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In [2], M. Harada has introduced two new artinian rings which are closely
related to QF-ήngs; one is a left artinian ring whose non-small left module
contains a non-zero injective submodule and the other is a left artinian ring
whose non-cosmall left module contains a non-zero projective summand.
K. Oshiro called the first ring a left H-ήng and the second one a left co-H-ring
([3]). However, later in [5], he showed that a ring R is a left Jί-ring if and only
if it is a right co-i/-ring. QF-rings and Nakayama (artinian serial) rings are
left and right ίf-rings ([3]). As the maximal quotient rings of Nakayama rings
are Nakayama, it is natural to ask whether the maximal quotient rings of left
ίf-rings are left ίf-rings. In this note, we show that this problem is affirmative,
by determining the structure of the maximal quotient rings of left H-rings.

1. Preliminaries

Throughout this paper, we assume that all rings R considered are associative
rings with identity and all i?-modules are unital. Let M be a i?-module. We
use J(M) and S(M) to denote its Jacobson radical and its socle, respectively.

Definition [3]. A module is non-small if it is not a small submodule of its
injective hull. We say that a ring R is a left H-rίng if R is a left artinian ring
satisfying the condition that every non-small left i?-module contains a non-
zero injective submodule.

We note that a left jfiΓ-ring is also right artinian by [7, Th. 3]. In [5], for
a left H-rmg R, K. Oshiro gave the following theorem, by using M. Harada's
results of [2, Th. 3.6.]: a ring R is a left iϊ-ring if and only if it is left artinian
and its complete set E of orthogonal primitive idempotents is arranged as E~

itn> "y *IH(I)> '"> emv "•> *««(«)} f o r which
(1) each enR is injective,

(2) for each i, e^^R^e^R or J(eik-ιR)^eikR for k=2, •••, n(ί), and

(3)
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As a left H-ήng is a QF-Z ring by [4], the maximal left quotient ring and the
maximal right quotient ring of a left iϊ-ring coincide by [9, Th. 1.4]. From
now on, let Q be the maximal quotient ring of a left jtf-ring R. We shall study
the structure of Q. Since maximal quotient rings and left i/-rings are Morita-
invariant [7], in order to investigate the problem whether Q is a left //-ring or
not, we may restrict our attention to basic left iϊ-rings. Therefore, hereafter,
we assume that R is a basic left iϊ-ring and E is a complete set of orghogonal
primitive idempotents of R. Then E is arranged as E— {elly •••, elnd), •••, emV •••,
emn(m)} for which

(1) each eaR is injective,
(2) for each i, J{eik.xR)^eikR for k=2, •••, n(i).

Definition [10, p. 153]. A primitive idempotent e is called S-pritnitive
if the simple module eRjeJ{R) is isomorphic to a minimal right ideal.

We shall use the H.H. Storrer's characterization of the maximal quotient
ring of a perfect ring [10].

Since each enR(i=l, •••, m) is injective, there exists a unique g{ in E such
that (enR; Kg;) is an injective pair, that is, S(eilR)^giRIJ(giR) and S(Rgi)^
R*ιιlJfβ*ii) (cf. K.R. Fuller [1, Th. 3.1]). Each pair {eiv gi} ( ί = l , -ym) is
very important for studying left i/-rings.

Now we shall determine all 5-primitive idempotents in E. Let e be an
idempotent in E. It is known that e is 5-primitive if and only if S(RR)e^0
[10, Lemma 2.3]. Since £(#*)=θ?-ΐ (.*ii S(eikR)y S{eikR)^S{ejtR) for iφj
and S(eikR)^S(eit R), we have S(RR)eφ0 if and only if S(eikR)e^0 for a unique
ί. Therefore ^ is an S-primitive idempotent if and only if e=g{ for some i.
Then E'=igly ~ ygm} is the set of all *S-ρrimitive idempotents in E. Put
g=g1

Jι Vgm and D=RgR. Storrer has shown that D=RgR is the minimal
dense ideal of R and Q is isomorphic to HomR(DRy DR) = HomR(DRi RR) by
[10, Prop. 1.2 and Th. 2.5]. Since R is a two-sided artinian ring, Q is a left
artinian ring by [10, Prop. 3.1].

Lemma 1. For each e in Ey e is also a primitive idempotent in Q. There-
fore S(eQ) is a simple Q-module.

Proof. Since eR is a uniform right ideal, eQ is also a uniform rihgt ideal
of Q by [30, Prop. 4.4]. Thus eQ is indecomposable.

By the above lemma, we know that E=(eu, •••, eln(lh •••, eml, ~9eMu(m)} is
also a complete set of orghogonal primitive idempotents of Q. We shall prove
that Q is left ίf-ring by showing that E satisfies the conditions (1), (2) and
(3) of left i/-rings. We again note that left ίf-rings are also right artinian by
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[7, Th. 3] and the maximal quotient ring Q of R is a left artinian ring.

Proposition 2. In the maximal quotient ring Q, (enQ; Qg{) is an injective
pair for i~l,~ ,m. Consequently enQ and Qgt are injective Q-modules.

