

Title	Deletion of Trps1 regulatory elements recapitulates postnatal hip joint abnormalities and growth retardation of Trichorhinophalangeal syndrome in mice
Author(s)	Saeki, Naoya; Inui-Yamamoto, Chizuko; Ikeda, Yuki et al.
Citation	Human Molecular Genetics. 2024, 33(18), p. 1618- 1629
Version Type	АМ
URL	https://hdl.handle.net/11094/97151
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Human Molecular Genetics

Deletion of Trps1 regulatory elements recapitulates postnatal hip joint abnormalities and growth retardation of Trichorhinophalangeal syndrome in mice

Journal:	Human Molecular Genetics
Manuscript ID	HMG-2024-CE-00133.R1
Manuscript Type:	Original Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Saeki, Naoya; Osaka University, Graduate School of Dentistry, Tissue and Dev Biol Inui-Yamamoto, Chizuko; Osaka University, Graduate School of Dentistry, Tissue and Dev Biol Ikeda, Yuki; Osaka University, Graduate School of Dentistry, Tissue and Dev Biol Kanai, Rinna; Osaka University, Graduate School of Dentistry, Tissue and Dev Biol Hata, Kenji; Osaka University, Graduate School of Dentistry, Department of Molecular and Cellular Biochemistry Itoh, Shousaku; Osaka University, Graduate School of Dentistry, Department of Fixed Prosthodontics and Orofacial Function Inubushi, Toshihiro; Osaka University, Graduate School of Dentistry, Department of Orthodontics and Dentofacial Orthopedics Akiyama, Shigehisa; Osaka University, Graduate School of Dentistry, Department of Special Needs Dentistry Ohba, Shinsuke; Osaka University, Graduate School of Dentistry, Tissue and Dev Biol Abe, Makoto; Osaka University, Graduate School of Dentistry, Tissue and Dev Biol
Key Words:	TRPS1, skeletal dysplasia, enhancer knockout, hip joint

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
26	
20	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
+0 47	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
56	
50	
57	
58	
59	

1 Deletion of Trps1 regulatory elements recapitulates postnatal hip joint abnormalities $\mathbf{2}$ and growth retardation of Trichorhinophalangeal syndrome in mice 3 Naoya Saeki^{1,2}, Chizuko Inui-Yamamoto¹, Yuki Ikeda¹, Rinna Kanai^{1,3}, Kenji Hata⁴, 4 Shousaku Itoh⁵, Toshihiro Inubushi⁶, Shigehisa Akiyama², Shinsuke Ohba^{1,*}, Makoto $\mathbf{5}$ Abe^{1,} Abe^{1,*} 6 $\overline{7}$ ¹Department of Tissue and Developmental Biology, Osaka University Graduate 8 School of Dentistry, Yamada-oka 1-8, Suita, Osaka 565-0871, Japan 9 ²Department of Special Needs Dentistry, Osaka University Graduate School of 10 Dentistry, Yamada-oka 1-8, Suita, Osaka 565-0871, Japan 11 12³Department of Fixed Prosthodontics and Orofacial Function, Osaka University Graduate School of Dentistry, Yamada-oka 1-8, Suita, Osaka 565-0871, Japan 13⁴Department of Molecular and Cellular Biochemistry, Osaka University Graduate 14School of Dentistry, Yamada-oka 1-8, Suita, Osaka 565-0871, Japan 1516⁵Department of Restorative Dentistry and Endodontology, Osaka University 17Graduate School of Dentistry, Yamada-oka 1-8, Suita, Osaka 565-0871, Japan ⁶Department of Orthodontics and Dentofacial Orthopedics, Osaka University 18

2	
3	
4	
5	
6	
0	
7	
8	
9	
10	
10	
11	
12	
13	
1/	
15	
15	
16	
17	
18	
10	
17	
20	
21	
22	
22	
2.J	
24 2-	
25	
26	
27	
28	
20	
29	
30	
31	
32	
22	
33	
34	
35	
36	
27	
57	
38	
39	
40	
41	
42	
42	
43	
44	
45	
46	
40	
4/	
48	
49	
50	
51	
51	
52	
53	
54	
55	
55	
20	
57	
58	
59	
~ ~	

19Graduate School of Dentistry, Yamada-oka 1-8, Suita, Osaka 565-0871, Japan

20

1

21* Corresponding author: Makoto Abe, Department of Tissue and Developmental Biology,

22Osaka University Graduate School of Dentistry, 1-8 Yamada-oka, Suita, Osaka 565-0871,

23Japan, Tel: +81-6-6879-2874, FAX: +81-6-6879-2875, Email: makoto.abe.dent@osaka-

24<u>u.ac.jp</u>

* Corresponding author: Shinsuke Ohba, Department of Tissue and Developmental 25Biology, Osaka University Graduate School of Dentistry, 1-8 Yamada-oka, Suita, Osaka 26

27565-0871, Tel: +81-6-6879-2871,FAX: Japan, +81-6-6879-2875,Email:

ohba.shinsuke.dent@osaka-u.ac.jp 28

29

2
3
4
5
6
7
, ,
8
9
10
11
12
13
14
14
15
16
17
18
19
20
20
∠ I 22
22
23
24
25
26
27
27
20
29
30
31
32
33
3/
25
22
36
37
38
39
40
11
47
42
43
44
45
46
47
<u>1</u> 2
40
49
50
51
52
53
54
55
55
56
57
58
59

60

31 Abstract

32	Trichorhinophalangeal syndrome (TRPS) is a genetic disorder caused by point
33	mutations or deletions in the gene-encoding transcription factor TRPS1. TRPS patients
34	display a range of skeletal dysplasias, including reduced jaw size, short stature, and a
35	cone-shaped digit epiphysis. Certain TRPS patients experience early onset coxarthrosis
36	that leads to a devastating drop in their daily activities. The etiologies of congenital
37	skeletal abnormalities of TRPS were revealed through the analysis of Trps1 mutant
38	mouse strains. However, early postnatal lethality in <i>Trps1</i> knockout mice has hampered
39	the study of postnatal TRPS pathology. Here, through epigenomic analysis we identified
40	two previously uncharacterized candidate gene regulatory regions in the first intron of
41	Trps1. We deleted these regions, either individually or simultaneously, and examined
42	their effects on skeletal morphogenesis. Animals that were deleted individually for either
43	region displayed only modest phenotypes. In contrast, the $Trps1^{\Delta int/\Delta int}$ mouse strain with
44	simultaneous deletion of both genomic regions exhibit postnatal growth retardation.
45	This strain displayed delayed secondary ossification center formation in the long bones
46	and misshaped hip joint development that resulted in acetabular dysplasia. Reducing
47	one allele of the $Trps1$ gene in $Trps1^{\Delta int}$ mice resulted in medial patellar dislocation that
48	has been observed in some patients with TRPS. Our novel Trps1 hypomorphic strain

recapitulates many postnatal pathologies observed in human TRPS patients, thus positioning this strain as a useful animal model to study postnatal TRPS pathogenesis. Our observations also suggest that *Trps1* gene expression is regulated through several regulatory elements, thus guaranteeing robust expression maintenance in skeletal cells.

