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This is a continuation of the previous paper with the same title which
will be referred to as [I]. Throughout the paper, A denotes a (left and right)
artinian ring with identity 1, J its Jacobson radical and unless otherwise stated,
all modules are (unital and) finitely generated.

Let #» be any natural number. Then we say that 4 is of right n-th local
(resp. colocal) type in case for every indecomposable right 4-module M, the
n-th top top"M:=M|M]" (resp. the n-th socle soc”M:= the left annihilator of
J” in M) of M is indecomposable.

In this paper, we first examine an artinian ring which is of both left and
right z-th local type (in this case the artinian ring is said to be of two-sided n-th
local type or simply n-th local type) and give some necessary and sufficient con-
ditions to be of this type, in particular for an algebra, we characterize this type
by a structure of 4 (2.5). Note that this type of rings include the class of serial
rings ([4]). Next, we come back to the case z=2 and restrict our interest to
the case where 4 is an algebra over an algebraically closed field &, and give
some further necessary conditions for 4 to be of right 2nd local type (3.4).
(It is shown in [I, Example 2] that the necessary conditions stated in [I, Theo-
rem 1] are not sufficient for A to be of right 2nd local type.) These conditions
contain the list of all possible ‘“‘shapes” of indecomposable projective right
A-modules. (That of indecomposable projective left A-modules follows direct-
ly from [I, Theorem 1].) As an application, we give some necessary and suffi-
cient conditions for a left serial algebra over an algebraically closed field to be
of right 2nd local type (4.1). It should be noted that by [I, Theorem 1], an
algebra over an algebraically closed field which is of right 2nd local type is
left serial if every indecomposable projective left A-module P is of height>4
(i.e. J?P=+0). We remark that these theorems remain valid also in the case
where the base field % is a splitting field for 4. The last section is devoted to
some examples.

The author would like to thank Professor T. Sumioka for his useful advice
and Professor M. Harada for his careful reading of the preprint.
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1. Preliminaries

The notation and terminology used throughout this paper is the same
as that used in [I]. We may and will assume that 4 is a basic ring. For the
convenience of readers, we quote some propositions from [I] and [6] which
are frequently used in the sequel.

Theorem 1.1 ([I, Theorem 1]). Let A be a ring with selfduality which
is of right 2nd local type and e in pi(A). Then

(1) J?e is a uniserial waist in Ae if JPe=0,

(2) eJ™ is a direct sum of local modules for every m=>2,

(3) for each local direct summand L of e]? LJ* is uniserial (thus eJ* is a
direct sum of uniserial modules). Further if A is an algebra, we have

(4) Ae is uniserial if h(Ae)>5.

In particular if the base field k is, in addition, an algebraically closed field,
then

(5) Ae is uniserial if h(Ae)>4,
and then

(6) eJ?is a direct sum of uniserial modules. /]

We denote by 1, the identity map of M for any A-module M.

Lemma 1.2 ([6, Lemma 1.1]). Let M,, M, and T be submodules of a left
A-module M such that M=M,+M, and T=M,NM, If T' is a submodule
of T and @: M,—>M, is an extension of 1y, then putting M, :=(M,) (1,,—)
the following hold.

(1) M=M/+M,.

) M!NM~(T) (1,—9).

(3) The epimorphism (15, —p): M\—>M,’ induces epimorphisms M,|T'—M,’
and T|T'—-M, N\ M,, in particular |M,/NM,|<|T|—|T']. /|

Lemma 1.3 ([6, Lemma 1.2]). Let M,, M, and T be submodules of a
left A-module M such that M=M,+M, and T=M,NM,. Then

(1) 14 is extendable to a homomorphism M,— M, iff M=M,® M, for
some submodule M, of M.

(2) 17 is not extendable to any homomorphism U— M, for any submodule
U of M, with T = U iff socM=socM,. /]

2. Artinian rings of n-th local type

In this section, we give some necessary and sufficient conditions for an
artinian ring 4 to be of n-th local type for any natural number #.

Lemma 2.1. Let n be any natural number and (E): 0—>S£[>L1€BL2§>M
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—0 be an exact sequence of right A-modules such that o,SS=L, and o,S<L,J"
L, where a=(a,, a;)*. Then top"M is decomposable.

Proof. 'The sequence (E) induces the following exact sequence:

a/ 18,
0 — za(S) — top"L, @ top" L, — top"M — 0

where z: L, @L,—top”"L,P top"L, is the canonical projection. Also, we have
Im o’==top”L, by the assumption. Hence top"M==((top"L,)/Im a’) D top"L, is
decomposable. /]
Lemma 2.2. Let (a, D)=(a;)7-1: edfe]— é [iA[I; be a homomorphism
i=1

where e, f; are in pi(A4), L==f;] and a; is a left multiplication by an element u;

in f; Je for each i=1, .-, n. Then (a, D) is j-fusible (j=1, -+, n) iff there are

some a; in f;Af; for each i j and there is some b in Ie such that w;=> au;+b
%

and a;1;<I; for each i=+j. In particular when (o, D) is j-fusible, we have Au;
<DVAu; of Te< Ju;; and Au;< 33 Au;+-Ie if 1,=f;1 for some ideal I of A.
ij [£3)

Proof. (a, D) is j-fusible iff we have a commutative diagram

de) 0% @ pa,

| Lo

edle] —21s f,A]I,
for some homomorphism ¢;: f;4/I,— f;A[I; which are left multiplications by
some elements a; in f;Af; for all i j iff u;=> au;+b and a,1;<I; for some
=

a; in f;Af; and b in I; (consequently b in Iie) only if u;€ >3 Au;+1e only if
=
Au; < 3V Au+-Te (if 1,=f;I for some ideal I of 4).
=
In case [;e< Ju;, we have Au;< gAu,- since Au;< ;Au;—l—]uj and Ju; is
57 =

small in 4u;. /l

Lemma 2.3 (cf. [1, Theorem 3.2]). Let n be any natural number. Then
the condition

(2R) a=(ay, ay)": S—=L, DL, is fusible if S is a simple right A-module,
L; are local right A-modules and a,S<L,J, a,S<L,]J".
implies the following

(2R)" Let (a0, D):=(aty, ,)": T— L, @DL, be a homomorphism of right A-
modules such that L, is local, L, is local and colocal of height>n and h(L,)<h(L,);
and oa;T<L;] for each i=1, 2 and o, is monic. Then (a, D) is 2-fusible.