Proof. By assumption, let φ: giR-^S(eilR) be an epimorphism. φ
extends uniquely to a Q-homomorphism φ*: £,(?-> S(enR)Q by [10, Prop. 4.3].
Since S(enR)Q=S(enQ)y φ* is also an epimorphism and hence giQ/J(giQ)^
S(enQ). Since Q is the maximal left quotient ring of R, we have symmetrically
that QeiιiJ{Qeiι)^S{Qgi). By [1, Th. 3.1], (enQ; Qgt) is an injective pair for

Next we shall study isomorphisms among the indecomposable right ideals
eikQ. Let fvj2 be idempotents in E and we assume that there exists a monomor-
phism θif.R-^^R such that Im θ=J(f2R). Then by [10, Prop. 4], θ can be
uniquely extended to a Q-homomorphism θ*: fxQ->f2Q. We shall prove the
following result.

Proposition 3. (1) If f2 is not S-primitive, then the extension θ*:fxQ->
f2Q is an isomorphism.

(2) If f2 is S-primitive, then θ*: fλQ~*f2Q is a monomorphism such that
Im θ*=J(f2Q).

θ
Proof. From O-^f.R-^f.R-^M-*0, where M=f2Rj]{f2R\ we have the

following exact sequence

(9*
0 -+fxQ = Hom(DJιR) -*f2Q=Hom(D,f2R) -> Hom(D, M).

(1) It is sufficient to prove that Hom(D, M)=0. We assume that there
exists a non-zero homomorphism φ:D->M. Since D=R(g1-\ \-gm)R by
[10, Th. 2.5], there exist some i and some x&R such that Aĝ  jRcJiKer φ. Then
giRIJ(SiR)^M- Therefore g{R^f2R. This contradicts that f2 is not S-pri-
mitive. Consequently we have that Hom(Z), M)=0, and so θ* is an isomor-
phism.

(2) First we shall show that Im ^*4=/2Q. Since/2 is iS-primitive, we have
that}2RczD and so D=f2R®{Df)(l-f2)R)- Therefore the projection a: D->
f2R is not contained in Im 0*£Hom(D, J(f2 R)). For any φe/(/ 2 Q), φ is not
an epimorphism as i?-homomorphism. In fact, we shall show that any epimor-
phism a: D-*f2R generates f2Q. Let β be any homomorphism D-+f?R and
a': f2R-*D the split homomorphism of a. Then we have β=aa'β. Therefore
any φ^J(f2Q) is contained in Im#* and so Im0*=/(/ 2 Q), because J(f2Q) is
the unique maximal submodule of f2Q.

Now we shall prove our main theorem.
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Theorem 4. Let R be a left H-ring. Then the maximal quotient ring Q
of Ris also an H-ring.

Proof. Let E= {eu, •••, ein(lh •••, emι, •••, emn(m)} be a complete set of ortho-

gonal primitive idempotents of R such that

(1) each enR is injective,

(2) for each i, J{eik.xR)^eikR for k=2, ••, n(i).

We have already known that Q is a left artinian ring and E is also a complete
set of orthogonal primitive idempotents of Q. By Proposition 2, each έ?αQ is an
injective Q-module and by Proposition 3, eikQ^eik_xQ or eikQ^J{eik_ιQ) k—2, •••,
n{i) for each i. We shall show that eikQ^eJtQ if i Φ j . If eikQ^ejtQ for some
i Φ j , &, ty then % » 0 ) β % Q ) . Since S(^Q) = S(^i?)£ and S(ejtQ) =
S(ejtR)Q, we have S(eikR)^S(ejtR) as Λ-modules by [10, Th. 4.5]. This
contradicts the assumption of E.

We recall that gi is the element of E such that (enR; Rg^) is an injective pair
for i=ίy '",m. Here we define two mappings

σ: {1, •• ,TW}->{1, --,m}

p: {1, ..-, m}->{\, .-, n(l)} U - U {1, •••, n(m)}
by the rule σ(t) — k and ρ(ϊ) — t if gi = ekt. We note that {cr(l), •• ,cr(/«)}^

{1, -.,ifi> and l^p(i)^ιi(σ(i)).
Here we shall define a special left i/-ring.

Definition [7, p. 94]. A left H-ήng is 7 > ^ (*) if {σ(l), — ,σ(wi)} is a

permutation of {1, ••-,;«} and p(ί)=w(<r(i)) for all ί = l , •• ,w.

Cororally. Lei R be a left H-ring. Then the maximal quotient ring Q of
R is a QF-ring if and only if R is Type (*).

Proof. It is easy by Proposition 3.

Example. Let T be a local QF-ring, J=J(T) and S=S(T).
ϊT T T\ ;0 0 5\

Put V=\j T τ\ and wWo 0 51. The factor ring R = V/W is a left

\ / / 77 \0 0 s!
H-ήng such that e1R is injective, J(e1R)^e2R and J{e^)^eJR9 where ί?, is the
matrix such that its (t, /)-ρosition is 1 and all other entries are zero. R is repre-

IT T T\

sented as follows: I / T TI where T= T/S. Since {eλR\ Re2) is injective pair by

[8, § 2], the minimal dense ideal is Re2R. Therefore the maximal quotient ring
Q of R is a left ίf-ring such that exQ is an injective module, exQ^e2Q and
J(e2Q)^e3Q. Since e.Qtf^Q)^ S^Q), we have that
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Q), eιQ)^eιQeιIS{exQeι\ UoinQ(J(eιQ)J(eιQ))^eιQeιIS(eιQeι).

Moreover, since e1Qe1=e1Re1= T by [10, Lemma 4.2], Q is

jT T T\

represented as a matrix ring I T T T I.

\j J τl
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