2
3
1
4
5
6
7
0
0
9
10
11
10
12
13
14
15
16
10
17
18
19
20
20
21
22
23
22
24
25
26
27
27
28
29
30
21
21
32
33
34
25
55
36
37
38
20
39
40
41
42
-⊤∠ ⊿⊃
43
44
45
46
47
4/
48
49
50
50
51
52
53
5/
54
55
56
57
50
20

60

55 Introduction

56	Trichorhinophalangeal syndrome (TRPS) is an autosomal-dominant genetic disorder
57	caused by mutations or deletions in the transcription factor TRPS1 [1]. The occurrence
58	rate of TRPS is extremely low and is estimated to be 1 in 50,000 live births [2]. Patients
59	with TRPS display several congenital skeletal pathologies, including micrognathia, a
60	cone-shaped epiphysis of the phalangeal bone, short stature, and hip joint dysplasia
61	(OMIM #150230, #190350, #190351). Growth failure becomes pronounced as patients
62	grow, and many patients suffer from early onset coxarthritis [3]. The role of TRPS1
63	during embryonic long bone development has been thoroughly investigated using murine
64	models of TRPS $[4\cdot 8]$. The lack of <i>Trps1</i> in mice results in reduced chondrocyte
65	proliferation and delayed hypertrophic differentiation of long bone epiphyseal and
66	temporomandibular joint growth plates [5; 8]. These changes involve altered Wnt5a-,
67	Pthlh-, Hedgehog-, and Stat3-mediated signaling due to the absence of <i>Trps1</i> [8-12]. In
68	addition, altered growth plate characteristics indirectly lead to the uncoupling of growth
69	plate maturation rate and perichondrial ossification in Trps1 mutant mice, ultimately
70	resulting in accelerated bone collar formation [6]. These observations underscore the
71	crucial role of Trps1 during endochondral ossification of long bone.
72	Despite accumulating knowledge regarding TRPS1 during embryonic long bone

1
2
- २
1
4 c
5
6
7
8
9
10
11
12
12
17
14
15
16
17
18
19
20
21
22
22
23
24
25
26
27
28
29
30
31
32
33
31
24 25
35
36
37
38
39
40
41
42
43
ΔΔ
 1 E
45
46
47
48
49
50
51
52
53
54
54
55 57
56
57
58
59
60

73	development, the etiologies of postnatal skeletal pathologies of TRPS remain elusive [²].
74	Greater than 50% of patients with TRPS experience developmental dysplasia of the hip
75	^[2; 3; 13] . The femoral heads of young patients with TRPS display Perthes disease-like
76	symptoms, although the damaged joints do not recover $[14-18]$. This clinical evidence
77	indicates the crucial role(s) played by TRPS1 in the context of joint development and
78	postnatal maintenance at various anatomical sites; however, few studies have described
79	the exact roles played by Trps1 in hip joint development.
80	The hind limbs of tetrapods are derived from the pelvic fins of ancestral fishes [19].
81	Although the pelvic fins in fish are considered to play minor roles in swimming, they
82	have clearly shifted to robust weight-bearing limbs in tetrapods [²⁰]. The pelvic girdle
83	connects the axial and hindlimb skeletons. Unlike the long bones, os coxae (hip bones)
84	form through the gradual fusion of three initially separated bones, including the ilium,
85	ischium, and pubis. Each bone piece is formed through endochondral ossification that is
86	initiated by the condensation of mesenchymal cells originating from the mesodermal
87	cells of the somatopleure [21]. The cartilage primordium of the ilium, ischium, and pubis
88	fuses and establishes a complex triradiate zone at the site of the future acetabulum,
89	where the femoral heads articulate. In humans, primary ossification centers are
90	sequentially formed, first in the ilium primordium and then in the ischium and pubis

^[22]. Secondary ossification occurs at multiple locations in the pelvis that include the iliac crest, the pubic symphysis, and the ischial tuberosity ^[23]. The triradiate zone of the acetabulum remains un-ossified until mid-puberty and functions as a cartilaginous growth plate that allows the acetabulum to expand to accommodate the enlarging femoral head [24]. As the pelvis is one of the weight-bearing joints in all terrestrial animals, precise morphogenesis of the hip joint structure is crucial for locomotion. Indeed, the hip joint morphology appears quite delicate, and both under- and over-coverage of the acetabulum on the femur raises clinical issues such as acetabular dysplasia or femoroacetabular impingement (FAI) [²⁵⁻²⁷]. Severe under-coverage can cause hip instability, subluxation, or dislocation [28; 29]. Increased stress due to under-coverage is one of the causes of acetabular labral hypertrophy and tears that, in some cases, force joint surgery to prevent the onset of coxarthritis [³⁰].

In this report, we describe developmental dysplasia of the hip during the embryonic stages in newly developed *Trps1* hypomorphic mouse strains. *Trps1* hypomorphic mice survived postnatally but displayed under-coverage of the femoral head in the acetabulum. Further reduction in *Trps1* gene dosage resulted in a reduced survival rate; however, surviving adult mice exhibited major skeletal abnormalities observed in human TRPS patients. These observations reinforce the crucial roles played by Trps1 in normal

hip joint morphogenesis and partially explain the etiology of coxarthrosis observed in

3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
12	
1.3	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
26	
27	
27	
20	
29	
30	
31	
32	
33	
34	
35	
36	
27	
رد مد	
38	
39	
40	
41	
42	
43	
44	
45	
15	
40 47	
4/ 40	
48	
49	
50	
51	
52	
53	
54	
55	
<u> </u>	

certain patients with TRPS. to per peries

60

2 3		
4		
6 7	113	Results
8 9 10	114	
11 12 13	115	1. <u>Identification of putative enhancers in the first intron of the murine <i>Trps1</i> gene</u>
14 15 16	116	Our previous study indicated that several <i>Trps1</i> regulatory sequence for its tissue-
18 19 20	117	specific expression locates at the proximal promoter region of the $Trps1$ gene [³¹]. As
20 21 22 23	118	regulations of the Trps1 gene transcription in several tissues were unclear from the
23 24 25 26	119	previous study (e.g., growth plate chondrocytes and kidney ureteric bud), we aimed to
20 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	120	identify other <i>Trps1</i> enhancers by uncovering the chromatin profiles at the <i>Trps1</i> gene
	121	locus in murine costal chondrocytes. Chondrocytes were used in this study, as $Trps1^{-1-2}$
	122	mice exhibit severe cartilage defects during the late embryonic stages [4; 6; 8; 10], and short
	123	stature is a prominent feature of postnatal human TRPS pathologies [2]. Chromatin
	124	accessibility (ATAC-seq) and histone modifications for active enhancer signatures (ChIP-
	125	seq for H3K27ac and H3K4me2) were assessed. Comparison of ATAC-seq and ChIP-seq
	126	peaks revealed that several open chromatin regions were accompanied with the active
	127	enhancer signatures (Fig. 1A). Among them, we found two prominent regions in the first
50 51 52 53	128	intron of the Trps1 gene body, each of which were approximately 3 kb (Enh2;
53 54 55	129	Chr15:50885838-50889066) to 5 kb (Enh3; Chr15:50868499-50872947) in length (Fig.
57 58 59	130	1A). The identified mouse genomic sequence showed almost 75% homologies to human

