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Abstract
Online experiments have been transforming the field of behavioral research, enabling researchers to increase sample sizes, 
access diverse populations, lower the costs of data collection, and promote reproducibility. The field of developmental psy-
chology increasingly exploits such online testing approaches. Since infants cannot give explicit behavioral responses, one 
key outcome measure is infants’ gaze behavior. In the absence of automated eyetrackers in participants’ homes, automatic 
gaze classification from webcam data would make it possible to avoid painstaking manual coding. However, the lack of a 
controlled experimental environment may lead to various noise factors impeding automatic face detection or gaze classifica-
tion. We created an adult webcam dataset that systematically reproduced noise factors from infant webcam studies which 
might affect automated gaze coding accuracy. We varied participants’ left-right offset, distance to the camera, facial rotation, 
and the direction of the lighting source. Running two state-of-the-art classification algorithms (iCatcher+ and OWLET) 
revealed that facial detection performance was particularly affected by the lighting source, while gaze coding accuracy was 
consistently affected by the distance to the camera and lighting source. Morphing participants’ faces to be unidentifiable 
did not generally affect the results, suggesting facial anonymization could be used when making online video data publicly 
available, for purposes of further study and transparency. Our findings will guide improving study design for infant and adult 
participants during online experiments. Moreover, training algorithms using our dataset will allow researchers to improve 
robustness and allow developmental psychologists to leverage online testing more efficiently.

Keywords  Online experiment · Webcam video data · Automated gaze coding · Data quality · Open dataset

Introduction

Online experiments have enabled psychologists to col-
lect data efficiently, irrespective of participants’ locations 
(Semmelmann & Weigelt, 2018; Tran et al., 2017; Zaad-
noordijk et al., 2021; Zaadnoordijk & Cusack, 2022). In a 
typical online experiment, participants log in to an online 
experimental platform with their digital device and respond 
to prompts on screen like they would in a lab experiment. 
Often, this is possible in asynchronous fashion (e.g., via 
the browser), meaning participants can participate at a time 
convenient for them without making an appointment. This 
methodological innovation potentially facilitates robust sci-
ence, on the one hand by enlarging sample sizes due to the 
decreased time and financial costs. Furthermore, it can help 
to access more diverse populations when it comes to ethnic-
ity, language, or socioeconomic status due to the lack of geo-
graphical restrictions on participation. Online experiments 
may therefore contribute to overcoming pressing concerns 
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in the field of psychology such as the lack of reproducibility 
(Open Science Collaboration, 2015) and the dominance of 
culturally biased samples (Henrich et al., 2010).

In recent years, researchers focusing on child develop-
ment have increasingly used online experiments. The notable 
advancement of online methods in this field can be seen 
through the creation of platforms designed for infant behav-
ioral research (e.g., Lo et al., 2021; Scott & Schulz, 2017), 
international collaborative initiatives (e.g., Zaadnoordijk 
et al., 2021), guides for researchers (Kominsky et al., 2021; 
Rhodes et al., 2020, Zaadnoordijk & Cusack, 2022), and 
special journal issues on the topic (e.g., Tsuji et al., 2022). 
Online experiments are attractive to developmental psychol-
ogists, not only because the spread of COVID-19 made in-
person experiments difficult, but also because the problems 
of small sample sizes and lack of diversity are potentially 
exacerbated in participants recruited into labs.

Experimental studies on young children often have low 
statistical power due to small sample sizes and increased 
measurement noises (Bergmann et al., 2018; Byers-Hein-
lein et al., 2022; Davis-Kean & Ellis, 2019; DeBolt et al., 
2020; Oakes, 2017). One major reason is that bringing 
young children to the lab is an effortful process for all par-
ties involved. Online testing may alleviate this because it is 
convenient for both researchers and participants. Research-
ers can run online experiments with lower costs in terms of 
time and money compared with in-lab experiments. Doz-
ens of participants can be recruited for online experiments 
in a single day (Berinsky et al., 2012; Casler et al., 2013; 
Tran et al., 2017). Parents can participate in studies at a 
time that is convenient for them and their children. Children 
are likely to be calmer and more patient in their familiar 
home environment. These advantages potentially increase 
the possibilities of successful data collection and reduce 
dropouts. Another concern researchers have faced is biased 
samples, with most psychological studies being conducted 
on globally unrepresentative WEIRD (Western, Educated, 
Industrialized, Rich, and Democratic) populations (Hen-
rich et al., 2010; Singh et al., 2021). Because researchers 
can recruit anyone who has a computer connected to the 
Internet for online experiments, they have the potential to 
reach more diverse populations who cannot easily access 
in in-lab experiments, ranging from participants living in 
countries with no developmental labs to those in rural areas 
who live far from labs or those who work full time and 
cannot make daytime testing sessions (Bacon et al., 2021; 
Rhodes et al., 2020; Scott & Schulz, 2017; Zaadnoordijk & 
Cusack, 2022; but see Lourenco & Tasimi, 2020). Moreo-
ver, online testing may even improve the replicability and 
transparency of experimental protocols due to the absence 
of a human experimenter during asynchronous online test-
ing (Zaadnoordijk et al., 2021). Researchers have to specify 
in detail and automate the experimental design, protocol, 

and instructions. This reduces the possibility for researchers’ 
implicit flexible decisions to vary across participants and 
potentially makes the replication of the same experiment 
easier and more reliable.

A remaining major cost factor and potential source of 
subjectivity in online developmental studies is the need 
to manually tag the infant’s gaze direction in the recorded 
video. Gaze data is the main outcome measure in many 
experimental lab studies targeting infants and young chil-
dren, because they often cannot yet give explicit verbal or 
behavioral responses, and because looking behavior can 
reflect children’s attention, preference, and choices (Hagi-
hara et al., 2021). Gaze-based measures have been leveraged 
for a long time in various domains in the field of devel-
opmental science (e.g., Aslin 2007; Fantz, 1964; Starkey 
et al., 1983). In such studies, infants are typically seated 
in front of a computer screen which displays visual and/or 
auditory stimuli while their gaze behavior is monitored. In 
most cases, coarse gaze coding suffices for infant studies: 
Their gaze is either classified into two categories that divide 
gaze into those on or off the screen (“look” and “away”; 
Hamlin et al., 2007; Maye et al., 2002; Montague & Walker-
Andrews, 2001). This kind of coding is, for instance, used to 
measure infants’ degree of attention to the displayed stimuli. 
Slightly more detailed is a coding scheme into three catego-
ries of looking “left,” “right,” or “away” (Bailey & Plun-
kett, 2002; Fernald et al., 1998, 2008; Golinkoff et al., 1987, 
2013; Yuan & Fisher, 2009). This kind of scheme can be 
used to assess infants’ choice of one over another stimulus, 
for instance if two visual stimuli are displayed concurrently 
to the left and right of the screen. Despite these simple cod-
ing schemes, frame-by-frame manual coding from video 
data is quite labor-intensive, requiring extensive training 
and taking at least several times as long as the actual video 
duration (Erel et al., 2022, 2023; Friend & Keplinger, 2008; 
Venker et al., 2020). Although automatic eye trackers have 
nowadays often replaced such manual coding in laboratory 
settings, online experiments cannot leverage such devices.