Proof. Assume that (2R) holds and hypothesis of (2R)’ is satisfied. Then
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noting that & is monic since a; is, we have an exact sequence

B=Buf)

E) -T2 LoL, 0

which does not split since aT<(L,PL,)J. We have only to show that 3,L,
is a direct summand of M by [I, Proposition 1.2]. Note that 3, is monic since
o, is. Then putting M,:=g,(L,), M,:=B,L, and U:=RB,a)T), we have M
=M,+M, and U=M,NM,. Also, h(M,)>n, M; are local modules and M,
is, in addition, colocal. Further U<M,J and h(M,)<h(M,). Take any
simple submodule S ,< U and consider the map p=(p,, @,)*: S—M,P M, where
each @, is the inclusion map S—M;. Then ¢, S<U<M,]J and @,S<socM,
<M,]J" since M, is colocal of height>n. Hence @: S—M,PM, is fusible
by (2R). If it is 1-fusible, we have a commutative diagram

s 2% u,

o

for some yr: M,—M,. Then +) is monic since M, is colocal. Therefore +»
is an isomorphism since A(M,)<h(M,) and both M, and M, are local. Accord-
ingly, we may assume that @: S—M,PM, is 2-fusible. Thus there is a homo-
morphism @: M,—M, such that the diagram

S -24 m,

o

is commutative. Then M=M,+M,=M,/~+M, where M,:=(1,,,—) (M)
by (1.2). Also, |M/NM,|<|U]|, M/ is local, M/ NM,<M,] and h(M,')
<h(M,). Hence iterating this argument, we obtain M=M,’@M, for some
0+M/<M. Thus 8,L,=M,is a direct summand of M. //

2.4. Here, we do not assume that every module is finitely generated.

DEerINITION. Let 4 be a ring and M a right (or left) A-module. Then
M is called to be a highest module in case (M)=h(A ) (=h(,4)).

Proposition 2.4.1. The following statements for a ring A are equivalent:
(1) Ewvery highest right A-module is local iff it is colocal.

(2) Every highest indecomposable projective right A-module is injective.

(3) Ewvery highest indecomposable injective right A-module is projective.

(4) Every highest indecomposable right A-module is projective and injective.
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Proof. (1)=(2). Let M, be highest indecomposable projective and E,
an injective hull of M. Then since M is local, M is colocal by (1) and hence
E is colocal. Then again by (1), E is local. Therefore M=E since M<E
and (M)=Hh(E).

(2)=(4). Let M, be highest indecomposable and z: @ P;,—M a projec-

i€l
tive cover of M with each P; indecomposable. Then z canonically yields
the epimorphism z": @ P;/K;,—M where K;:=Ker (z|P;). Since M is highest,
H=34

P;/K; is highest for some i in I. Accordingly, P; is highest and K;=0 by (2).
Sec P; is isomorphic to a direct summand of M since P; is injective. Hence P;==
M since M is indecomposable. As a consequence, M is projective as well as
injective by (2).

(3)=(4). Let M, be highest indecomposable and o: M— @ E; an injective

i€l
hull of M with each E; indecomposable. Put M;:=Im o; for all 7 in I where

o=(0;)je;- Then o induces the monomorphism &': M— GEBI M;. Since M is

highest, M; is highest for some :&1. And, E; is highest. Then by (3), E;
is projective, in particular, local. Hence E;=M; and p;: M—E; is an epi-
morphism. Thus E; is isomorphic to a direct summand of M since E; is pro-
jective. Therefore M=E,; since M is indecomposable. As a consequence,
M is injective and projective.

The implications (4)=>(¢) are obvious for /=1, 2 and 3. //

Proposition 2.4.2. Let A be a ring with selfduality satisfying the following
condition:
(*) (R) Every highest indecomposable projective right A-module is co-
local; and
(L) Ewvery highest indecomposable projective left A-module is colocal.
Then all the conditions (1)~(4) in (2.4.1) and their left side versions hold.

Proof. (*) implies that every highest local right (left) A-module is pro-
jective and hence colocal. Then by selfduality of A4, (*) implies (1) in (2.4.1)
and its left side version. /]

RemARk. In case 4 is an algebra, (2.4.1) remains valid also under the
assumption that every module in consideration is finitely generated. For,
the injective hull of every simple right 4-module is finitely generated in this
case.

Theorem 2.5. Let A be a ring and n any natural number. Then the follow-
ing statements are equivalent:
(1) A s of n-th local type, i.e.
(R) A is of right n-th local type; and
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(L) A is of left n-th local type.

(2) (R) a=(ay, a;)": S=L,@BL, is fusible if S is a simple right A-module,
L; are local right A-modules and o,S<L,], a,S<L,]"; and

(L) The left side version of (2R).

(3) i) (R) For each e in pi(4), e]” is a uniserial waist in eA if e]"+0; and

(L) The left side version of (3—iR).

ii) (R) Every monomorphism S—L,]" is extendable to a homomorphism
L,—L, where L; are local right A-modules with 1<<h(L,\)<n and S is a simple sub-
module of L,; and

(L) The left side version of (3-iiR).

4) (R) Every indecomposable right A-module is local if it is of height>n;
and

(L) The left side version of (4R).

In particular, if A is an algebra, then the above conditions are equivalent to
(3-9).

Proof. We show the following implications: (1)=(2)=(3-), (2, 3-i)=
(3-ii), (3)=(2), (2, 3)=(4)=(1) and in case A is an algebra, we show (3-i)=
(4). By left-right symmetry, we have only to show (1R)=(2R)=(3-iL), (2R,
3-iR)=>(3-iiR), (3-i, 3-iiR)=(2R) and (2R, 3R)=>(4R), finally in case 4 is
an algebra, (3-i)=(4R). (Note the implication (4R)=>(1R) is trivial.)

(IR)=(2R). By (2.1), top"(Cok &) is decomposable, thus Cok « is decom-
posable by (1R). Hence a: S—L,@L, is fusible by [I, Proposition 1.3].