2
3
4
5
6
7
, 8
0
9
10
11
12
13
14
15
16
17
18
19
20
 21
∠ı רכ
22
23
24
25
26
27
28
29
30
31
37
22
22
34
35
36
37
38
39
40
41
42
43
44
15
45
40
4/
48
49
50
51
52
53
54
55
56
50
5/
58
59

1

131 TRPS1 genomic sequences (Enh2, human Chr8:115664810-115668001; Enh3, human 132Chr8:115646975-115650605). Multispecies sequence alignment of the Trps1 gene using 133the Evolutionary Conserved Regions (ECR) program Dcode.org (<u>http://www.dcode.org</u>) revealed that several intronic regions including Enh2 and Enh3, as well as the TSS 134135proximal promoter region, were conserved between mice, humans, opossums, and 136chickens, while all exons displayed the highest conservation (Fig. 1B). Although frogs 137exhibited some alignment with other higher vertebrates within the fourth intron, 138similarities within the first intron were limited. 139The Enh2 and Enh3 elements were cloned and inserted into a luciferase vector 140 containing the minimum promoter. We performed luciferase assays using the vectors in 141ATDC5 chondrocytic cells to ask whether the two elements could induce transcriptional 142activation either individually or simultaneously (Fig. 1C). Enh2 augmented 143transcriptional activity, whereas Enh3 fragment did not (Fig. 1C). Furthermore, tandem 144 constructs carrying both Enh2 and Enh3 induced less activities than those carrying 145Enh2 alone (Fig. 1C). To identify the responsible domain for transcriptional activation 146in Enh2, we analyzed luciferase activities using Enh2 deletion mutant constructs (each 147fragment of almost 1 kb in length). This assay revealed that two thirds in the 5' side of 148 the Enh2 contains responsible elements for its activity (Fig. 1D).

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34 25
35
30 27
3/ 20
20
29 40
40 //1
41 42
42 43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

60

1491502. Individual deletion of Enh1, Enh2, and Enh3 causes mildly abnormal acetabular rim 151morphology when combined with heterozygous deletion of the Trps1 gene 152To investigate the potential in vivo roles of Enh2 and Enh3, we generated $Trps1^{\Delta Enh2/\Delta Enh2}$ and $Trps1^{\Delta Enh3/\Delta Enh3}$ mice, which lack Enh2 and Enh3 (Suppl. Fig. 1) 153using CRISPR/Cas9 genome editing. In addition to Trps 1^{\Denh2/\Denh2} and Trps 1^{\Denh3/\Denh3} 154155mice, we also generated a mouse strain which lacks the majority of the previously identified proximal promoter sequences of Trps1 gene (Enh1) while retaining the 156potential basal promoter sequence $(Trps1^{\Delta Enh1/\Delta Enh1}; Suppl. Fig. 1)$ [31]. 157*Trps1*^{ΔEnh1/ΔEnh1} mice were viable and gained body weight, and this did not differ from 158control (WT and *Trps1*^{ΔEnh1/+}) mice (Suppl. Fig. 2A). *Trps1*^{ΔEnh2/ΔEnh2} (Suppl. Fig. 2B) and 159Trps1^{\Denh3/\Denh3} (Suppl. Fig. 2C) mice were also viable and gained body weight compared 160 161to their control mice. The genotype distribution at the weaning time were as predicted 162in all three strains, thus indicating that the Enh1 (Suppl. Fig. 2D), Enh2 (Suppl. Fig. 163 2E), and Enh3 (Suppl. Fig. 2F) sequence deletion did not affect the survival rate during 164this developmental period. As Trps1 conventional knockout mice display numerous 165skeletal abnormalities at the embryonic stage, we analyzed $Trps I^{\Delta Enh1/\Delta Enh1}$, Trps1^{\lambde Enh2/\lambde Enh2}, and Trps1^{\lambde Enh3/\lambde Enh3} neonates (PNd0; Suppl. Figs. 2G-2R). The 166

2	
3	
1	
5	
6	
7	
8	
0	
9	
10	
11	
12	
12	
15	
14	
15	
16	
17	
10	
18	
19	
20	
21	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
20	
30	
31	
32	
33	
24	
54	
35	
36	
37	
20	
38	
39	
40	
41	
 ⊿⊃	
42	
43	
44	
45	
46	
40	
4/	
48	
49	
50	
50	
51	
52	
53	
54	
54	
55	
56	
57	
58	
50	
59	
60	

167	morphology and sizes of the craniofacial (Suppl. Figs. 2G, 2J, 2M, and 2P), the forelimb
168	skeletons (Suppl. Figs. 2H, 2K, 2N, and 2Q), and hindlimb (Suppl. Figs 2I, 2L, 2O, and
169	2R) appeared normal in <i>Trps1</i> ^{\Denh1/\Denh1} (Suppl. Figs. 2J-2L), <i>Trps1</i> ^{\Denh2/\Denh2} (Suppl. Figs.
170	2M-2O), and $Trps1^{\Delta Enh3/\Delta Enh3}$ (Suppl. Figs. 2P-2R) mice compared to the WT control mice
171	(Suppl. Figs. 2G-2I).
172	The skeletal morphology of <i>Trps1</i> ^{ΔEnh1/ΔEnh1} (Suppl. Figs. 3C, 3K, and data not shown),
173	<i>Trps1</i> ^{\DEnh2/\DEnh2} (Suppl. Figs. 3E, 3M, and data not shown), and <i>Trps1</i> ^{\DEnh3/\DEnh3} (Suppl.
174	Figs. 3G, 3O, and data not shown) at the postnatal mature stage was overtly normal in
175	3D-CT images compared to the wild-type (Suppl. Figs. 3A, 3I, and data not shown) or
176	<i>Trps1</i> ^{+/-} mice (Suppl. Figs. 3B, 3J, and data not shown). However, simultaneous deletion
177	of Enh1 and another allele of $Trps1$ gene ($Trps1^{AEnh1/-}$), which was assumed to result in
178	reduced baseline Trps1 expression compared to homozygous deletion of Enh1
179	$(Trps1^{\Delta Enh1/\Delta Enh1})$, resulted in deeper invagination of the psoas valley of the hip joint than
180	the other control mice (Suppl. Fig. 3D). The knee joints of $Trps I^{\Delta Enh1/-}$ mice appeared
181	normal in both 3D-CT images and histological sections (Suppl. Figs. 3L and data not
182	shown). Trps1 ^{AEnh2/-} (Suppl. Fig. 3F) and Trps1 ^{AEnh3/-} (Suppl. Fig. 3H) mice, which one
183	allele of the $\mathit{Trps1}$ gene was deleted, also showed modestly deepened psoas valley, which
184	resulted in a small under-coverage of the femoral head by the acetabulum. Knee joints

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
3/
38
39
40
41
42 42
45 44
44 15
45 46
40 17
47 78
40 40
50
51
52
53
54
55
56
57
58
59

60

of *Trps1*^{AEnh2/-} (Suppl. Figs. 3N and data not shown) and *Trps1*^{AEnh2/-} (Suppl. Fig. 3P and
data not shown) mice appeared normal in both 3D-CT images and histological sections.
Thus, individual deletions of Enh1, Enh2, or Enh3 only result in modest skeletal
phenotypes in mice.