A potential solution to the challenge of manual coding is 
automatic gaze coding from a webcam. Good automatic gaze 
coding solutions now exist for adult participants (Papoutsaki 
et al., 2016; Zhang et al., 2019). However, the data result-
ing from online experiments for young children often entail 
various environmental or behavioral noise factors that makes 
it more difficult to classify gaze directions automatically. 
Here, we operationally defined “noise” as a group of factors 
lowering the data quality in ways that affect gaze coding 
performance. Such factors, for instance, affect precision, the 
degree to which one can reproduce a true gaze location as 
measured by the eye-tracking device, and data loss, the data 
points that would be expected to be measured but have not 
been measured (Hessels & Hooge, 2019). Different from 
adults, young children cannot yet be instructed to sit still 
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facing the screen, and in the absence of a controlled experi-
mental setup and a trained experimenter in at-home experi-
ments, such noise factors can aggravate the quality of video 
data. For instance: infants’ faces are not always fully visible 
(Erel et al., 2023) or properly upright (Hessels, Cornelissen 
et al, 2015b; Niehorster et al., 2018); they are sometimes 
positioned on the left- or right-hand side of the webcam 
(Erel et al., 2022); and infants move their bodies during data 
collection (Dalrymple et al., 2018; Hessels, Andersson et al., 
2015a; Schlegelmilch & Wertz, 2019; Wass et al., 2014). In 
addition, environmental factors such as screen size of the 
used device and lighting conditions might vary.

Although a recent meta-analysis reported compatible 
effect sizes between developmental in-lab and online experi-
ments (Chuey et al., 2021), this meta-analysis only included 
moderated studies, that is, ones where an experimenter was 
present. However, many researchers have turned to asyn-
chronous testing to maximize the efficiency of data collec-
tion, such that different participants can engage in the same 
experiment in parallel without the presence of an experi-
menter (Zaadnoordijk et al., 2021). In such unmoderated 
cases, environmental and/or behavioral noise is likely harder 
to control, deteriorating video data quality and subsequently 
affecting automatic gaze coding. By instructing participants 
to be careful about noise factors just before the online exper-
iment, for instance using an information video, researchers 
can avoid such noise contamination. In fact, a recent study 
reported that instructions to caregivers enhanced the data 
quality for online testing to such an extent that it did not dif-
fer from in-lab testing concerning several noise factors such 
as lighting conditions (Bánki et al., 2022).

The current study aimed to elucidate to what extent such 
factors affect the accuracy of existing automated gaze clas-
sifiers. We chose to create an adult webcam dataset col-
lected in the lab that systematically reproduces environ-
mental or behavioral noise encountered in data from child 
online experiments, since only an adult in-lab experiment 
would allow us to systematically reproduce these factors in 
a well-controlled fashion. We first explored and classified 
frequently occurring noise factors from existing experimen-
tal child online gaze data (Hagihara et al., 2022). Based on 
this exploration, we selected four factors that are frequently 
observed and potentially controllable in online experiments: 
participants’ left-right offset, distance to the camera, facial 
rotation (roll), and the direction of the lighting source. Some 
other factors such as infants’ head movement or eye closing 
are hardly controllable, and other ones such as the webcam’s 
spatial resolution or facial occlusion can be implemented 
by post hoc editing of the video dataset (see supplementary 
Table S1). We collected webcam data while varying the 
selected factors independently, as our exploration suggested 
that they did not co-occur systematically. We also accounted 
for different screen sizes and ran two state-of-the-art gaze 

classification algorithms developed for infant studies: 
iCatcher+ (Erel et al., 2022, 2023) and OWLET (Werchan 
et al., 2022).

The present study contributes to facilitating developmen-
tal researchers’ access to automatic gaze coding in two ways. 
On the one hand, the results from the present study will 
allow researchers to prioritize improving on those noise fac-
tors during data collection that affect automatic gaze coding 
the most, for instance by providing targeted instructions for 
parents. On the other hand, the openly accessible webcam 
dataset will enable researchers to improve automated clas-
sification models. In tandem with the increased conducting 
of online testing, webcam-based gaze coding has become 
even more important. This is evident as many researchers 
have recently tackled relevant topics, such as evaluating the 
utility of existing automated gaze coding algorithms (Stef-
fan et al., 2024; Valtakari et al., 2023). More broadly, the 
results of the present study will also be informative beyond 
the field of child development, for researchers conducting 
online studies with special populations or in settings with 
significant environmental noise.

In the spirit of open science and in order to improve auto-
matic gaze coding algorithms, ideally everyone would be 
able to share their video data sets. However, because raw 
video data capturing participants’ faces cannot be fully 
anonymized and infants cannot provide consent by them-
selves, it is ethically challenging to make infant video data 
publicly available. This hinders transparency and reproduc-
ibility in online infant studies as well as any other infant 
studies whose conclusions rely on video data. A second 
aim of the present study was therefore to explore solutions 
to replace participants’ faces with non-existing ones using 
facial swapping techniques (e.g., Li et al., 2019; Nirkin et al., 
2019). Specifically, it is unclear to what extent the automated 
gaze coding accuracy before and after such facial anonymi-
zations is equivalent because swapping faces may destroy 
relevant visual features of the original data. To assess this, 
in a second analysis we applied a state-of-the-art facial 
anonymization technique (Deep Natural Anonymization; 
BrighterAI, n.d.) to our video dataset and compared auto-
matic gaze code classification from raw data to classification 
from the anonymized data.

Methods

Participants

A total of 60 adult participants were recruited in Dublin, Ire-
land, and Tokyo, Japan (30 participants from each site; Mean 
age = 26.5, SD = 7.6; 32 females, 27 males, one other). An 
additional participant engaged in the experimental session 
but was later excluded due to inattention and experimental 
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error. Eight participants wore glasses but were asked to 
take them off during the experiment. All of them could see 
the visual stimuli appropriately. Eighteen participants used 
contact lenses. Among the 60 participants, 47 agreed with 
making their video recordings publicly available (uploaded 
at https://​osf.​io/​48zvh/?​view_​only=​22a82​bc40b​ab441​
58966​0168a​48944​c5). All participants provided written 
consent before taking part in the experiment. This study 
was approved by the School of Psychology Research Ethics 
Committee, Trinity College Dublin (SPREC112021-16) and 
the Office for Life Science Research Ethics and Safety, The 
University of Tokyo (22-99).

Design

In the experiment, we manipulated four types of noise 
factors: participants’ left-right offset, distance to the web-
cam, facial rotation (roll), and the direction of the light-
ing source. The lighting source was manipulated between 
subjects whereas the other noise factors were manipulated 
within subjects. Overall, a single participant engaged in 27 
different conditions (3 left-right offsets x 3 distances to the 
webcam x 3 face rotations x 1 lighting source). Each condi-
tion consisted of 20 trials. In each trial, participants were 
asked to look at designated numbered discs, ranging from 
1 to 10, which were positioned in a horizontal line on the 

wall in front of them. Within each condition, each number 
was repeated twice. This manipulation was implemented 
to account for different screen sizes participants might use 
when participating from their home. Thus, 540 trials in 
total per participant were recorded, taking approximately 
30–40 mins. A schematic view of the experimental settings 
is shown in Fig. 1.