(2R)=>(3-iL). It is clear that /"¢ is uniserial by the proof of [I, Proposi-
tion 2.1]. Suppose J"¢=0. Then J"e=Au, for some O=u, in f,]"e\ f,J"*e
where f, is in pi(4). Let w,E f,]"e\ f;]/" e be any element where f;<pi(4)
and 1<m. Then by (2R), the map a=(a;, a,)": edleJ— (fL AlLJ"T)D(f.4/
foJ**Y) is fusible where a; are the left multiplications by u; since a;(ed/e])<
ST and ay(edle])< f,]7/f.J"*". In case it is 2-fusible, we have J"e=Au,
< Au, by (2.2) since J**'e=Ju,. In case a is 1-fusible, we get Au, < Au,+ J"*+e
= J*e+ J™*'e by (2.2). If m<n, then Au,< J"*'e and 4, € f, J"*'e, a contradiction.
Hence n<m and Au,< J"e. As a consequence, we obtain J*¢<Au, or Au,
< J®e. Now let ,X be any submodule of 4de. We show J7e<X if X< J".
Obviously, we may assume X < J”e. Suppose X< J". Then there is an ele-
ment x in X\ J". Here we may assume that x=fx for some f in pi(4) since
if fxe J"e for all f in pi(4), then x& J”e, a contradiction. Then by the above,
we obtain J"¢e<Ax since Ax<L J". Hence J"¢<Ax<X. Thus J”¢ is a waist
in Ae.

(2R, 3-iR)=(3-iiR). Let L, and L, be local right A-modules with 1
<KL,)<mn, S a simple submodule of L, and @,: S—L,J" any monomorphism.
Note that in this case, n<<h(L,) since 0+a,S<L,J". By (2R), we have that
(aty D):=(at, atz)": S—>L, DL, is fusible where a;: S—L, is the inclusion map.
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Assume that (o, D) is 1-fusible. Then noting that L, is colocal, L, is embedded
into L,. But this is impossible since A(L,)<n<h(L,). Hence (e, D) is 2-
fusible. 'Thus e, is extendable to a homomorphism L,—L,.

(3-1, 3-iR)=>(2R). We may assume that S=edje], L,=fA|X, L,=gA|
gJ ! (by 3-iR) for some e, f and g in pi(4), n<r and X < f4, further ; and
a, are nonzero maps given by left multiplications by some u& f]™e\ f]"*e=¢
(for 1<m) and vegJ’e\g] "+ =+ ¢, respectively.

In case m<n. We show A(L;)<n. Suppose h:=h(L;)>n. Then 0=
SIS fJ* and fJ*7! is a uniserial waist in f4 by (3-iR). k(fA/X)=Fh yields
fJ*'€X and hence X==fJ*"!, that is X=f]* for some s>h. Hence X=fJ"
since A(fA/X)=h. Therefore uc fJ* e\ f]*e since 0%a,S is simple. Thus
m=h—1>n, a contradiction. (Note that m is uniquely determined by u.)
As a consequence, a: S—L,@L, is 2-fusible by (3-iiR).

In case n<m. Av=]"e is a uniserial waist in 4e by (3-iL). Hence Au
<Av or Av<Au. Note since n<m, it holds that Au=J"e and uA=f]™ by
(3-1). Then ud X>uj implies that f/*"'<X and fJ"<4X. Hence X=fJ"*
=ufJ by (3-iR). If Au<Av, then u=av for some a in fAg and ag]*'=av]
=ufJ=X since vA=gJ" by (3-iR). Hence a: S—L,PL, is 1-fusible by (2.2).
Next if Av<Au, then v=au for some a€ gAf and aX=auJ=v]J=gJ+'. Hence
a: S—L,@L, is 2-fusible by (2.2).

(2R, 3R)=>(4R). By (2.3), (2R)’ in (2.3) holds. Let M be any right
A-module of height>n. We show that M is decomposed into local right
A-modules of height>n and indecomposable right A-modules of height<z by
induction on m:= |top M.

We may assume that 2<m since it is obvious in case m=1. Let M ='$1L,-
be an irredundant sum of local modules L;. By the hypothesis of induction,
we have M =L1+(§EM;) for some < such that M is a local module of height
>n or an indecorrtposable module of height<n. We may assume that k(L)
<h(M;) for each =2, .-, m. Put T:=Lln(£92M,-). Again, we may assume
T =0. Putting «;: T—L, and 6: T—>'Q:92 M:-— the inclusion maps, a;:==;0

r

where z;: @M;—M; is the canonical projection for each j=2, -, 7 and a:=

i=2

(a;)7-1, we have an exact sequence:
E) 0-T3 L& M) B .

By the hypothesis of induction, we have only to show that M is decomposable.
To this end, it is sufficient to show that a: T—L,PM,PH --- PM, is fusible.
Note that ¢, is monic. Since n<h(M), we have n<h(M;) for some i=2, -, 7,
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say z=7. Then M, is local and colocal by (3-i). Further since the sum M
=ﬁL; is irredundant, we have T<L,J and hence #»,T<M,J. Accordingly,
i=1

(aty, @,)7: T—L,®M, is 2-fusible by (2R)’. Thus there is a homomorphism
v: Li—M, such that a¢,=va,. Hence a: T—=L,POM,D --- &M, is r-fusible.
In fact, putting 8:=(7,0, 0, ---, 0): L, M,PH --- BM,_,—>M,, we have 8(a;) s,
=Ya,=a,.

(3-i))=(4R) in case A4 is an algebra. We may assume that n<h(4,). Let
M be any indecomposable right 4-module of height 2>n. Note that A/J*
satisfies (*) in (2.4.2) and has selfduality. Then applying (2.4.2) to the ring
A/J*, we obtain that M, is projective, that is, M =~eA/eJ" for some e in
pi(4). Thus M is local. /!

ReMARK. Theorem 2.5 is a generalization of Nakayama [4, Theorem 17].

3. Further necessary conditions

3.1. Throughout this section, the base field & is algebraically closed when
A is assumed to be an algebra. Here, we investigate further necessary condi-
tions for an algebra 4 to be of right 2nd local type and determine all the “shapes”
of indecomposable projective right 4-modules.

Lemma 3.1.1. Let A be an artinian ring, C and L be right A-submodules
of a right A-module M and let C <M]J" for a natural number h. Then (C+L)/L
<(MJL)J*. In particular, h(M)=h(M|L) iff MJ** <L,

Proof. Clear. /]

Lemma 3.1.2. Let A be an artinian ring of right 2nd local type, L,, L, be
local right A-modules and S a simple right A-module. Then any monomorphism
a=(ay, a)": S—=L,BL, is fusible if a,S<L,]J and a,S<L,]J>

Proof. Clear from the implication (1R)=(2R) in Theorem 2.5. /l

ReMARK. In the above, if further @,S<L,J? holds, then the conclusion
remains valid under a weaker assumption that the L; are indecomposable by
[1, Proposition 2.5.a].