189

190 3. <u>*Trps1*⁺⁻ mouse embryos show defects in pelvic bone ossification</u>

We observed modest hip joint abnormalities in $Trps 1^{\Delta \text{Enh}1/-}$, $Trps 1^{\Delta \text{Enh}2/-}$, $Trps 1^{\Delta \text{Enh}3/-}$ mice. 191192It has been established that a high proportion of patients with TRPS experience early onset coxarthritis ^[2]. Although *Trps1⁺* mice have been used to investigate the skeletal 193194pathologies of TRPS, hip joint formation in this mutant strain has not yet been examined 195in detail. Therefore, we set out to address this issue in *Trps1*⁺⁻ mice (Fig. 2). *Trps1* was 196 expressed in the hip joint region between the developing acetabulum of the coxa and the 197femoral head at E12.5 (Fig. 2A1). The cartilage primordia of both coxa and femur, which 198 were characterized by Sox9 expression, were normally formed in WT (Fig. 2A2) and Trps1⁺ (Fig. 2A3) embryos. At E15.5, the pelvic bone (os coxa), femur, tibia, and fibula 199200containing mineralized primary ossification centers were observed in WT, Trps1+/-, and 201Trps1⁺⁻ embryos (Figs. 2B and 2C, and data not shown). Although pelvic bone exhibited ossification in the iliac portion and length of pelvis was similar in WT and Trps1⁺⁻ 202

2
3
4
5
6
7
/ Q
0
9
10
11
12
13
14
15
16
17
18
19
20
20
∠ ı วว
22
23
24
25
26
27
28
29
30
31
32
22
27
24 25
22
36
3/
38
39
40
41
42
43
44
45
46
47
<u>1</u> 2
40
49 50
50
51
52
53
54
55
56
57
58
59
60
00

203	embryos, mineralized region was limited in $Trps I^{\prime -}$ embryos (arrowheads in Fig. 2C). At
204	E17.5, although primary ossification of the ilium, ischium, and pubis was initiated in
205	WT, $Trps1^{+/-}$, and $Trps1^{-/-}$ embryos, the length of pelvic bone was shorter in $Trps1^{-/-}$
206	embryos (Figs. 2D, 2E). Furthermore, the lateral view of the pelvic bone revealed that
207	the angle between the anterior (ilium) and posterior (ischium and pubis) portion is
208	sharply bent in <i>Trps1</i> ^{-/-} embryos compared to WT and <i>Trps1</i> ^{+/-} (Fig. 2F, 2G). Thus, the
209	global lack of <i>Trps1</i> results in developmental abnormalities in mineralization, growth,
210	and morphological curvature of the coxa.
211	
212	3. <u>Trps1^{Aint/Aint} mice lacking both Enh2 and Enh3 displayed growth delays and skeletal</u>
213	defects
214	To examine the potential cooperative effects of Enh2 and Enh3 on <i>Trps1</i> expression and
215	skeletal development, we generated mutant mice lacking a 20 kb region within the first
216	intron of <i>Trps1</i> , which contains both Enh2 and Enh3, by genome editing (Suppl. Fig. 1).
217	Homozygous intron knockout mice (referred to as $Trps1^{\Delta int/\Delta int}$ mice hereafter) survived
218	postnatally and were fertile, even in $\mathit{Trps1}^{\Delta int/\Delta int}$ male and female mating pairs. The
219	number of $\mathit{Trps1}^{\Delta int/\Delta int}$ mice at postnatal 3 weeks was slightly lower than expected, thus
220	suggesting that some <i>Trps1</i> ^{Δint/Δint} mice died before weaning (Suppl. Fig. 4A). <i>Trps1</i> ^{Δint/Δint}

mice exhibited significantly lower body weight during postnatal periods (statistically significant through postnatal weeks 3 to 9) compared to that of the WT or Trps 1^{\dint/+} mice (Suppl. Fig. 4B). When expression level of *Trps1* was examined in several organs of the early postnatal pups (Suppl. Fig. 4C), Trps1 levels were significantly reduced in the kidney, pelvis, scapula, and rib cartilage of $Trps1^{\Delta int/\Delta int}$ mice (Suppl. Fig. 4C). The reduction in *Trps1* expression was mild in the pelvic and rib cartilage. In contrast, there were no significant changes in *Trps1* expression in the heart or skin, and vibrissa follicle of *Trps1*^{Aint/Aint} mice. *Trps1* expression was also assessed in cultured costal chondrocytes prepared from the WT, $Trps1^{\Delta Enh2/\Delta Enh2}$, $Trps1^{\Delta Enh3/\Delta Enh3}$, and $Trps1^{\Delta int/\Delta int}$ mice (Suppl. Fig. 4D). In $Trps 1^{\Delta int/\Delta int}$ chondrocytes, the Trps 1 expression level was significantly decreased to approximately 40% of the WT; the level was also significantly reduced in *Trps1*^{\(\Delta Enh3\(\Delta Enh3\)} chondrocytes (Suppl. Fig. 3D), whereas the reduction was mild compared to that in the cells of $Trps1^{\Delta int/\Delta int}$ pups.

We next analyzed the skeletons of newborn *Trps1*^{Aint/Aint} pups (Suppl. Figs. 4). Compared to the control pups, *Trps1*^{Aint/Aint} pups showed no obvious defects in their body size (Suppl. Fig. 5A). The morphologies of the head and neck skeletons (Suppl. Figs. 5B-5G), the mineralization of the vertebral body and arches (Suppl. Figs. 5H-5M), the morphogenesis and ossification of the forelimb morphogenesis and ossification were

2
3
4
5
6
7
8
9
10
11
12
13
14
15
10
1/ 10
10
20
20
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
45 44
44 15
46
40 47
48 48
49
50
51
52
53
54
55
56
57
58
59

1

239normal in these mutants (Suppl. Figs. 5N-5Q), the gross appearance of the hind limb 240was also similar between the control and mutants (Suppl. Figs. 5R-5U). However, Trps1^{Aint/Aint} pups displayed 14% reduction in the size of the pelvis (Suppl. Fig. 5T; 241242P<0.001) and a tendency of reduction in the length of the femur (Fig. 5U). 2434. Adult Trps 1^{Aint/Aint} mice display developmental delays in formation of pelvic girdle and 244245secondary ossification center The defects of the pelvis and femur in $Trps I^{Aint/Aint}$ mice led us to focus on their hip joints. 246247They survived to the mature stage, and this allowed us to examine the postnatal 248structure of the hip joint in these mutants. At 1-month postnatal, 3D-CT images showed 249well-mineralized hip bones in both control (Fig. 3A) and *Trps1*^{Δint/Δint} mice (Fig. 3B). The 250cartilaginous ilio-pubic junction appeared to be wider in *Trps I*^{Aint/Aint} mutants at this developmental stage (arrowheads in Fig. 3B). Histological analysis revealed that the 251252cartilaginous remnants between the ilio-pubic junctions were more abundant in 253*Trps1*^{Δint/Δint} mice (Fig. 3D), whereas they were in the well-defined narrow cartilaginous 254domains in the control mice (Fig. 3C). At 3-months postnatal, the cartilaginous ilio-pubic 255junctional domain were replaced by mature bone in both control (Fig. 3E) and Trps 1^{Aint/Aint} mice (Fig. 3F). However, 3D-CT images showed that the psoas valley of 256

