_i Q \cap J(g_i Q) = S(e^n_i Q) \). Since \(Q \) is the maximal left quotient ring of \(R \), we have symmetrically that \(Qe^n_i / J(Qe^n_i) = S(Qg_i) \). By [1, Th. 3.1], \((e^n_i Q; Qg_i)\) is an injective pair for \(i=1, \cdots, m \).

Next we shall study isomorphisms among the indecomposable right ideals \(e^n_i Q \). Let \(f_1, f_2 \) be idempotents in \(E \) and we assume that there exists a monomorphism \(\theta: f_1 R \rightarrow f_2 R \) such that \(\text{Im} \theta = J(f_2 R) \). Then by [10, Prop. 4], \(\theta \) can be uniquely extended to a \(Q \)-homomorphism \(\theta^*: f_1 Q \rightarrow f_2 Q \). We shall prove the following result.

Proposition 3. (1) If \(f_2 \) is not \(S \)-primitive, then the extension \(\theta^*: f_1 Q \rightarrow f_2 Q \) is an isomorphism.

(2) If \(f_2 \) is \(S \)-primitive, then \(\theta^*: f_1 Q \rightarrow f_2 Q \) is a monomorphism such that \(\text{Im} \theta^* = J(f_2 Q) \).

Proof. From \(0 \rightarrow f_1 R \rightarrow f_2 R \rightarrow M \rightarrow 0 \), where \(M = f_2 R / J(f_2 R) \), we have the following exact sequence

\[
0 \rightarrow f_1 Q \rightarrow \text{Hom}(D, f_1 R) \rightarrow f_2 Q \rightarrow \text{Hom}(D, f_2 R) \rightarrow \text{Hom}(D, M) \rightarrow 0.
\]

(1) It is sufficient to prove that \(\text{Hom}(D, M) = 0 \). We assume that there exists a non-zero homomorphism \(\phi: D \rightarrow M \). Since \(D = R(g_1 + \cdots + g_m)R \) by [10, Th. 2.5], there exist some \(i \) and some \(x \in R \) such that \(xg_i R \subseteq \text{Ker} \phi \). Then \(g_i R \cap J(g_i R) = M \). Therefore \(g_i R = f_2 R \). This contradicts that \(f_2 \) is not \(S \)-primitive. Consequently we have that \(\text{Hom}(D, M) = 0 \), and so \(\theta^* \) is an isomorphism.

(2) First we shall show that \(\text{Im} \theta^* = f_2 Q \). Since \(f_2 \) is \(S \)-primitive, we have that \(f_2 R \subseteq D \) and so \(D = f_2 R \oplus (D \cap (1-f_2) R) \). Therefore the projection \(\alpha: D \rightarrow f_2 R \) is not contained in \(\text{Im} \theta^* \subseteq \text{Hom}(D, J(f_2 R)) \). For any \(\phi \in J(f_2 Q) \), \(\phi \) is not an epimorphism as \(R \)-homomorphism. In fact, we shall show that any epimorphism \(\alpha: D \rightarrow f_2 R \) generates \(f_2 Q \). Let \(\beta \) be any homomorphism \(D \rightarrow f_2 R \) and \(\alpha': f_2 R \rightarrow D \) the split homomorphism of \(\alpha \). Then we have \(\beta = \alpha \alpha' \beta \). Therefore any \(\phi \in J(f_2 Q) \) is contained in \(\text{Im} \theta^* \) and so \(\text{Im} \theta^* = J(f_2 Q) \), because \(J(f_2 Q) \) is the unique maximal submodule of \(f_2 Q \).

Now we shall prove our main theorem.
Theorem 4. Let \(R \) be a left \(H \)-ring. Then the maximal quotient ring \(Q \) of \(R \) is also an \(H \)-ring.

Proof. Let \(E = \{ e_{1}, \ldots, e_{i}, \ldots, e_{m} \} \) be a complete set of orthogonal primitive idempotents of \(R \) such that

1. each \(e_{i} R \) is injective,
2. for each \(i \), \((e_{ik} R) = e_{ik} R \) for \(k = 2, \ldots, n(i) \).