Lemma 3.1.3. Let A be an algebra of right 2nd local type, M a quasi-
projective local right A-module and L, and L, be simple right A-submodules of
M such that 3<h(M|L,)=h(M|L,) (:=h). If there exist simple right A-modules
S; <(M|L,)J*" such that S,==S,, then we have L,=L,.

Proof. Let S be a simple right A-module and «;: S—.S; be isomorphisms.
Then by (3.1.2), (o, a,)": S—=M|L,BM|L, is fusible, say 2-fusible. Thus
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we have a commutative diagram

for some homomorphism B: M/L,—~M/L, S,<£Ker B yields A(Coim B)=h
by (3.1.1). Then B is an epimorphism since M/L, is local of height #. Accord-
ingly, B is an isomorphism since |M/L,|=|M/L,|. Quasi-projectivity of M
implies that B is liftable to an automorphism o of M. And, the projective
cover of M is of the form e4 for some e in pi(4) since M is local. Therefore
by projectivity of ed, v is liftable to an automorphism & of e4 which is a left
multiplication by an element ¢ in ede\efe. Then the restriction isomorphism
v': Li—L, of v is given by the left multiplication by Z:=t+eJe in ede/e]e.
But since we assume that the base field & is algebraically closed, 7’ is also given
by a right multiplication by an element ¢’ in k. As a consequence, L,=Lt’

:Ll' //

Proposition 3.1.4. Let A be an algebra of right 2nd local type. Then
for every quasi-projective local right A-module M of height >3, we have |soc M|
<2. Further if e is in pi(A4), 3<t and e]'"'/e]'=S,PS, with each S; simple,
then S\2S,.

Proof. Put h:=h(M)>3. Then there exists a simple right 4-module
S<MJ* 1. Assume that {soc M|>3. Then there are simple right A-modules
S, and S, such that SPS,PS, is a direct summand of soc M. Put M;:=M|S;
for each i. Then A(M,)=h(M,)=h(M)>3 by (3.1.1). Also, M, J*'>(S®
S)/S1=(SBS,)/S,<M,J"'. Hence by (3.1.3), we have S;=S,, a contradic-
tion. Therefore we must have |soc M| <2. Next, suppose eJ'"!/e]'=S,PDS,
with each S; simple but S;=S,. Then putting M;:=M/S; for each i=1, 2
where M:=eAfe]* is quasi-projective local, similarly we have A(M,)=h(M,)
=t>3 and M, J""'>(S,DS,)/S,=(S,BS,)/S,<M,J*"'. Then S,=S, by (3.1.3),
a contradiction. //

Corollary 3.1.5. Let A be an algebra of right 2nd local type and e in pi(A4).
Then e]? is a direct sum of at most two uniserial modules.

Proof. Clear from (1.1; 6) and (3.1.4).

RemMark. [I, Example 2] was a counter example of sufficiency of the
necessary conditions stated in (1.1) for 4 to be of right 2nd local type. This
example does not satisfy the condition stated in (3.1.4).

3.2 In case ¢J? is uniserial.
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Proposition 3.2.1. Let A be an algebra of right 2nd local type, e in pi(A4).
Suppose e]? is uniserial and |soc (eA)|=1. Then eA is uniserial if h(ed)>=4.

Proof. Let D:=Hom, (?, k) be the usual selfduality of 4. Then since
eJ is colocal and of height>3, D(e]) is local and of height>3. Hence D(e])
is colocal by (1.1), thus e is local. Therefore e4 is uniserial since ¢J? is uni-
serial, //

Lemma 3.2.2. Let A be a ring, M, a module and S, a submodule of M.
Then S is a semisimple derect summand of M iff MJ N S=0. In particular, soc M
<M] iff M has no simple direct summand.

Proof. (=). If M=S®X for some X, <M, with S semisimple, then
MJ]=X] and SNMJ=SNXJ=0.

(=). Suppose that MJNS=0. Then S=(S+M]J)/M] and M/M]=
(S+MDH/MJDX|/M] for some X, with MJ<X<M. Therefore S is semi-
simple and M=S+MJ+X=S+X since MJ is small in M. Further (S+M]J)
NX<M]J] implies that SNX<MJ and SNX=SNSNX)SNMJ=0.
Thus M=S®X. /]

Proposition 3.2.3. Let A be an algebra of right 2nd local type, e in pi(4).
Suppose that e]? is uniserial and |soc(eA)|=2. Then e¢]=X@Y for some
X, and Y ,<e] such that X is simple; and Y is a uniserial module (in case h(eA)
>4) or a colocal module of height 2 (in case h(eA)=3).

Proof. By assumption, we have soc (¢J)=soc (e4)<LeJ?. Hence by (3.2.2),
it follows from |soc(ef)|=2 that ¢e/=X@Y with X simple and Y colocal.

In case h(ed)=3, h(Y)=h(e])=2 since X is simple. Thus Y is colocal
and of height 2.

In case h(eA)>4. Since X is simple, ¢/*=Y]. Thus Y] is uniserial.
Further A(Y)>3 since 0%¢/*=Y ]2 Hence Y is local by the same argument
as in the proof of (3.2.1). Therefore Y is uniserial. /]

3.3. In case e¢J? is a direct sum of two uniserial modules.

Lemma 3.3.1. Let A be a ring, M a right A-module and L a right A-
submodule of M. Then the following statements are equivalent:

(1) LJj=LnNM].

(2) M=L+X and |top M|=|top L|-+ |top X| for some X , <M.

(3) Every sum L=§TJL,- with each L; local and m= |top L| can be extended
to a sum M=§}L;+$X,~ with each X; local and m+n= |top M|.
In particular, if both L and M are modules of height 2 and without simple
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direct summands, then all the conditions (1)-(3) hold.

Proof. Let m: M—top M be the canonical projection.

(I)=(2). We have top M==(L)P=(X') for some X} with MJ<X'<M.
Let p: P—=(X") be a projective cover of z(X’). Then p=ng for a homo-
morphism ¢: P—»X'. Put X:=Im ¢q. Then M=L+4+X'=L+X+MJ=L+X.
Also, |z(X")|=|top P|=|top X| for Ker g<Ker p=P]. Further |»(L)|=
[top L| by (1). Hence |top M|= |top L| -+ |top X]|.