Trps 1^{Aint/Aint} mice (arrowheads in Fig. 3H) was more deeply invaginated than that of control mice (Fig. 3G), thus resulting in increased psoas valley depth in the mutants (Figs. 3I and 3J). The formation of a secondary ossification center (SOC) is crucial for reducing the physical impact of the cartilaginous epiphyseal growth plate [³²]. On day 10 postnatal, in Trps1^{\dint/\dint} mice (Fig. 3L) the initiation of SOC formation was delayed compared to that in control mice (Fig. 3K); both vascular canal invasion and hypertrophic differentiation of the epiphyseal resting chondrocytes were delayed in *Trps1*^{Δint/Δint} mice. In the first postnatal month when the SOC is usually fully formed, the SOC was formed in both the control (Figs. 3M and 3M') and the *Trps1*^{\dint/\dint} mice (Figs. 3Q and 3Q'). Osteoblasts expressing Collal were observed in the SOC of the control (Fig. 3N) and Trps 1^{Aint/Aint} mice (Fig. 3R). However, cartilaginous remnants stained for toluidine blue (see red arrowheads in Fig. 3Q' compared to Fig. 3M') were detected in the *Trps1*^{Aint/Aint} SOC; cells in the remnants expressed *Col2a1* (see red arrows in Fig. 3S compared to Fig. 30) but not Col10a1 (Figs. 3P and 3T). Thus, adult Trps1Aint/Aint mice exhibited developmental delays in coxa and SOC formation. Furthermore, Trps1Aint/Aint mice displayed an increase in the psoas valley depth, possibly resulting in regional under-coverage of the femoral head within the acetabulum.

275	
276	5. <u>Trps1^{Aint/-} mice display reduced survival rates, severe growth defects, acetabular</u>
277	dysplasia, and patella dislocation.
278	$Trpsl^{\Delta int'}$ mice were generated by mating $Trpsl^{\Delta int}$ mice with $Trpsl^{+-}$ mice. Timed
279	mating embryos were collected at E17.5. $Trps1^{\Delta int/-}$ embryos were visually
280	indistinguishable from WT embryos (Suppl. Fig. 6A). However, on postnatal day 5 (Suppl.
281	Fig. 6B) or at later mature stages (Suppl. Fig. 6C), <i>Trps1</i> ^{Δint/-} mice were significantly
282	smaller. Also, the number of the <i>Trps1</i> ^{Δint/-} animals surviving to the weanling stage were
283	extremely low compared to other genotypes (Suppl. Fig. 6D).
284	We first analyzed skeletal development of <i>Trps1</i> ^{Δint/-} embryos at E18.5 (Suppl. Figs. 6E-
285	6Q). As described above, body size was comparable between control and $Trps1^{\Delta int/-}$
286	embryos (Suppl. Fig. 6E). Control and $Trps I^{\Delta int/-}$ embryos demonstrated no obvious
287	difference in craniofacial skeletons (Suppl. Figs. 6F-6I, 6L, and 6M), appendicular
288	skeletons (Suppl. Figs. 6J, 6K), sternum (Suppl. Figs. 6N and 6O), and rib cage (Suppl.
289	Figs. 6P and 6Q). Thus, despite the postnatal growth defects of $Trps1^{\Delta int'}$ mice, their
290	embryonic skeletal defects were negligible small.
291	We analyzed <i>Trps1</i> expression in tissues harvested from rib, knee, vertebral cartilage
292	and kidney from postnatal day 0 pups (Suppl. Figs. 7A-7D). The expression level of $Trps1$

1
2
3
4
5
6
7
, 8
0
9 10
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
20
27
20
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
17
48
40
49 50
50
51
52
53
54
55
56
57
58
59

293	showed increased tendency in $\mathit{Trps1}^{+\!/\!-}$ mice, while $\mathit{Trps1}$ expression was not significantly
294	reduced in <i>Trps1</i> ^{Δint1/-} tissues obtained from rib (Suppl. Fig. 7A), knee (Suppl. Fig. 7B),
295	and vertebral cartilage (Suppl. Fig. 7C). In contrast, $Trps1$ expression in $Trps1^{\Delta int/-}$
296	neonate kidney showed significant reduction (Suppl. Fig. 7D).
297	We obtained two surviving $Trps I^{\Delta int/-}$ mice at the weaning stage (Suppl. Fig. 6D). These
298	mice survived for more than 3 months postnatally (samples were collected at 3- and 6-
299	months postnatally). They were both female, but neither gave birth to pups. Macroscopic
300	anatomy (Figs. 4A and 4B) and 3D-CT analysis (Figs. 4C and 4D) revealed a deeply
301	invaginated psoas valley together with severe under-coverage of the femoral head within
302	the acetabulum. Histologically, the cartilaginous ilio-pubic junction remained even in 3-
302 303	the acetabulum. Histologically, the cartilaginous ilio-pubic junction remained even in 3- month-old <i>Trps1</i> ^int/- mice (Figs. 4F and 4H), but not in the control mice (Figs. 4E and
302 303 304	the acetabulum. Histologically, the cartilaginous ilio-pubic junction remained even in 3- month-old <i>Trps I</i> ^{Aint/-} mice (Figs. 4F and 4H), but not in the control mice (Figs. 4E and 4G).
302 303 304 305	the acetabulum. Histologically, the cartilaginous ilio-pubic junction remained even in 3- month-old <i>Trps 1</i> ^int/- mice (Figs. 4F and 4H), but not in the control mice (Figs. 4E and 4G). 3D-CT analysis also revealed other skeletal pathologies of the <i>Trps 1</i> ^int/- mice, including
302 303 304 305 306	the acetabulum. Histologically, the cartilaginous ilio-pubic junction remained even in 3- month-old <i>Trps I</i> ^{Aint/-} mice (Figs. 4F and 4H), but not in the control mice (Figs. 4E and 4G). 3D-CT analysis also revealed other skeletal pathologies of the <i>Trps I</i> ^{Aint/-} mice, including the medial dislocation of the patella (Figs. 4I and 4J; observed in four out of four knees),
302 303 304 305 306 307	 the acetabulum. Histologically, the cartilaginous ilio-pubic junction remained even in 3- month-old <i>Trps I</i>^{Aint/-} mice (Figs. 4F and 4H), but not in the control mice (Figs. 4E and 4G). 3D-CT analysis also revealed other skeletal pathologies of the <i>Trps I</i>^{Aint/-} mice, including the medial dislocation of the patella (Figs. 4I and 4J; observed in four out of four knees), reduced development of the fabella that is a sesamoid bone embedded in the lateral head
 302 303 304 305 306 307 308 	 the acetabulum. Histologically, the cartilaginous ilio-pubic junction remained even in 3- month-old <i>Trps1</i>^{Aint/-} mice (Figs. 4F and 4H), but not in the control mice (Figs. 4E and 4G). 3D-CT analysis also revealed other skeletal pathologies of the <i>Trps1</i>^{Aint/-} mice, including the medial dislocation of the patella (Figs. 4I and 4J; observed in four out of four knees), reduced development of the fabella that is a sesamoid bone embedded in the lateral head of the gastrocnemius muscle (Figs. 4K and 4L; observed in four out of four knees), shallow
 302 303 304 305 306 307 308 309 	the acetabulum. Histologically, the cartilaginous ilio-pubic junction remained even in 3- month-old <i>Trps1</i> ^int/- mice (Figs. 4F and 4H), but not in the control mice (Figs. 4E and 4G). 3D-CT analysis also revealed other skeletal pathologies of the <i>Trps1</i> ^{Aint/-} mice, including the medial dislocation of the patella (Figs. 4I and 4J; observed in four out of four knees), reduced development of the fabella that is a sesamoid bone embedded in the lateral head of the gastrocnemius muscle (Figs. 4K and 4L; observed in four out of four knees), shallow and flattened trochlear groove (Figs. 4J and 4L; observed in four out of four knees), and