Apparatus and materials

For the monitor size manipulation, the numbered discs from 
1 to 10 were arranged horizontally on the wall so that the 
distance between the centers of adjacent discs was 8 cm each 
(Fig. 1a). Each numbered disc was 8 cm in width and 10 cm 
in height. The centers of the discs were 113 cm in height 
from the floor. On top of the numbered discs between 5 and 
6, we positioned a webcam (C615, Logitech). As we explain 
below, participants were asked to look at the numbered disc 
corresponding to an auditory stimulus (e.g., “one”). This 
experimental setting, instead of presenting visual stimuli on 
the monitor, allowed us to conduct a posteriori assessment of 
the gaze coding algorithm while assuming different monitor 
widths (Fig. 1b). For instance, if the participants’ monitor 
size is 13” (approximately 29 cm in width), the numbers 4–5 
and 6–7 can be regarded as a gaze to the “left” and “right” 
side, respectively, and the other numbers can be assigned as 

Fig. 1   A schematic view of the experimental setting. Notes. a Over-
all apparatus. Ten numbered discs were put in a horizontal line on 
the wall and a webcam was positioned on top of the numbered discs 
between 5 and 6. Participants were asked to look at the designated 
number while changing face rotation and the position of the chair 
to manipulate noise factors frequently observed in infant studies. 
The position of the desk light was also manipulated. b Summary of 

different assumptions regarding the monitor size and correspond-
ing ground-truth gaze classification: c 13” (approximately 29 cm in 
width); d 20” (approximately 44 cm in width); e 35” (approximately 
77 cm in width). Three categories of looking were considered. When 
the monitor size of 13” was assumed, looking at the numbered discs 
4–5 were considered as looking “Left”, 6–7 as “Right”, and the oth-
ers as “Away”.

https://osf.io/48zvh/?view_only=22a82bc40bab441589660168a48944c5
https://osf.io/48zvh/?view_only=22a82bc40bab441589660168a48944c5
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“away” from the screen (Fig. 1c, see other assumed situa-
tions for Fig. 1d, e).

For the experimental noise manipulation, participants’ 
positions relative to the camera, face rotations, and lighting 
source were manipulated. Participants’ left-right offset and 
distance to the camera were determined based on a previ-
ous similar study (Zhang et al., 2019). For left-right offset, 
three conditions were made: Left (– 24 cm), Center (0 cm), 
and Right (+ 24 cm). Distance to the camera also had three 
conditions: Close (30 cm), Middle (60 cm), and Far (90 cm). 
Thus, there were nine different positions in total. To simplify 
the experimental procedure, we positioned a chair so that its 
front legs were aligned with those positional conditions. The 
distance between the participants’ faces and the webcam was 
therefore not necessarily identical to the distance specified 
above. Face rotation had three conditions: Upright, Left, and 
Right. To manipulate the lighting source, we attached a desk 
light (800-LED039, SANWA SUPPLY) to the armrest of the 
chair for the two conditions Left and Right or put it on top 
of the webcam for the condition Front. During the experi-
ment, the desk light illuminated the participants’ faces and 
the room light was turned off.

For the audio stimuli, we made 1-sec beep sounds fol-
lowing a voice saying a number between 1 and 10 in either 
English or Japanese. A specific frequency was assigned to a 
number so that the frequency of the beep sound got higher 
as the number uttered increased (e.g., 392 Hz for 5, 440 Hz 
for 6).

Procedure

Each participant individually performed the task in an 
experimental room at Trinity College Dublin (Ireland) or 
The University of Tokyo (Japan). Participants were seated 
on a chair oriented towards the numbered discs and were told 
to look at the numbered discs corresponding to the audio 
stimulus until the end of the beep sound succeeding each 
number (e.g., “one...(beep), two... (beep), ...”). They were 
instructed to look at the numbers as they naturally would, 
so they sometimes moved their heads but other times only 
eyes without head movement. The numbers were played in 
randomized order.

As to the manipulation of participants’ positions 
described above, all participants went through nine differ-
ent chair positions following the same sequence, but with 
different starting positions. The first position was always 
Center in terms of left-right offset while the distance to the 
webcam was counter-balanced. As to ordering, for instance, 
those who started with the Center-Close position moved to 
Right-Close, Left-Middle, Center-Middle, Right-Middle, 
Left-Far, Center-Far, Right-Far, and Left-Close. For the 
manipulation of face rotation, at each chair position, par-
ticipants were instructed not to tilt their head (i.e., keep the 

upright position in terms of roll axis) for the first 20 trials 
(ten numbers in a random order multiplies two times), then 
were asked to roll their head to the left-hand side and keep 
the position for the subsequent 20 trials, and were asked 
roll their head to the right-hand side for the final 20 trials. 
The degree to which they tilted their head to the left or right 
depended on participants' subjective decision, so it varied 
across participants. Note that they were only asked to main-
tain their head position in terms of roll, so they could move 
their head in terms of yaw (and pitch) freely. Each of these 
within-subject factors was presented twice. For each of the 
two repetitions of the same condition, the order in which the 
number sequence was played was identical.

The last manipulation, lighting source, was manipulated 
between-subjects. Twenty participants each were randomly 
assigned to lighting from Left, Right, or Front, which was 
achieved by attaching the desk light to the left or right arm-
rest of the chair or positioning it centrally above the web-
cam. While participants performed the experimental trials, 
the overhead room lighting was turned off and the experi-
menter left the room.

The experimental session was recorded via a webcam 
(Fig. 2) and took approximately 30–40 min to complete.

Data analysis

Pre‑processing  We first cropped video recordings to trial 
length, defined as the length of the beep sound, which 
resulted in 540 video files per participant (1 s per file; 
mean number of frames = 27.8, SD = 6.2, range = 17–33). 
The number of frames (i.e., frames per second) sometimes 
decreased due to insufficient amount of lighting1. The videos 
had a spatial resolution of 1920 x 1080. To make sure that 
participants were properly engaged in the experiment, we 
manually assessed whether the participants’ looking direc-
tion (left, right, away) was the same during the first and sec-
ond sequences in the same condition in randomly extracted 
5% of the videos (14 out of 270 pairs per participant). We 
obtained a high agreement of 99.5% (only two pairs were 
considered different in terms of participants’ looking direc-
tion and the other two pairs were unable to be assessed due 
to shadow shed on the participant's face). We can therefore 
assume that participants were looking at the designated 
numbers as instructed.

Facial anonymization  To create anonymized versions of par-
ticipants’ facial videos, we ran Deep Natural Anonymization 
(BrighterAI, n.d.) for all the cropped videos. This detects 

1   Video framerates on webcams generally vary depending on light-
ing exposure, as the shutter stays open longer to let more light in to 
achieve sufficient lighting exposure, leading to lower framerates.
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faces and generates synthetic replacements that reflect origi-
nal attributes. Thus, we had two video datasets: one with and 
one without facial anonymization.