(2) = (3). Clear.

(2)=(1). Noting that Y/ <Y NM] for every Y ,<M, we have |top M|
—|#(L)+=(X)| < |7(L)| +|=(X)| <|top L|+]|top X|=|top M|. Thus
|w(L)|=|top L| i.e. |LJ|=|LNMJ|. Hence L]=LNM].

If both L and M are modules of height 2 and without simple direct sum-
mands, then L J=soc L=LNsoc M=LN M] by (3.2.2). Hence (1)~(3) hold. //

Proposition 3.3.2. Let A be an algebra of right 2nd local type and e in
pi(A). 1If e]J? is a direct sum of two uniserial right A-modules, then so is e].

Proof. Assume that the hypothesis of the proposition is satisfied and
put P:=eAJeJ3. Then P is a quasi-projective local right 4-module of height
3. By (3.1.4) and the assumption that ¢J? is a direct sum of two uniserial mod-
ules, we have 2=|PJ? <|soc PJ|=|soc P|<2. Hence soc PJ=P]? i.e.

PJ has no simple direct summand by (3.2.2). In particular, if P_]=$L,~ is

an irredundant sum of local modules L;, then A(L;)=2 for all 7 and every partial
sum >)L; with 7€ {1, ---, n} has no simple direct summand. We claim the
H g .

following:

(a) Every colocal submodule of P] is uniserial.
(b) Let P]=éL; be any irredundant sum of local modules L;. If L;
i=1

and L; are colocal for some 77 in {1, -+, n}, then soc L;=soc L;.

Proof of (a). Let L be a colocal submodule of PJ. If L is simple, then
the assertion is trivial. So we may assume that A(L)=2. Put S:=soc L
(=LJ). Then PJ*>LJ=S and PJ’=S®T for some simple module 7', by
assumption. Also, ST by (3.1.4). This implies that P/S is quasi-projec-
tive. Hence |soc P/S|<2 by (3.1.4). It follows from LNPJ?=S that 2>
|soc P[S|>|(L/S)®B(PJ?S)|=|L/S|+1. Hence L/S is simple i.e. L is
uniserial.

Proof of (b). Suppose that soc L;=soc L;=S. Then since L;+L; has
no simple direct summand, soc (L;+L;)=(L;+L;)J=L;J+L;J=S is simple.
Hence L;+L; is uniserial by (a). Thus L;=L;.

Now we come back to the proof of the proposition. We have soc P=soc
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(PJ)=PJ*=S@®T for some simple modules S, and 7T, with ST by (3.1.4).
We next show that PJ is a direct sum of two uniserial modules. Otherwise, by
(b), PJ has a local submodule L of height 2 which is not colocal i.e. soc L=S
@T. Define injections «;: S—L|/T and «,: S—P in the obvious way. Then
by (3.1.2), (&, D):=(a;, a,)": S—(L/T)PP is fusible. If it is 1-fusible, then
@a,=a, for some @: P—L|T and 2=h(L|T) > h(Im ¢)=h(Coim ¢)=3 by (3.1.1).
This contradiction shows that («, D) is 2-fusible i.e. pa,=a, for some @: L|T
— PJ (note that Im y»<P]J for any homomorphism +: L/T— P since h(L|T)
=2 and soc?P=P]) where @ is monic since @ does not vanish the simple socle
of L/T. Accordingly, PJ has a uniserial submodule L, of height 2 and with
soc L;=S. Similarly, PJ has a uniserial submodule L, of height 2 and with

soc L,=T. By (3.3.1), there is an irredundant sum PJ =i‘,Li of local modules

L;, M=#=L@L, implies that 3<# and soc L,;=S®T for all >3 by (b). Ap-
plying the same argument as above to L:=L,, we have pa,=a, for some ¢:
L/T—PJ]. Put N:=¢ (L/T). If N=L, then N+L, is not colocal by (a)
and then soc L;S=soc (N+L;). Hence by (1.3; 2), there is a map »: N—L,
such that no,=6, where 8,: S— L, is the inclusion map. If N=L, putting
n=1, we also have ya,=0,. Let n: L—L|/T be the canonical projection,
0,: S— L the inclusion map and put A:=x@z. Then we have a commutative
diagram:

7r P 7

L L/T N L,
elI alI azT 04
S S — S S .

Hence A0,=0, and L;+L,=Ly®L, where L, :=(1;,—\) (L;)=L/S. Also,
soc L/=T and h(Ly')=2. Therefore PJ=(L,+Ly)+L,+ -+ +L,=(L,+Ls")+
L,+ -+ +L,. This contradicts (b). As a consequence, P/=L,@®L,. Now
we have that e¢] is decomposable since top*(ef)=e]J/eJ>=P] is decomposable.
Also, |soc (ef)|=2 since 2=/soc (¢J?)| <|soc (¢J)| <|soc (e4)| <2. Hence
eJ=X@Y with both X and Y colocal. Then both XJ and Y] are uniserial
since eJ/?2=XJ@Y]. Further 2=|top PJ|=eJ/eJ?|=|top XDPtop Y| yields
that both X and Y are local thus uniserial. /!

Summarizing the above propositions and (1.1), we obtain the following

Theorem 3.4. Let A be an algebra (over an algebraically closed field)
which is of right 2nd local type and let e be in pi(A). Then
(L) (1) J? is a uniserial waist in Ae if J?e=0.
(2) Ae is uniserial if h(Ae)>4.
(3) Therefore the structure of Ae s one of the following:
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(Ly) Ae s unmserial.
(Ly) h(Ae)=2 and Ae is not uniserial.
(L;) h(Ae)=3 and Ae is colocal but not uniserial.
(R) (1) eJ? is a direct sum of at most two uniserial right A-modules.
(2) |soc L| <2 for each quasi-projective local right A-module L of height
>3.
(3) If ]t e]'=S\PS, with each S; a simple right A-module, then
S22, for each t>3.
(4) The structure of eA is one of the following:
(Ry) eA is uniserial.
(Ry) h(ed)=2, eA is not uniserial and |soc (e4)| >3.
(R3)  h(ed)=3, eA is colocal but not uniserial.
(R) HeA)=3, eJ=XDPY where X, is simple and Y 4 is a colocal but
not uniserial module of height 2.
(Rs) ef is a direct sum of two (nonzero) uniserial right A-modules. ||

ReMARK. (1) All these types actually appear in examples (see Example
1 in section 5).