was not observed in perinatal Trps1^{Aint/-} pups (Fig.4O), dislocation was likely to occur postnatally in the mutants. Histologically, Trps 1^{Δint/-} mice showed not just the reduced size of the SOC, but also the presence of cartilaginous remnant even at 3-months postnatal (Figs. 4P-4S). Thus, Trps1^{\dint/-} mice displayed more severe pathologies than *Trps1* $^{\Delta int/\Delta int}$ mice. for peer peries

2
3
4
5
6
7
, o
0
9
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
26
20
27
20
29
30
31
32
33
34
35
36
27
20
38
39
40
41
42
43
44
45
46
- 1 0 //7
47
48
49
50
51
52
53
54
55
56
50
5/
58
59

60

317 Discussion

318The pelvic girdle functions as a load-bearing structure in both bipedal and quadrupedal 319animals. The precise morphogenesis and alignment of the pelvis, femur, and other joint 320 structures are crucial for tolerating various types and times of hip joint movement 321without friction. Compared to the knowledge of genes involved in fore- and hindlimb 322development, much less is known regarding the genetic regulation of pelvic girdle 323development. Here, we demonstrate that the transcription factor Trps1 is important for 324normal pelvic development. We observed that the size relationship between the femoral 325head and acetabulum was altered when the expression of *Trps1* was low. In particular, 326the development of the pubic bone was mostly affected, and the acetabulum of the ilio-327pubic junction exhibited under-coverage of the femoral head. These observations 328reinforce the indispensable role of Trps1 in the normal pelvic girdle morphogenesis. The 329psoas valley is an anterior depression located at the acetabular rim and coincides with a site commonly associated with acetabular labral pathology ^[33]. The invagination of the 330 psoas valley was severely affected in $Trps1^{Aint/Aint}$ and surviving $Trps1^{Aint/-}$ mice. This 331332phenotype may partly explain the etiology of frequently observed hip dysplasia and early 333onset coxarthrosis in patients with TRPS. 334

1. Postnatal skeletal dysplasia by deletion of potential regulatory elements in the first

336	intron of murine Trps1 gene
337	Our understanding of the transcriptional regulation of <i>Trps1</i> expression is still limited.
338	Advances in high-throughput sequencing have revealed chromatin accessibility,
339	chromatin modifications, and transcription factor binding sites [³⁴]. The functional
340	significance of computational data from ATAC-seq and ChIP-seq needs to be verified
341	experimentally, most ideally by in vivo strategies. We identified several enhancer
342	candidates in the murine <i>Trps1</i> gene region that were mostly regionalized to the 5' side
343	of the first intron. This genomic region is well conserved in mammals (opossums and
344	humans), whereas the chicken sequence is much less conserved. To examine their
345	biological significance, we deleted the identified sequences using genome editing
346	approaches in mice. Furthermore, we generated compound heterozygous mice in which
347	the enhancers were deleted with a disrupted <i>Trps1</i> gene in another allele.
348	Chondrocytes derived from $\mathit{Trps1}^{\Delta int/\Delta int}$ mice exhibited an approximately 60% reduction
349	in Trps1 expression compared to the WT cells. Interestingly, chondrocytes harvested
350	from $Trps1^{\Delta Enh3/\Delta Enh3}$ mice also exhibited reduced $Trps1$ expression (and $Trps1^{\Delta Enh2/\Delta Enh2}$

- 351 exhibited a tendency for reduction) compared to the WT cells. This observation indicated
- 352 that there were at least two independent enhancers, which regulates *Trps1* expression,

within the first intron of the *Trps1* gene.

1
2
3
4
5
6
7
/
8
9
10
11
12
13
14
15
16
17
18
10
19
20
21
22
23
24
25
26
27
28
29
30
30 21
21
32
33
34
35
36
37
38
39
40
41
<u>4</u> 2
т∠ //2
-+
44
45
46
47
48
49
50
51
52
53
54
55
55
50
5/
58
59

354	The presence of introns in the gene body is known to play various roles in the cell, where
355	1) they upregulate transcription through intron-mediated enhancement of transcription
356	$[^{35}]$, 2) they increase proteomic complexity through alternative splicing $[^{36}]$, and 3) they
357	alleviate the genotoxic R-loop formation that appears during the transcriptional process
358	^[37] . Introns can regulate gene expression, where they reside both at the level of
359	transcription [³⁸] and post-transcriptionally [^{39; 40}]. Recent evidence suggests that many
360	key cis-regulatory regions are located in the introns of their target genes [41]; especially,
361	tissue-specific enhancers are highly enriched in intronic regions, regulating the
362	expression of genes that function in tissue-specific manners [42]. Furthermore, an
363	intergenic-to-intronic active enhancer continuum is observed during the transition from
364	developmental to adult stages; the most differentiated tissues tend to exhibit higher
365	rates of intronic enhancers [42]. Given these, the genomic regions that we identified as
366	enhancer candidates are possibly involved in tissue-specific expression and functions of
367	<i>Trps1</i> . Skeletal phenotypes of our enhancer deleted mice further support this notion.
368	Individual deletions of Enh1, Enh2, and Enh3 caused subtle phenotypes in mice,
369	suggesting that each of the single enhancer is functionally dispensable for normal
370	skeletal development or they have functional redundancy. Importantly, these mutants

1
2
3
4
5
6
7
, 0
0
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
22
24
25
20
27
28
29
30
31
32
33
34
35
36
37
38
30
10
40
41
42
43 44
44
45
46
47
48
49
50
51
52
53
54
55
56
57
50
50 50
22