Automated classification algorithms  Webcam-based 
automated gaze coding algorithms such as OpenFace 
(Baltrušaitis et al., 2018), RT-GENE (Fischer et al., 2018), 
and WebGazer (Papoutsaki et al., 2016) have been actively 
proposed in the field of computer vision. However, these 
tools are usually developed based on high-quality videos of 
still adult faces, and they are often not applicable to online 
infant studies that come with their own set of noise factors 
(Erel et al., 2023). To the best of our knowledge, there are 
at least three automated gaze coding algorithms dedicated 
to infant looking-time studies: iCatcher+ (Erel et al., 2023), 
OWLET (Werchan et al., 2022), and an Amazon Rekog-
nition-based model (Chouinard et  al., 2019). We chose 
iCatcher+ as the primary state-of-the-art tool that should be 
assessed on how noise factors affect its performance because 
iCatcher+ has been continuously improved, was trained on 
more than 600 varied video datasets, and requires minimal 
knowledge of Python, making it attractive both because of 
its state of the art and its implementability. Erel et al. (2022) 
reported that OpenFace achieved 51% of correct responses 
on a tripartite left-right-away categorization, while iCatcher 
achieved more than 90% of correct responses on the same 
dataset. This suggests iCatcher+, an improved version of 
iCatcher, to be the best choice for our current purposes. To 
confirm the generalizability of the findings from iCatcher+, 

OWLET analyses were also performed on our data set 
as a secondary selection, with some technical difficulties 
described below.

iCatcher+  On the video datasets, we ran a state-of-the-
art classification algorithm, iCatcher+ v0.2.0 (Erel et al., 
2023), rooted in computer-vision methods and developed 
especially for detecting gaze from infant online experiments. 
iCatcher+ has been developed based on iCatcher (Erel et al., 
2022), an automated gaze classifier specifically designed for 
research with infants and young children. iCatcher+ was 
reported to achieve accurate and robust gaze classification 
by being trained on substantially varied datasets in terms of 
experimental settings (online, in-lab, and outside of the lab), 
research topics (intuitive physics, language comprehension), 
infant age and ethnicity. iCatcher+ consists of three compo-
nents: the face detector, face classifier, and gaze classifier. 
The face detector extracts areas that possibly include faces 
using OpenCV (Bradski, 2000), which was not specifically 
tuned toward infant face detection. Candidate areas are then 
fed into the face classifier. This determines whether the area 
is an infant's or adult’s face and selects which of the candi-
date areas is most likely to belong to the participant. The 
gaze classifier then predicts gaze direction (i.e., Left, Right, 
and Away). It produces this result for the temporal middle 
frame within the moving window of five consecutive frames. 
If no face is found, the model returns a label of Invalid. As 
to the predicted gaze directions, Left and Right are defined 
as frames in which the infant is looking to the left or right 

Fig. 2   Examples of webcam recordings. Notes. Out of the four fac-
tors taken into account, the left-right offset, distance to the webcam, 
and facial rotation (roll) were within-participant factors whereas the 
lighting source was a between-participant factor. In these examples, 

the lighting was always shed from the right-hand side. The numbers 
below pictures indicate numbered discs that the participant was look-
ing at
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side of the screen, respectively. Away is defined as frames in 
which the infant is looking somewhere else than the screen, 
such as turning around to look at the caregiver or looking at 
her feet (see Erel et al., 2023 for more details). For the pre-
sent study, we did not use the face classifier from iCatcher+ 
and performed only the face detector and gaze classifier 
because our dataset consisted of adult webcam videos with 
only one human face2.

OWLET  OWLET, an online webcam-linked eye-tracker 
(Werchan et al., 2022), is an open-source methodology for 
automatically estimating infants’ gaze coordinates on the 
monitor based on smartphone and webcam recordings. High 
correlation coefficients of over 0.95 were reported between 
OWLET-human annotations in terms of overall looking 
time, maximum looking duration, and the number of gaze 
shifts. OWLET consists of three components: infants’ face/
eye/pupil detector, gaze direction estimator, and estimator 
of point-to-gaze on the screen. The first component extracts 
infants’ face/gaze/pupil frame-by-frame using OpenCV 
(Bradski, 2000) and Dlib Machine Learning Toolkit (King, 
2009). If more than one face is extracted, the lower face 
is processed thereafter. The isolated pupils are fed into the 
gaze direction estimator, which calculates gaze direction 
while taking infants’ eye and head position into account. 
Finally, the gaze direction is mapped to precise screen (x, 
y) coordinates using a simple polynomial transfer function. 
A bipartite looking-away categories were also produced. A 
six-frame moving average filter is applied in this phase for 
smoothing and the model produces the gaze coordinates at 
a temporal resolution of 30 Hz. OWLET is designed to per-
form optimally under the usage of a four-point calibration 
before experiments.

Since OWLET was published after we created the dataset, 
we did not record each participant's calibration. We used 
OWLET with the commits on March 2023 and default cali-
bration settings were applied. We also removed from the 
source code the required temporal resolution of 30 Hz as 
most of our videos were below this threshold. To produce 
gaze categories equivalent to iCatcher+, we first classified 
output frames without (x, y) coordinates as No Face. We next 
classified frames for which (x, y) coordinates were estimated 
but the Away category was adopted on the looking-away 
column as Away. We then classified the remaining frames 
into Left or Right depending on their estimated coordinates. 
Since OWLET always assumes the monitor’s spatial reso-
lution of 960 x 540 (16:9), we assigned those frames' gaze 

categories based on the median in terms of x-coordinate (960 
/ 2 = 480).

Missing data  iCatcher+ succeeded in processing all the vid-
eos, whereas OWLET produced error messages for a total of 
143 videos (0.22%): 42 videos for non-anonymized (0.13%, 
0–5 videos per participant) and 101 videos for anonymized 
(0.31%, 0–16 videos per participant). As far as we under-
stood, the errors were caused either because the process 
stopped when eyes were not found in the second frame 
despite successful detection in the first frame (111 videos) 
or because the coordinates of different eye landmarks were 
determined to be identical for some reason (32 videos). We 
removed those unprocessable files from the analyses.

Regression analyses  We performed generalized linear mixed 
models (binomial regression) independently for each dataset 
(i.e., with or without anonymization) to assess the effects 
of environmental and behavioral factors on two different 
dependent variables: (1) whether faces were detected; (2) 
how accurately gaze directions were estimated. For (1), 
given that participants were seated in front of the camera 
throughout the experiment, we can assume that all frames 
analyzed contained faces. If the face was successfully 
detected by the algorithm, the value 1 was given whereas 
if no face was detected, the value 0 was given. For each 
video file, the proportion of frames in which the face was 
detected out of the total number of frames was regarded as 
the dependent variable. For (2), we adopted three different 
assumptions of monitor size and corresponding ground-truth 
gaze classifications (see Fig. 1c–e): Small (approximately 
30 cm in width), Medium (approximately 46 cm), and Large 
(approximately 78 cm). As mentioned above, if the partici-
pants’ monitor size is assumed Small, the numbered discs 
4-5 are classified as “Left”, 6-7 as “Right”, and the oth-
ers as “Away”. Given that we had estimated participants’ 
engagement in the experiment in the preprocessing stage, 
we defined the true gaze direction as the direction the par-
ticipant was instructed to look towards (i.e., the number they 
heard), and corresponding gaze classifications were coded 
for each monitor size assumption. We first excluded frames 
with the failure of face detection from each video. For each 
frame, if the estimated gaze direction (i.e., Left, Right, 
Away) matched the true direction (see Fig. 1b), the value 1 
was given, whereas if they were different, the value 0 was 
given. We then calculated the proportion of frames with the 
correct estimation out of the total number of frames with 
face detection. For instance, if a video had 20 frames with 2 
of them as No Face, 10 as Left, 3 as Right, and 5 as Away, 
and its corresponding true direction was Left, the proportion 
of correct estimation was 55.6% (= 10 / (10+3+5)). We also 
decided on a single gaze coding estimation per video on a 
majority-vote basis to calculate confusion matrices (in this 