(2) In general, the conditions in (3.4) are not sufficient for algebras to
be of right 2nd local type (see Example 4 in section 5).

4. Left serial algebras of right 2nd local type

Throughout this section, our ring A4 is a left serial ring and the base field
k is algebraically closed when A is considered as an algebra. We know by
(1.1) that most of algebras of right 2nd local type is left serial. So in this sec-
tion, we examine the left serial case and show that in this case the necessary
conditions obtained in section 3 are sufficient for an algebra 4 to be of right
2nd local type modifying the proof of Sumioka [6, Proposition 3.8]. Namely,
we show:

Theorem 4.1. Let A be a left serial algebra over an algebraically closed
field k. Then the following statements are equivalent:

(1) A s of right 2nd local type.

(2) e] is a direct sum of at most two uniserial modules if h(eA)=>3 for each
e in pi(A4).

(3) Ewvery indecomposable right A-module is local if it is of height>3.

ReEMARK. This theorem is similar to [8, Proposition 4.4].

4.2. We quote the following definitions and propositions concerning
a left serial ring 4 from Sumioka [6].

Let A be a left serial ring, L a uniserial left A-module of length » and
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put L;:=soc’L and D,(L):=End,(top L;) for each i=1, ---, n. Then Dy(L)
are division rings. For #>i>j>1, any element ®; in D,(L) is induced by
an endomorphism @, of L; since L, is quasi-projective, and ¢, induces an ele-
ment @; in Dy(L). We define a map \;;: D(L)—DjL) by (#;)\;j=®;. Then
as easily seen, \;; are well-defined and ring monomorphisms with A\ ;=N
for all 7, j and / with #>7>j>[>1. Hence by the maps A;;, we can regard
the sequence D,(L), Dy(L), -+, D,(L) as a descending chain of division rings.

Lemma 4.2.1 ([6, Lemma 3.1]). Let A be a left serial ring. Then the
following conditions are equivalent for a uniserial module 4L of length n and a natural
number r<mn:

(1) DAL)=Dy(L).

(2) Ewvery automorphism o of soc L is extendable to an automorphism of
L if a is extendable to an automorphism of soc’L. /]

Let A be a left serial ring, S a simple left A-module and L a uniserial left
A-module of length>2. We denote by ¢(S) the number of isomorphism
classes of uniserial left 4-modules of length 2 whose socles are isomorphic to
S and put m(L):=dim D,(L)p,;). Then we have

Lemma 4.2.2 ([6, Lemma 3.3]). Let A be a left serial ring and e in pi(A4).
Then |efle]?| <2 iff c(soc L)+m(L)<3 for every unmiserial left A-module L of
length>2 and with soc L=<Ae|]e. /]

Lemma 4.2.3 ([6, Lemma 4.3]). Let A be a left serial ring, e in pi(4) and
r>1. Then the following conditions are equivalent:

(1) For any uniserial modules L, and L, such that soc L,=<Ae|Je and r<
|L,| < |L,|, any isomorphism a: soc L,— soc L, is extendable to a homomorphism
L—L, if a is extendable to a homomorphism soc’L,— soc’L,.

(2) eJr'is a direct sum of uniserial modules. /]

DerINITION. Let A be a left serial ring. Then we say that a simple left
A-module S is of V-type in case S=Ae/Je for some e in pi(4) such that e]
is a direct sum of at most two uniserial right 4-modules.

Lemma 4.3. Let A be a left serial algebra which satisfies the condition
(2) in (4.1) and S a simple left A-module. If S=<soc L for some left A-module
L of height>3, then S is of V-type.

Proof. Let S==Ae/Je where e is in pi(4). By the selfduality D:=Hom,
(2, k), we have eA=D(E(Ae[Je))==D(E(L)) where E(—) denotes the injective
hull of (—). This implies that k(ed)>h(L)>3. Hence the assertion follows
from the condition (2) in (4.1). /]

Lemma 4.4. Let A be a left serial ring and let L, and L, be uniserial left
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A-modules such that 2<|L,|<|L,| and soc L, is of V-type. Then every iso-
morphism a: soc Li—>soc L, is extendable to a homomorphism L,—L, if o is ex-
tendable to a homomorphism soc’L,—> soc?L,.

Proof. Clear from (4.2.3). /]

Let 4 be a left serial algebra. Then since we assume that the base filed
k is algebraically closed, we have D\(L)=D,(L)= --- =D,(L) (=k) and hence
m(L)=1 for every uniserial left 4-module L. Following the terminology of
[7] or [6], all simple left A-modules are of first kind in this case. This is
equivalent to say that ef/eJ? is (zero or) square-free (i.e. a direct sum of pairwise
nonisomorphic simple right 4-modules) for each e in pi(4).

Lemma 4.5 (Cf. [6, Lemma 3.4]). Let A be a left serial algebra and let
L, and L, be uniserial modules such that 2<|L,|<|L,| and S:=soc L,=soc L,
is of V-type. If soc’L,=soc’L,, then amy isomorphism «: soc L,—soc L, is
extendable to a monomorphism L,— L,.

Proof. Clear from (4.2.1) and (4.4). /]

Lemma 4.6. Let A be a left serial ring and L; a uniserial left A-module
of length>2 and o;: S— L; a homomorphism for each i=1, ---, n where S is a

simple left A-module of V-type and n>3. If 0— SgéLiﬁM»O is an exact
sequence with a=(ct;)i%1, then M is decomposable.

Proof. This follows from (4.4) and the proof of [6, Lemma 3.5]. /]

Lemma 4.7. Let A be a left serial algebra satisfying the condition (2) in
(4.1) and let M be a left A-module. Then M is indecomposable with |top M |
=2 iff M=L,+L, for some uniserial left A-modules L; with 2<|L,| < |L,| such
that S:=L,N L, is simple and the identity map 15 of S is not extendable to any
homomorphism soc’L,— soc’L,. Moreover in this case M is colocal.

Proof. (<) and S=soc M follow immediately from (1.3).