We have already known that \(Q \) is a left artinian ring and \(E \) is also a complete set of orthogonal primitive idempotents of \(Q \). By Proposition 2, each \(e_{ik} Q \) is an injective \(Q \)-module and by Proposition 3, \(e_{ik} Q \approx e_{ik} Q \) or \(e_{ik} Q \approx (e_{ik} Q) k = 2, \ldots, n(i) \) for each \(i \). We shall show that \(e_{ik} Q \approx e_{ik} Q \) for some \(i \neq j, k, t \) if \(e_{ik} Q \approx e_{ik} Q \) for some \(i \neq j, k, t \) then \(S(e_{ik} Q) = S(e_{ik} Q) \) as \(Q \)-modules by [10, Th. 4.5]. This contradicts the assumption of \(E \).

We recall that \(g_{i} \) is the element of \(E \) such that \((e_{i} R, R_{g_{i}}) \) is an injective pair for \(i = 1, \ldots, m \). Here we define two mappings

\[\sigma: \{1, \ldots, m\} \rightarrow \{1, \ldots, m\} \]
\[\rho: \{1, \ldots, m\} \rightarrow \{1, \ldots, n(1)\} \cup \cdots \cup \{1, \ldots, n(m)\} \]

by the rule \(\sigma(i) = k \) and \(\rho(i) = t \) if \(g_{i} = e_{it} \). We note that \(\{\sigma(1), \ldots, \sigma(m)\} \subseteq \{1, \ldots, m\} \) and \(1 \leq \rho(i) \leq n(\sigma(i)) \).

Here we shall define a special left \(H \)-ring.

Definition [7, p. 94]. A left \(H \)-ring is Type \((\ast)\) if \(\{\sigma(1), \ldots, \sigma(m)\} \) is a permutation of \(\{1, \ldots, m\} \) and \(\rho(i) = n(\sigma(i)) \) for all \(i = 1, \ldots, m \).

Corollary. Let \(R \) be a left \(H \)-ring. Then the maximal quotient ring \(Q \) of \(R \) is a \(QF \)-ring if and only if \(R \) is Type \((\ast)\).

Proof. It is easy by Proposition 3.

Example. Let \(T \) be a local \(QF \)-ring, \(J = J(T) \) and \(S = S(T) \).

\[
\begin{pmatrix}
T & T & T \\
J & T & T \\
J & J & T
\end{pmatrix}
\]

Put \(V = \begin{pmatrix} 0 & 0 & S \\ 0 & 0 & S \end{pmatrix} \) and \(W = \begin{pmatrix} 0 & 0 & S \\ 0 & 0 & S \end{pmatrix} \). The factor ring \(R = V/W \) is a left \(H \)-ring such that \(e_{i} R \) is injective, \(J(e_{i} R) \approx e_{2} R \) and \(J(e_{2} R) \approx e_{3} R \), where \(e_{i} \) is the matrix such that its \((i, i)\)-position is 1 and all other entries are zero. \(R \) is represented as follows:

\[
\begin{pmatrix}
T & T & T \\
J & T & T \\
J & J & T
\end{pmatrix}
\]

where \(T = T/\bar{S} \). Since \((e_{i} R, R_{e_{2}}) \) is injective pair by [8, § 2], the minimal dense ideal is \(R_{e_{2}} R \). Therefore the maximal quotient ring \(Q \) of \(R \) is a left \(H \)-ring such that \(e_{i} Q \) is an injective module, \(e_{1} Q \approx e_{2} Q \) and \(J(e_{2} Q) \approx e_{3} Q \). Since \(e_{1} Q/J(e_{1} Q) \approx S(e_{1} Q) \), we have that \(\Hom_{Q}(e_{1} Q, J(e_{1} Q)) \approx \)
$\text{Maximal Quotient Ring}$

\[J(e_i Q e_i), \text{Hom}_Q(J(e_i Q), e_i Q) = e_i Q e_i / S(e_i Q e_i), \text{Hom}_Q(J(e_i Q), J(e_i Q)) = e_i Q e_i / S(e_i Q e_i). \]

Moreover, since $e_i Q e_i = e_i Re_i = T$ by [10, Lemma 4.2], Q is represented as a matrix ring $\begin{pmatrix} T & T & \hat{T} \\ T & T & \hat{T} \\ J & J & \hat{T} \end{pmatrix}$.

References

Department of Mathematics
Osaka City University
Sugimoto, Sumiyoshi-ku
Osaka, Japan