2   The latest version of iCatcher+ includes the lowest-face selector by 
default as in OWLET, instead of the face classifier that was originally 
used (for more details, see https://​github.​com/​icatc​herpl​us/​icatc​herpl​
us.​github.​io).

https://github.com/icatcherplus/icatcherplus.github.io
https://github.com/icatcherplus/icatcherplus.github.io
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example, Left). Files in which no face was detected for all 
the frames were removed from this analysis. The regression 
analysis was performed using lme4 version 1.1.31 (Bates 
et al., 2015) on R version 4.2.2 (R Core Team, 2022).

The fixed effects included left-right offset (Left, Center, 
Right), distance to the camera (Close, Middle, Far), facial 
rotation (Left Upright, Right), and the direction of the light-
ing source (Left, Front, Right). The country (Ireland, Japan) 
was also included as a covariate. The reference level was 
specified as the ideal combination of the conditions (left-
right offset: Center, distance: Close, facial rotation: Upright, 
lighting source: Front) and the country (Ireland) for conveni-
ence. We included the random intercept of participants for 
each model. Because our primary purpose here was to assess 
the effects of noise factors on facial detection and gaze clas-
sification, not those of cultural differences, we report cumu-
lative results across the two countries for the sake of legibil-
ity except when a significant effect of the country is present 
(results by country are shown in Supplementary Materials).

Results

Facial detection

We first assessed to what extent the participants’ faces were 
detected properly. Overall, iCatcher+ successfully detected 
faces for almost all the frames, achieving 99.9% for both 
Non-anonymized and Anonymized datasets. It failed to 
detect faces in only one video file for each dataset (1 frame 
in one video for Non-anonymized dataset and the entire 10 
frames in another video for Anonymized dataset). On the 
other hand, OWLET detected faces in 46.4% of all frames 
for Non-anonymized dataset and 62.9% for Anonymized 
dataset, respectively. Since the manipulated environmen-
tal and behavioral factors affected only face detection in 
OWLET and not in iCatcher+, we focused on examining 
the extent to which each factor affected face detection in 
OWLET only.

For the Non-anonymized dataset, the proportion of face 
detection significantly dropped when participants’ faces 
were not positioned at the center in terms of left-right offset 
(Left: b = – 0.15, SE = 0.01, p < .001; Right: b = – 0.10, 
SE = 0.01, p < .001), participants’ faces were not upright 
(Left: b = – 0.18, SE = 0.01, p < .001; Right: b = – 0.65, SE 
= 0.01, p < .001), and the lighting source was not located 
in front of the participants (Left: b = – 2.49, SE = 0.34, p < 
.001; Right: b = – 2.69, SE = 0.35, p < .001). Face detection 
performance also significantly dropped for participants in 
Japan (b = – 0.70, SE = 0.29, p < .014). On the other hand, 
face detection was significantly greater when the distance 
to the camera was Middle (b = 0.17, SE = 0.01, p < .001) 

and Far (b = 0.11, SE = 0.01, p < .001). We did not include 
interaction effects in our model, but in general, faces were 
properly detected as long as the lighting source was located 
in front of the participants (Fig. S1). If this condition was 
met, even the least ideal condition (left-right offset: Left, 
distance: Close, facial rotation: Right, lighting source: Front) 
demonstrated a moderate facial detection ability above 
chance (Ireland: 79.1%, 95% CI [68.6, 86.7]; Japan: 65.1%, 
95% CI [52.0, 76.4]). The significant effect of country may 
need a careful interpretation because, although we attempted 
to make the experimental settings as similar as possible, 
some uncontrolled factors such as the physical properties 
of the experimental room and participants’ race may have 
caused confounds.

A comparable result was obtained when OWLET was 
performed for the Anonymized dataset, except for a signifi-
cant positive effect of face rotation to the Left (b = 0.10, SE 
= 0.01, p < .001; see Table S2) on face detection. As in the 
Non-anonymized data, if the lighting source was located 
in front, faces were still detected well in the worst condi-
tion (left-right offset: Left, distance: Close, facial rotation: 
Right, lighting source: Front; Ireland: predicted proportion 
= 79.0%, 95% CI [70.7, 85.4]; Japan: 62.3%, 95% CI [51.4, 
72.0]; see Fig. S1).

Gaze direction classification

We then assessed how accurately gaze directions were esti-
mated for different conditions while varying the assumptions 
of monitor size. For iCatcher+, one video in the Anonymized 
dataset was removed from the analysis because it failed to 
detect faces for all the frames. For OWLET, 13,254 videos 
(40.1%) in the Non-anonymized and 4874 videos (15.1%) 
in the Anonymized datasets were also removed due to face 
detection failure. The overall proportion of correct predic-
tions by iCatcher+ was above chance (33.3%) but below 60% 
regardless of whether the assumed monitor size was Small 
(Non-anonymized: 44.4%; Anonymized: 40.6%), Medium 
(Non-anonymized: 41.9%; Anonymized: 39.7%), or Large 
(Non-anonymized: 46.5%; Anonymized: 46.3%). The overall 
proportion of correct predictions by OWLET was generally 
lower than iCatcher+ when the assumed monitor size was 
Small (Non-anonymized: 26.0%; Anonymized: 25.1%) or 
Medium (Non-anonymized: 36.9%; Anonymized: 35.7%), 
but better when the assumed monitor size was Large (Non-
anonymized: 57.8%; Anonymized: 56.7%).

iCatcher+  We first report the prediction performance of 
iCatcher+ for the Non-anonymized data. When assuming 
Small monitor size (Fig. 1c), we found significant negative 
effects of the distance to the camera (Middle: b = – 0.18, SE 
= 0.01, p < .001; Far: b = – 0.12, SE = 0.01, p < .001), facial 
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rotation (Left: b = – 0.16, SE = 0.01, p < .001; Right: b = 
– 0.07, SE = 0.01, p < .001), and the lighting source (Left: b 
= – 0.53, SE = 0.07, p < .001; Right: b = – 0.43, SE = 0.07, 
p < .001). We found a significant positive effect when the 
position was offset toward the Left (b = 0.07, SE = 0.01, p < 
.001), whereas we found a non-significant effect when it was 
offset toward the Right (see Table S3 for details). The per-
formance was significantly higher for Japanese participants 
(b = 0.22, SE = 0.06, p < .001). The predicted proportion 
of correct estimation in the condition with the highest per-
formance (left-right offset: Left, distance: Close, facial rota-
tion: Upright, lighting source: Front) was 50.8% (Ireland: 
48.1%, 95% CI [45.3, 50.9]; Japan: 53.4%, 95% CI [50.6, 
56.2]; see Fig. S2). In this condition, overall classification 
accuracy was 58.0% (Left: 76.2%, Right: 37.5%, Away: 
58.8%; F1 = 53.6%). The worst condition (left-right off-
set: Right, distance: Middle, facial rotation: Left, lighting 
source: Left) showed a predictability of 28.8% (Ireland: 
26.6%, 95% CI [24.4, 28.8]; Japan: 31.0%, 95% CI [28.6, 
33.5]). The overall classification accuracy for this condition 
was 31.8% (Left: 21.2%, Right: 71.2%, Away: 22.1%; F1 = 
30.1%).