(=). It is clear that A(M)>2. If h(M)=2, the assertion is obvious.
Therefore we may assume that A(M)>3. Then M=L,+L, for some uni-
serial modules L, and L, such that L,NL,=+0 and 2<|L,|<|L,| >3. Thus
(soc L,==) soc L, is of V-type by (4.3). By (4.4), the rest of the proof is quite
similar to that of [6, Proposition 3.6]. /]

Corollary 4.7.1. Let A be a left serial ring and M a colocal left A-module
such that soc M is of V-type and |top M|=2. Then M=L,+L, for some uni-
serial left A-modules L; with 2<|L,| <|L,| such that S:=soc M=L,N L, and
15 is not extendable to any homomorphism soc?L,— soc?L,. /]



358 H. AsasHIBA

REMARK. In the above, we have h(M)=h(L,)=|L,|. So the number
s(M):=min {|L,|, |L,|}=|M|—h(M)+1 is uniquely determined by M. Fur-
ther we define s(L):=|L| for every uniserial left 4-module L.

Lemma 4.8. Let A be a left serial algebra and let L be a uniserial left
A-module of length>?2 and M a colocal left A-module such that soc M is of V-type
and |top M|=2. If |L|<s(M), then any isomorphism a: soc L—>soc M is ex-
tendable to a homomorphism L— M.

Proof. This is a simple modification of the proof of the case (i) of [6,
Lemma 3.7]. Put S:=soc M. By Corollary 4.7.1, M=L,+L, for some
uniserial left A-modules L; with 2<|L,| <|L,| such that L,NL,=S and 1
is not extendable to any homomorphism soc’L,—>soc’L,. |L|<s(M) yields
|[L|<|L,|<|L,|. Since 15 is not extendable to any homomorphism L;,— L,,
we have soc’L,2gsoc’L, by (4.5) and the fact that S is of V-type. By (4.2.2),
¢(S)<2 since m(S)=1. Accordingly, soc’L=<soc?’L, or soc’L=<soc’L,. Hence
by (4.5), we infer that « is extendable to a homomorphism L— L; for some
i=1, 2 and thus to a homomorphism L— M. /I

Proposition 4.9. Let A be a left serial ring, S a simple left A-module of
V-type and L; colocal left A-modules with |top L;| <2 for all i=1, -+, n, in
particular let L, be uniserial and |L,| <s(L;) for all i=2, -+, n. Assume that
a sequence

O»Sﬁ@L;EM—»O

is exact. Then M is decomposable if |top (é L)|=3.

Proof. Put a:=(e;).Z;. Then we may assume that «;=0 for all z. If
|top L;| =2 for some j=2, -+, n, then by (4.8), (ot;, a;): S—L,DL; is 2-fusible.

Thus a: S— é}Li is j-fusible by the same argument as in the proof of the impli-

cation (2R, 3R)= (4R) in Theorem 2.5. Therefore M is decomposable. So
we may assume that L; are uniserial for all =1, -, . Then by (4.6), M is
decomposable. //

Lemma 4.10. Let A be a left serial ring and M an indecomposable left
A-module of height 2. Then soc M is homogeneous (i.e. a direct sum of copies
of one simple left A-module).

Proof. Let M =$Li be an irredundant sum of uniserial left A-modules.

Then since M is indecomposable of height 2, every partial sum L=2)L; with

i€l

Ic{l, ---, n} has no simple direct summand and hence soc L=JL by (3.2.2).
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Assume that soc M is not homogeneous and put soc M= @ S{"? with each
i=1

S; simple and S;2¢S; if i&j. Then 2<m. Put I;;={ie({l, -, n}|soc L,
=S} and M~:=ZL,. for each j=1, ---, m. Then for any IC {1, -+, m}, we

have soc (ZM) EJM 2 ZJL Z E soc L;== @S“) for some natural

JjEI €I

numbers ¢;. In partlcular soc M =S{ and soc (EM )~ S(” Hence

MID(E ;)=0, that is, M-M1€B(2M ;) is decomposable, a contradlctlon /!

The following corollary is of interest comparing with Kawada algebras
(131, [5D-
Corollary 4.11. Let A be a left serial algebra of right 2nd local type and

M an indecomposable right A-module. Then top M is homogeneous.

Proof. Clear from (4.11) noting that top M ==D(soc DM)=D(soc (soc*DM))
and the fact that soc?DM =D top*M is indecomposable left 4-module of height
2 (we may assume that A(M)>2 since the assertion is trivial in case A(M)=1)
where D is a selfduality of 4. /]

Lemma 4.12. Let A be a left serial ring and M an indecomposable left
A-module of height 2 such that soc M==S" where S is a simple left A-module of
V-type. Then M is colocal and |top M| <2.

Proof. It is sufficient to prove that M can be decomposed into colocal
left A-modules M; with |[top M;| <2 for any left A-module M of height 2
such that soc M=S" where S is a simple left A-module of V-type. We prove
this by induction on 7:=|top M |.

If n=1 or 2, the assertion is clear from (1.3). So we may assume that
n>3. By the hypothesis of induction, we have only to show that M is de-
composable. Hence we may assume that for any irredundant sum expression

Msz,. (with each L; uniserial) of M, |L;|=h(L;)=2 for all i. Let M:};L,.
be a'r; irredundant sum of uniserial left A-modules L,. Then again by‘—the
hypothesis of induction, M:Lﬁ—(‘@:%z M;) for some colocal left A-modules
M; with [top M;| <2. Also, we have 2=|L,| =s(M,) for all i=2, ---, m. Put-
ting S:=Llﬂ(£§M,-) and 7z;: ﬁd_azM,--—>M ; the canonical projections, we have
an exact sequence

053 Lo@M) B M=o

where a=(a;)i%1, B=(B:)iA, ai:=—1;, a;:=1s; for all j=2, -, m and B,
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are the inclusion maps. If S=0, then clearly M is decomposable. Thus
we may assume that .S is simple since L, is a uniserial left 4-module of length
2. 'Then by (4.9), M is decomposable for S is of V-type. /]

4.13. Proof of Theorem 4.1.
(3)=(1). Trivial.
(1)=(2). Noting that every colocal right A-module is uniserial since
A is a left serial algebra, we see that the cases (R;) and (R,) in Theorem 3.4
do not occur. Hence the condition (2) holds.
(2)=>(3). By selfduality of 4, the condition (3) is equivalent to the follow-
ing:
(3)" Every indecomposable left A-module is colocal if it is of height>3.
We show the implication (2)=>(3)’. Assume the condition (2) holds.
Let M be any left A-module of height>3. Then in order to verify the condi-
tion (3)’, it is sufficient to show that M is decomposed into (a): colocal left
A-modules M; of height>3 with |[top M;|<2; and (b): indecomposable
left 4-modules of height<2. We prove this by induction on z:=|top M|.