371	displayed a mildly deformed acetabulum when the Trps1 gene dosage was further
372	reduced by deletion of one allele of <i>Trps1</i> . This result raises the possibility that each
373	enhancer contributes to hip joint maturation when the genetic robustness of Trps I
374	expression is reduced. This idea was supported by the observation that more severe
375	acetabular defects were present when Enh2 and Enh3 were simultaneously deleted. The
376	coincidence of the defective anatomical site observed in different <i>Trps1</i> enhancer mutant
377	strains and the difference in the severities observed strongly indicate that normal
378	acetabular morphogenesis depends upon a sufficient <i>Trps1</i> gene dose.
379	Trps 1 ^{Aint/-} mice display the most severe growth defects among the mice we tested;
380	however, these defects became apparent postnatally. Recent evidence suggests that
381	postnatal skeletal growth is driven by the activation of the stem cell niche that appears
382	in synchronization with the maturation of SOC [43; 44]. The postnatal growth defects and
383	defective SOC formation in $\mathit{Trps1}^{\mathit{Aint}/\!\!-}$ mice suggest that the diminished chondrocyte stem
384	cell population may be the cause of their gradual pronounced shortening of body length.
385	
386	2. <u>Skeletal pathologies in TRPS patients and TRPS mouse models</u>
387	Greater than 50% of patients with TRPS exhibit developmental dysplasia of the hip $[23, 23]$
388	¹³]. These malformations include coxa plana (resembling the femoral head morphology

in Perthes disease), coxa magna (relative enlargement of the femoral head), and coxa vara (reduction of the femoral neck shaft angle). Possibly due to these abnormal developments, older patients with TRPS display hip abnormalities associated with degenerative coxarthrosis. Although these reports suggest important roles for Trps1 in hip joint development, they have not been investigated by mouse genetics to date. The present study addressed this issue. Conventional *Trps1*^{-/-} mice exhibited a reduction in the size of the ilium, ischium, and pubis. The width of the pelvic floor was narrower, and the subpubic angle was more acute in $Trps1^{\prime}$ embryos. As the pubic symphysis is normally observed in *Trps1*^{/-} mice, the short anterior-posterior length of the pelvis appears to be compensated for by the bending of the pelvis at the ilium and ischium/pubis border (Suppl. Fig. 5). As the pelvis and femur phenotypes of $Trps1^{\Delta int/\Delta int}$ mice were similar to those of Trps1^{*r*} mice at the perinatal stage, we examined the hip joint morphology of *Trps 1*^{Δint/Δint} mice at the adult stage. The pubic bone element was particularly affected in *Trps I*^{Aint/Aint} mice, and consequently the acetabulum of the pubic bone region was poorly formed, ultimately resulting in undercoverage of the femoral heads. These morphological changes often lead to altered joint load and motion, thus causing the onset of degenerative joint pathologies [45; 46]. These conclusions are further supported by reports correlating an increased risk

407 of osteoarthritis with morphological deformities of the proximal femur and acetabulum
408 [^{47; 48}].

Trps $I^{\Delta int/-}$ mice displayed patella formation in the normal position; however, in adult mice that survived to the mature stage, medial patellar dislocation was observed in all examined knees. Significantly, it has been reported that some patients with TRPS display an abnormal patella with recurrent dislocation ^[49]. The patella is the largest sesamoid bone embedded in the quadriceps tendon and facilitates musculoskeletal function. Development of the patella was originally thought to occur inside the tendons in response to mechanical signals from the attaching muscles ^[50]; however, it is now established that in the mouse embryo, the patella initially develops as a bony process at the anterodistal surface of the femur from Sox9 and Scleraxis double-positive progenitor cells and separates from the distal femur via Gdf5-positive joint formation ^[51]. Postnatally, the patella plays a crucial role in knee mechanics and stability and facilitates hind limb function and locomotion [52]. The patella increases the distance between the quadriceps and knee, and thereby increasing the moment arm of the muscle and enhancing its extension force by 50% [53]. The normal patellar position in newborn $Trps I^{\Delta int/-}$ pups indicates that patella development initiates normally at the correct location, and the dislocation occurred postnatally in the mutants. The patella stability

425	involves a balance between the stabilizing patellofemoral ligaments, the osteoarticular
426	surface, the position of the patella (high riding patella; patella alta), decreased depth or
427	flattened trochlear groove, and the muscular actions of the quadriceps muscles $[54]$. 3D-
428	CT images of the distal femur of the $\mathit{Trps1}^{\Delta int/-}$ mice indicate the flattened surface at the
429	femoral trochlear groove at 3- and 6-months-of-age. The medial and lateral facets of the
430	groove are not obvious but rather exhibit convexity, ultimately resulting in apparent
431	trochlear dysplasia [55]. Interestingly, the medial fabella, a sesamoid bone embedded in
432	the medial head of the gastrocnemius muscle, exhibited a severe reduction in size. It is
433	important to note that in quadrupedal mammals, the fabella is believed to play a role
434	very similar to that of the patella in redirecting the extension forces of the knee joint
435	from one point to another [56]. The exact causes of the flattened femoral trochlear groove
436	and reduced medial fabella size are not clear. Skin and joint laxity is a characteristic
437	feature of patients with TRPS. These features of TRPS have been described as symptoms
438	that are similar to those observed in patients with Ehlers-Danlos syndrome. Importantly,
439	a mouse model of Ehlers-Danlos syndrome exhibited severe growth retardation, delays
440	in SOC formation, and patellar dislocation, all of which were observed in $\mathit{Trps1}^{\Delta int/-}$ mice
441	[57].
442	

3. The *Trps1*^{Δint/Δint} mouse strain as a novel TRPS disease model for postnatal studies. The etiologies of TRPS have been investigated using several animal models of TRPS. Most of these studies were performed using homozygous knockout mice. Although they are useful, they possess significant limitations due to their early postnatal lethality. Patients with TRPS exhibit various postnatal diseases. These conditions include skeletal dysplasia, coxarthrosis, and progressive short stature [2]. Our novel *Trps1*^{Aint/Aint} mouse strain could partially overcome this limitation, contributing to the postnatal studies of CO POLO TRPS pathologies.

2
1
4
5
6
7
8
9
10
11
11
12
13
14
15
16
17
18
10
20
20
21
22
23
24
25
26
20
2/
28
29
30
31
32
33
34
35
26
30
37
38
39
40
41
42
43
40
44
45
46
47
48
49
50
51
51
52
53
54
55
56
57
58
50