When assuming Medium monitor size (Fig. 1d), the dis-
tance to the camera (Middle: b = – 0.22, SE = 0.01, p < 
.001; Far: b = – 0.30, SE = 0.01, p < .001), facial rotation 
(Left: b = – 0.20, SE = 0.01, p < .001; Right: b = – 0.30, 
SE = 0.01, p < .001), and lighting source (Left: b = – 0.38, 
SE = 0.05, p < .001; Right: b = – 0.34, SE = 0.05, p < 
.001) negatively affected the predictability of gaze direc-
tions by iCatcher+. The offset toward the Right also had a 
negative effect (b = – 0.08, SE = 0.01, p < .001), whereas 
the offset toward the Left did not have a significant effect 
(see Table S3). The country did not significantly affect the 
performance. In the best condition (left-right offset: Center, 
distance: Close, facial rotation: Upright, lighting source: 
Front), the predicted proportion of correct estimation was 
56.9% (Ireland: 57.0%, 95% CI [55.1, 58.9]; Japan: 56.8%, 
95% CI  [54.8, 58.7]), whereas that in the worst condi-
tion (left-right offset: Right, distance: Far, facial rotation: 
Right, lighting source: Left) was 31.3% (Ireland: 31.4%, 
95% CI [29.8, 33.1]; Japan: 31.2%, 95% CI [29.5, 32.9]; 
Fig. 3). The overall classification accuracy was 58.0% (Left: 
50.0%, Right: 61.7%, Away: 61.2%; F1 = 58.0%) in the best 
condition and 34.5% (Left: 0.0%, Right: 42.5%, Away: 
54.4%; F1 = 40.0%) in the worst condition.

When assuming Large monitor size (Fig. 1e), all the noise 
factors showed significant negative effects on the proportion 
of correct gaze classification, except for the non-significant 
effects of lighting source (see Table S2). The predicted 
proportion of correct classification in the best condition 
(left-right offset: Center, distance: Close, facial rotation: 
Upright, lighting source: Left) was 62.4% (Ireland: 69.0%, 

95% CI [63.1, 74.4]; Japan: 55.8%, 95% CI [49.2, 62.2]), 
whereas that in the worst condition (left-right offset: Right, 
distance: Far, facial rotation: Right, lighting source: Front) 
was 27.3% (Ireland: 32.9%, 95% CI [27.4, 38.9]; Japan: 
21.7%, 95% CI [17.6, 26.5]; Fig. S2). In the best condition, 
the overall classification accuracy showed 74.2% (Left: 
64.0%, Right: 84.5%; F1 = 78.2%). That in the worst condi-
tion was 31.8% (Left: 22.5%, Right: 41.0%; F1 = 41.7%).

We also performed iCatcher+ classification for the 
Anonymized data. The results between the Non-anonymized 
and Anonymized datasets were largely comparable. For 
details, see Supplementary Materials (Table S4 and Fig. S3). 
Compared to the Non-anonymized data, the predictability 
for the Anonymized data was generally slightly lower for 
both the best (difference: M = 4.9%, SD = 5.8, range = 
– 1.5–10.0) but equivalent for the worst (M = – 0.6%, SD = 
1.6, range = – 2.3–0.9) conditions. The overall classification 
accuracy was also lower for the best (difference: M = 8.8%, 
SD = 7.9, range = 1.2–17.0) and worst (M = 1.0%, SD = 1.2, 
range = – 0.4–1.8) conditions accordingly.

OWLET  We next report the prediction performance of 
OWLET for the Non-anonymized data. When assuming 
Small monitor size (Fig. 1c), we found significant negative 
effects of the distance to the camera (Middle: b = – 0.54, SE 
= 0.01, p < .001; Far: b = – 0.75, SE = 0.01, p < .001) and 
the lighting source (Left: b = – 0.40, SE = 0.08, p < .001; 
Right: b = – 0.45, SE = 0.08, p < .001) as seen in the results 
of iCatcher+. Different from iCatcher+, facial rotation had 
significant positive effects (Left: b = 0.03, SE = 0.01, p = 
.001; Right: b = – 0.20, SE = 0.01, p < .001). The left-right 
offset did not have consistent negative effects and the coun-
try did not affect the performance of OWLET (see Table S5 
for details). The predicted proportion of correct estimation 
in the condition with the highest performance (left-right off-
set: Center, distance: Close, facial rotation: Right, lighting 
source: Front) was 41.1% (Ireland: 40.4%, 95% CI [37.4, 
43.5]; Japan: 41.7, 95% CI [38.6, 44.8]; see Fig. S4). In 
this condition, overall classification accuracy was 41.8% 
(Left: 13.9%, Right: 47.1%, Away: 49.8%; F1 = 35.1%). 
The worst condition (left-right offset: Left, distance: Far, 
facial rotation: Upright, lighting source: Right) showed a 
predictability of 14.2% (Ireland: 13.9%, 95% CI [12.4, 15.5]; 
Japan: 14.5%, 95% CI [13.0, 16.2]). The overall classifica-
tion accuracy for this condition was 18.6% (Left: 97.3%, 
Right: 0.0%, Away: 0.0%; F1 = 31.9%).

When assuming Medium monitor size (Fig. 1d), the 
distance to the camera (Middle: b = – 0.37, SE = 0.01, p 
< .001; Far: b = – 0.62, SE = 0.01, p < .001), left-right 
offset (Left: b = – 0.08, SE = 0.01, p < .001; Right: b = 
– 0.03, SE = 0.01, p < .001), and lighting source (Left: 
b = – 0.33, SE = 0.08, p < .001; Right: b = – 0.35, SE = 
0.08, p < .001) negatively affected the predictability of gaze 
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directions by OWLET. Facial rotation toward the Right also 
had a negative effect (b = – 0.08, SE = 0.01, p < .001), 
whereas facial rotation toward the Left did not have a signifi-
cant effect (see Table S5). The country did not significantly 
affect the performance. In the best condition (left-right off-
set: Center, distance: Close, facial rotation: Left, lighting 
source: Front), the predicted proportion of correct estima-
tion was 49.4% (Ireland: 48.5%, 95% CI [45.5, 51.6]; Japan: 
50.3%, 95% CI [47.3, 53.4]), whereas that in the worst con-
dition (left-right offset: Left, distance: Far, facial rotation: 
Right, lighting source: Right) was 23.6% (Ireland: 22.9%, 

95% CI [20.8, 25.2]; Japan: 24.2%, 95% CI [22.0, 26.5]; 
Fig. 4). The overall classification accuracy was 53.7% (Left: 
67.5%, Right: 72.9%, Away: 28.3%; F1 = 52.7%) in the best 
condition and 28.2% (Left: 83.7%, Right: 4.3%, Away: 3.7%; 
F1 = 18.9%) in the worst condition.