It is clear in case =1 or 2 by (4.7). Now assume n>3. Let Mzi_‘,L,- be

an irredundant sum of local left 4-modules L;,. Then by the hypothesis of

induction, M:Ll—l—(é M) such that M; is of (a)-type of the above for 7=2,
i=2

-+, r and is of (b)-type for i=r-1, ---, s. We may assume that |L,| <s(M;)
for each =2, -, 7 if r=s; and |L,| <2 if r<<s. Note that 1<<r since A(M)
>3. Again, by the hypothesis of induction, we have only to show that M

is decomposable. Therefore we may assume that T::Llﬂ(é} M;) is not
i=2
zero and |L;|>2. Let n;: @ M;— M; be the canonical projection for each
i=2

j=2, -+, s. 'Then we have an exact sequence
a s ﬁ
E) 0-T—>LB(BM)—>M—-0
i=2

where a=(a;)it1, B=(8:)i-i, ay=—1;, a;=1;z; for each j=2, -, s and B;
are the inclusion maps. We divide the argument into two cases: (i) |L,|>3;
and (ii) |L,|=2.

(i) In case |L;|>3. It follows r=s and soc L, is of V-type by (4.3).
If T is not simple, «; is extendable to a homomorphism L,—M; for each j=2,
.-+, s by (4.4) and (4.8) since soc’L,<7T. Then there js a uniserial left 4-mod-

lue L, such that |L/|<|L], M=L1'+(g‘92M,.) and ILI’H(Q%M;)|<|T| by

(1.2). Iterating this argument, we come to the case (ii) or the case (i) with
T simple. Hence we may assume that T'=soc L, is simple of V-type since |L,|
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>3. Then by (4.9), M is decomposable for n>3.

(ii) In case |L,|=2. Clearly, T=soc L, is simple. If a;=0 for some
j=2, +++, s in (E), then M; is a direct summand of M. Hence we may assume
that o;%0 for any j=2, -+, s. Then T'=<soc M; for every i=2, -, and T
is of V-type since A(M;)>3. If r=s, then by (4.9), M is decomposable. Thus
we may assume that r<<s. Since for each i=r+1, -+, 5, ;%0 and soc M;
is homogeneous by (4.10), we have soc M;=T"? for some ;. Then by (4.12),
M, is colocal and |top M;| <2 since T is of V-type. Hence M is decomposa-
ble by (4.9). /!

ReEMARK. (1) The implication (2)=(3) in (4.1) is still true in the case
where the base field & is not algebraically closed by [7] or [6, Lemma 3.7].

(2) Considering the results of [I, Theorem 2], (2.5) and (4.1), it is of
interest to characterize those algebras having the following property for any
fixed natural number 7:

Every indecomposable right module is local if it is of height>n.

5. Examples

In this section, we give some examples using bounden quiver algebras
over an algebraically closed field k as in [I]. (See [2] for details concerning
bounden quiver algebras.) For a vertex 7 of a bounden quiver, we denote by
e; the primitive idempotent corresponding to the vertex .

ExampLE 1. Algebras of right 2nd local type which have an e in pi(4)
of type (L) for some 1<{¢ <3 or of type (R;) for some 1< j<5 in Theorem 3.4.

(L)) and (R;): Take serial rings.

(L,) and (R,): Let 4 be the algebra defined by the following bounden
quiver

1 3

2
v,

4
AN
5 6

; Bjo; =0 forallgj.

-

Then clearly, 4 is of right 2nd local type since J?=0. Also, Ae, is of type
(L,) and e,4 is of type (R;).
(Ls) and (Rj): Take the algebra A4 defined in [I, Example 1], namely

B
aCl 52, Ba=ay=0,a’=vR.
Y
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Then as verified in [I], 4 is of right 2nd local type and Ae, is of type (L;) and
e, A is of type (R;).
(R,): Let A4 be the algebra defined by the following

3
g~
o AN
22— 1 5; Bd=vs¢E.
N /
')’\4/8

Then computing the Auslander-Reiten quiver (see [2]) of 4, we see that 4

has the following property:
Every indecomposable right 4-module is local if it is of height>3.

In particular, 4 is of right 2nd local type and e,4 is of type (R,).
(Rs): Let A be the following quiver algebra of type A

1-2-3<«4<5.

Then by [8, Proposition 4.4] or [6], A is of right (Ist) local type and hence
2nd local type. Also, e;4 is of type (R;).

ExaMpPLE 2. A left serial algebra of right 2nd local type which is not of

right (1st) local type.
Let A be the following bounden quiver algebra

5

aaéﬁ 0

1 3« —4; BS=Re=0.
&t
6

Then A is left serial and also by Theorem 4.1, 4 is of right 2nd local type.
In fact, ¢;4 is simple for each =1, 4, 5, 6; and e¢,4 is of height 2 and ;4 is
of height 3 having type (Rs). But by [8, Proposition 4.4], 4 is not of right
(1st) local type since e,4 is of type (R,).

ExampLE 3. An algebra of right 2nd local type having an indecomposable
right 4-module of height>3 that is not local.
Let A be the algebra defined by the following quiver of type A

l<-2—-3<«4<5.

Then as easily seen, 4 is of right 2nd local type and the following indecompo-
sable right 4-module is not local but it is of height 3:

1 1 1 1
k >k k >k > k.
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ExampLE 4. 'The conditions in Theorem 3.4 are not sufficient for algebras
to be of right 2nd local type in general.
Let A be the following quiver algebra of type D;

6
1
l—=2—-3<«4<5.

Then as easily verified, A satisfies all the conditions in (3.4). But it is not
of right 2nd local type. For instance, let M be the right A-module corre-
sponding to the following k-representation of QO

1]
kR—— kDk kDEk kP

o] [o%) [69]

Then M is indecomposable but top?M is decomposable:

k— k.
(1,1)

0
, Y
topM:(k—1>k<1—ka—>O)
k
1
0—-k<k—>k—0).
D ( Tk )
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