When assuming Large monitor size (Fig. 1e), facial 
rotation (Left: b = – 0.02, SE = 0.01, p = .01; Right: b 
= – 0.58, SE = 0.01, p < .001) and the lighting source 
(Left: b = – 0.25, SE = 0.10, p = .008; Right: b = – 0.22, 
SE = 0.10, p = .02) showed significant negative effects 

Fig. 3   Predictability of gaze direction by iCatcher+ on the Non-
anonymized dataset assuming Medium monitor size. Notes. The 
top figure shows the proportion of correct predictions across differ-
ent noise conditions. The colored points and their range represent 
the predicted values and 95% confidence intervals, respectively. The 
dashed horizontal line indicates the chance level. The translucent jit-
tered points represent the mean proportion of correct prediction for 
each participant. The distance to the webcam, facial rotation, and 

lighting sources negatively affected the predictability of gaze cod-
ing by iCatcher+. The left-right offset did not have a robust negative 
effect, and the regression coefficient was relatively small even if it 
was significant. The bottom panels represent the confusion matrix for 
the best (left) and worst (right) conditions. The overall classification 
accuracy in the best condition was 58.0%, whereas that in the worst 
condition was 49.3% and no videos were predicted as “left”
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on the proportion of correct gaze classification. We also 
found a significant negative effect when the distance to the 
camera was Far (b = – 0.35, SE = 0.01, p < .001), while 
we found a significant positive effect when the distance 
was Middle (b = 0.04, SE = 0.01, p < .001). The off-
set towards the Left had a significant negative effect (b = 
– 0.07, SE = 0.01, p < .001), but a non-significant effect of 
the offset towards the Right (see Table S5). The predicted 
proportion of correct classification in the best condition 
(left-right offset: Center, distance: Middle, facial rota-
tion: Upright, lighting source: Front) was 62.4% (Ireland: 
68.5%, 95% CI [64.1, 70.9]; Japan: 69.4%, 95% CI [66.0, 
72.6]), whereas that in the worst condition (left-right off-
set: Left, distance: Far, facial rotation: Right, lighting 
source: Left) was 37.4% (Ireland: 36.4%, 95% CI [32.9, 

40.1]; Japan: 38.4%, 95% CI [34.7, 42.1]; Fig. S4). In the 
best condition, the overall classification accuracy showed 
68.3% (Left: 100.0%, Right: 36.5%; F1 = 64.7%). That in 
the worst condition was 51.6% (Left: 93.6%, Right: 9.1%; 
F1 = 40.9%).

We also performed OWLET classification for the 
Anonymized data. The results between the Non-anonymized 
and Anonymized datasets were largely comparable (see 
Supplementary Table S6 and Fig. S5 for details). Com-
pared to the Non-anonymized data, the predictability for 
the Anonymized data was generally slightly lower for the 
best (difference: M = 1.7%, SD = 1.5, range = 0.0–3.0) 
and slightly higher for the worst (M = – 2.6%, SD = 0.4, 
range = – 2.0 to –2.2) conditions, respectively. The over-
all classification accuracy was equivalent for both the best 

Fig. 4   Predictability of gaze direction by OWLET on the Non-
anonymized dataset assuming Medium monitor size. Notes. The spec-
ification is the same as in Fig. 3. The distance to the webcam, left-
right offset, and lighting sources negatively affected the predictability 

of gaze coding by OWLET. Facial rotation did not have a robust neg-
ative effect, and the regression coefficient was relatively small even if 
it was significant. The overall classification accuracy in the best con-
dition was 53.7%, whereas that in the worst condition was 28.2%
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(difference: M = – 0.7%, SD = 1.5, range = – 2.4 to 0.3) and 
worst (M = 0.3%, SD = 1.3, range = – 0.9 to 1.6) conditions.

Summary  In general, the distance to the webcam and the 
lighting source consistently affected automated gaze cod-
ing by iCatcher+ or OWLET regardless of different monitor 
size assumptions and whether faces were anonymized or not, 
albeit with a few exceptions such that the lighting source had 
less influence on iCatcher+ when the assumed monitor size 
was Large for the Non-anonymized dataset and the Middle 
distance had conversely positive effects on this gaze coding 
by OWLET (Fig. 5). Left-right offset also negatively influ-
enced the gaze coding accuracy for both algorithms, but the 
magnitude of its impact was relatively small, considering the 
regression coefficients were constantly small and they were 
sometimes not significant depending on the assumed moni-
tor size. While facial rotation constantly worsened the gaze 
coding performance of iCatcher+ regardless of the assumed 
monitor size and face anonymization, it sometimes showed 
even positive effects on the performance of OWLET when 
the assumed monitor size was Small.

Differences in the classification of gaze direction were 
more pronounced across conditions and the predictabil-
ity of gaze direction was superior as the assumed moni-
tor size became larger. However, even in the most ideal 

condition, the overall classification accuracy remained at 
around 60–70% and asymmetric patterns in accuracy were 
found between gaze classification of Left or Right (see also 
Figs. S6 and S7 for how each algorithm predicted the par-
ticipants’ gaze direction corresponding to each numbered 
disc). In the worst conditions, this asymmetry was even more 
pronounced. The gaze prediction performance was slightly 
lower for the Anonymized dataset than the Non-anonymized 
dataset when the noise factors were well controlled (i.e., best 
conditions), suggesting that facial features that are impor-
tant to predict gaze directions might be somewhat distorted 
or lost after the facial anonymization. On the other hand, 
the performance was conversely better for the Anonymized 
dataset compared with the Non-anonymized dataset when 
the noise factors were greatly contaminated (i.e., worst con-
ditions), suggesting that some of the lost facial features were 
somewhat recovered by facial anonymization.

Discussion

In this study, we created an adult webcam dataset that sys-
tematically reproduced four types of noise factors likely pre-
sent in at-home online gaze experiments with young children 

Fig. 5   Summary of regression coefficients of noise factors on gaze 
coding accuracy. Notes. Regression coefficients of each noise factor 
(left-right offset, distance to the camera, facial rotation, and light-
ing source) across different algorithms and different assumed moni-
tor sizes are visualized. In general, the distance to the webcam and 

lighting source consistently had negative effects on gaze coding accu-
racy. The facial rotation also negatively affected the performance of 
iCatchet+. The left-right offset had little influence on gaze coding 
accuracy. The results between Non-anonymized and Anonymized 
datasets were largely compatible
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and investigated to what extent each factor relatively affected 
gaze coding accuracy by two state-of-the-art algorithms 
for infant experiments: iCatcher+ (Erel et al., 2023) and 
OWLET (Werchan et al., 2022). We primarily focused on 
two outcomes: Whether faces were successfully detected and 
whether gaze directions were accurately estimated. Regard-
less of whether participants’ faces were anonymized or not, 
their faces were successfully and reliably detected as long 
as the lighting source was located in front of the participant. 
Among the four different noise factors that were tested, the 
distance to the webcam and lighting source consistently 
decreased gaze coding accuracy, and the facial rotation also 
negatively affected the performance of iCatchet+ in particu-
lar. A practically beneficial finding is that the left-right offset 
had little influence on gaze coding accuracy.

For extracting participants’ facial features automatically 
from online data, our results suggest that, at least among 
the four noise factors considered in this study, the partici-
pant mainly needs to be instructed not to locate the light-
ing source to the left or right so as not to project shadows 
on their face. This is essential especially when a researcher 
plans to use OWLET for processing the data, while the light-
ing source will not matter for the face detection itself by 
iCatcher+. This discrepancy might be explained by the fact 
that OWLET uses Dlib Machine Learning Toolkit (King, 
2009) in addition to OpenCV (Bradski, 2000) to extract 
infants’ face/gaze/pupil, while iCatcher+ uses only OpenCV. 
Future work would need to verify whether other state-of-
the-art face detection algorithms can lead to finding faces 
more successfully in challenging situations. For instance, 
Chouinard et al. (2019) used Amazon Rekognition (Amazon, 
n.d.) and Hagihara et al. (2021) used OpenFace (Baltrušaitis 
et al., 2018), respectively.

The classification accuracy for iCatcher+ was much lower 
than the previously reported > 80% (Erel et al., 2023) even 
in the ideal condition in our study (approximately 50–60%). 
Although our main focus was to assess the relative effects 
of noise factors and anonymization on existing automated 
gaze coding algorithms and not to assess the algorithms’ 
performance itself, it would be worthwhile to consider what 
caused this discrepancy. One possibility is just a qualita-
tive difference between infants’ and adults’ faces and gaze/
face movements. Another possibility is that the experimental 
settings in this study may have overestimated the degree 
of noise factors. For instance, although we turned off the 
room light and a desk light was the only lighting source, real 
infant conditions might be slightly better for automated gaze 
coding because the screen itself illuminates their faces to a 
certain extent. Moreover, the way we operationalized looks 
away from the screen might have made their categorization 
more difficult than would happen in the real world and in 
the data iCather+ was trained on. The primary situations 
where gaze behavior should be coded as Away in real world 

settings are when the infant is looking around the room or 
turning around to look at the caregiver, which would often 
result in a visual angle distinct from an on-screen look, up 
to facial occlusion. In our experiment, Away was required to 
detect a much more subtle effect, namely looks beyond the 
boundary of a certain screen size. Although we deliberately 
chose this manipulation in an aim to create a more nuanced 
video dataset that involved sufficiently difficult discrimi-
nations to probe the performance of existing gaze coding 
algorithms, this might have made results worse than would 
occur in reality, since anecdotally speaking, infants in real 
settings would not frequently look beyond the boundaries 
of the screen. Our setup may thus have worsened the overall 
performance compared to natural at-home data collection. 
Nevertheless, we believe our results have practical impli-
cations for researchers who plan to do online testing with 
infants or use iCatcher+ or OWLET, as optimizing the per-
formance and avoiding any decrease in accuracy is crucial 
for the validity of these methods.

In addition to investigating how much noise factors affect 
the performance of automated gaze coding, we also applied 
a state-of-the-art facial anonymization technique (Deep 
Natural Anonymization; BrighterAI, n.d.) to our adult 
dataset and assessed how compatible the results with and 
without facial anonymizations were. The automated facial 
detection worked equivalently well or even better for the 
Anonymized dataset compared to the Non-anonymized data-
set. The gaze coding accuracy was slightly less accurate for 
the Anonymized dataset in relatively well-controlled condi-
tions, whereas this tendency flipped in relatively less con-
trolled conditions, that is, the performance was better for the 
Anonymized dataset than the Non-anonymized dataset. This 
implies that the facial anonymization technique used in this 
study might have exaggerated participants' facial features, 
but at the same time, this might also have led to distorting 
their gaze and/or facial features and their combinations from 
the original data (see Fig. 2 for some examples). Yet, given 
that the predictability of gaze coding for the Anonymized 
data was just slightly lower for the data with the least noise 
contamination, this method can be applicable for real web-
cam videos if noise factors are well controlled. One of the 
next steps will be to apply the facial anonymization tech-
nique to publicly available infants’ webcam videos (e.g., 
Scott et al., 2017) to extend our findings and confirm that 
facial anonymization does not destroy the gaze features of 
the original data even for infants. If this is the case, then 
developmental scientists will have obtained a new option 
to enhance open science by sharing infants' video datasets 
while their faces are kept unidentifiable.

The dataset created in this study paves the way for vari-
ous future studies. For example, other noise factors listed 
in previous studies (e.g., Bánki et al., 2022) can be taken 
into account by post hoc editing of the dataset. The spatial 
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resolution, overall brightness, and facial occlusion can be 
varied by video manipulation and then assessed as in this 
study. Another ambitious possibility would be to revise 
or even develop a more sophisticated automated gaze 
coding platform. In many cases, iCatcher+ and OWLET 
showed asymmetric patterns for prediction accuracy. In 
some cases, Left was predicted more correctly than Right 
or Left was more likely to be predicted over different 
numbered discs, and vice versa (Figs. S6 and S7). Such 
asymmetricity could be modified by feeding our dataset 
to the model and retraining it in combination with other 
datasets. The implementation of the calibration phase, as 
in OWLET, may prevent such asymmetric prediction by 
defining the center and edge of the monitor. Incorporat-
ing the information about monitor size may also be use-
ful to discriminate gaze direction more accurately. Bánki 
et al. (2022) reported that the majority of the participants 
used a monitor with a screen size of 15” or below when 
performing online testing, suggesting the need to process 
nuanced gaze behavior. Since 78% of our dataset (n = 47) 
is publicly available, researchers can re-use them to tackle 
different practical issues in webcam-based experiments.

To the best of our knowledge, this is the first study 
which created webcam video datasets that systematically 
introduced noise factors frequently observed in infant stud-
ies and assessed how they impact automated gaze coding. 
Recent studies have also tackled relevant topics, suggest-
ing that webcam-based automated gaze coding has become 
even more important. For instance, Valtakari et al. (2023) 
assessed the accuracy of existing gaze coding algorithms 
(e.g., OpenFace) for infant testing and showed its poten-
tial utility. However, they did not provide raw video data 
recorded by a webcam, limiting the possibility of second-
ary analyses using different algorithms. Their findings also 
seem difficult to be directly applied to online testing from 
home environments because, in their set-ups, two webcams 
were located near the target objects positioned side-by-side 
in front of infants. In contrast, our video dataset and find-
ings will guide the design of better instructions for partici-
pants during online experiments for infants. Guided by our 
findings, investing time and effort into giving more targeted 
instructions for optimizing the data quality will lead to more 
efficient data processing. Moreover, training algorithms 
using the dataset, or designing new ones robust to the varia-
tions, will allow researchers to improve robustness and allow 
more developmental psychologists to leverage online testing 
more efficiently.
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