60

453 1. <u>ATAC-seq and ChIP-seq of mouse costal chondrocytes.</u>

454Assays for transposase-accessible chromatin using high-throughput sequencing (ATACseq) [58] was performed using costal chondrocytes isolated from neonatal mouse ribs [59]. 455456Approximately 50,000 cells were lysed using lysis buffer (10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl₂, and 0.1% IGEPAL CA-630) to release the nuclei and then 457458treated with Tn5 transposase (Illumina #FC121-1030) at 37°C for 30 minutes. The adaptors were ligated and amplified using polymerase chain reaction (PCR) for high-459460 throughput sequencing. Paired-end sequencing (100 bp) was performed using an 461Illumina HiSeq platform at the Osaka University Research Institute for Microbial 462Diseases NGS Core Facility. Qualified sequencing reads were aligned to the reference 463 genome (mm9) using Bowtie 2 (ver. 2.4.4) [⁶⁰], and MACS2 was used for peak calling [⁶¹]. Two biological replicates were analyzed for ATAC-seq. Chromatin immunoprecipitation 464followed by sequencing (ChIP-seq) was performed using antibodies against histone 465466 modifications [62]. Primary chondrocytes were crosslinked with 1% formaldehyde for 5 467min. Crosslinking was quenched with 1 M glycine for 5 min. Cells were lysed and 468chromatin was sonicated with Covaris M220. Fragmented DNA was immunoprecipitated 469 using an antibody against acetylated H3 lysine 27 (H3K27ac) (Cell Signaling Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
27
22
23
24
25
20
27
20
29
20 21
27
22 22
27
25
26
30 27
2/
38
39
40
41
4Z 42
43
44 45
45
40
4/
48 40
49
50
51
52
53
54
55
56
57
58
59

470	(CST) #8173, 2 μg per reaction) or against demethylated H3 lysine 4 (H3K4me2) (CST,
471	#9725, 2 μg per reaction). H3K27ac is associated with active enhancer regions, while
472	H3K4me2 is predominantly enriched around the functional cis-regulatory elements as
473	well as transcription start sites (TSS) [63]. All immunoprecipitation was performed for 4
474	hours at 4°C. ChIP samples were washed, eluted at 65°C for 30min, and reverse
475	crosslinked at 65°C overnight. DNA was purified using DNA purification spin columns.
476	Library preparation, sequencing, and peak calling were performed as described above.
477	ATAC-seq and ChIP-seq data have been deposited in the NCBI Gene Expression
478	Omnibus with the accession code GSE237889
479	(<u>https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE237889</u>).
480	2. <u>Luciferase assays</u>
481	The enhancer 2 (Enh2; 2,981 bp) and enhancer 3 (Enh3; 5,370 bp) genomic fragments
482	were amplified using a high-fidelity KODFX DNA polymerase (TOYOBO, Osaka, Japan)
483	by the primer sequences listed in Table 1. The A-tailed fragments were subcloned into
484	the pTA2 vector (TOYOBO). The inserts were released and subcloned into the pGL3-
485	promoter vector (Promega) to generate Enh2-Luciferase and Enh3-Luciferase constructs.
486	The Enh3 fragment was inserted into the Enh2-Luciferase clone to generate an Enh2-
487	Enh3-Luciferase construct. Firefly Luciferase vectors and pTK-Renilla luciferase vector

60

488 (Promega) were transfected into ATDC5 chondrocytic cell line seeded onto 12-well 489 culture plates [64; 65] with ScreenFect A (Fujifilm, Osaka, Japan) for 6 h. The cells were 490 rinsed once with phosphate buffered saline (PBS) and then cultured in DMEM/F-12 491media (Sigma) supplemented with 10% fetal bovine serum (FBS). After cultured for an 492additional 40 h, the cells were lysed with 200 μ l of luciferase lysis buffer (Promega). 493Luciferase measurements and normalization were performed as described previously [66; 494⁶⁷]. The experiments were performed in triplicate and performed at least three times, 495and representative data are presented in the figures. 3. <u>Animals</u> 496Conventional Trps1 knockout mouse strain (Trps1⁺ mice) has been described 497498previously [5, 8]. Trps1 enhancer-deleted strains were generated by CRISPR/Cas9 499 genome editing. Δ Enh1 strain was generated by the deletion of the enhancer 1 (Enh1) 500sequence, which is located upstream of *Trps1* TSS [³¹]. Enh2 and Enh3 are located in the 501first intron of the Trps1 gene; approximately 3 kb (Enh2), 4 kb (Enh3), and 20 kb genomic 502regions containing both of the enhancers were deleted in Δ Enh2, Δ Enh3, and Δ int strains, 503respectively. The guide RNA sequences used for genome editing are listed in Table 1. 504crRNA, tracrRNA, and the Cas9 protein complex were electroporated into fertilized eggs 505(C57BL/6J) and cultured *in vitro* until the two-cell stage. Eggs were implanted into the

2
3
1
4
5
6
7
Q
0
9
10
11
12
12
15
14
15
16
17
10
18
19
20
21
22
22
23
24
25
26
20
27
28
29
30
21
51
32
33
34
35
22
36
37
38
39
10
40
41
42
43
44
45
45
46
47
48
10
42
50
51
52
53
55
54
55
56
57
58
50
59
60

506	fallopian tubes of pseudo-pregnant female mice. F0 mice with successful deletions were
507	initially mated with C57BL/6J wild-type (WT) mice (Japan SLC, Inc., Shizuoka, Japan)
508	for germline transmission. Non-mosaic heterozygotes of F1 males and females were used
509	for breeding. To generate $Trps1$ double heterozygotes including $Trps1^{Aint/-}$ mice, we
510	crossed Trps1 enhancer-deleted strain with conventional Trps1 heterozygous knockout
511	strain. Genotyping was performed using the genomic DNA purified from tail clips or skin
512	tissue. Primer used for genotyping are listed in Table 2.
513	Body weight was measured every week after weaning until week 9. For embryonic stage
514	sample preparation, noon of the day the vaginal plug appeared was considered as
515	embryonic day (E) 0.5. Pregnant female mice were humanely euthanized, and embryos
516	were collected by C-section. All animal experiments were approved by the Animal
517	Experiment Committee of the Osaka University Graduate School of Dentistry (Animal
518	Protocol #29-016-0). Experimental procedures were performed according to the
519	Association for Assessment and Accreditation of Laboratory Animal Care International
520	and local guidelines. The rooms were maintained at 22 to 26 degrees under 12 h
521	light/dark cycle.
522	4. <u>Skeletal analysis</u>

523 Alizarin red and alcian blue staining of bone and cartilage was performed as previously

described ⁶⁸. Three-dimensional micro-computed tomography (3D-CT) images of the pelvic region were captured by R-mCT2 (Rigaku, Tokyo, Japan) at Field of view (FOV) 20 at 90V and 160μ A. Images were created using three-dimensional reconstruction imaging software (TRI/ 3D-BON; RATOC System Engineering Co., Ltd., Tokyo, Japan). The psoas valley depth was measured according to a previous report [69]. Briefly, a straight line passing through the upper and lower hip labra was drawn. A line perpendicular to and crossing the center of the femoral head was drawn. The lengths of the psoas valleys depth were measured using the ImageJ software. As there could be sex-specific variations in pelvic girdle morphology, we used only male mice for the postnatal study. Sex was not determined for the embryonic stage samples used in this study. 4. Total RNA isolation from primary costal chondrocytes and reverse transcription-<u>quantitative PCR (RT-qPCR).</u> Postnatal day 3 (PNd3) pups were humanely euthanized by injecting them with an overdose of anesthetic drugs, and various tissues or organs were dissected in cold PBS under a stereoscopic microscope. Each tissue and organ was stored separately in 350 µl buffer RLT (Qiagen, Hilden, Germany) supplemented with beta-mercaptoethanol. Total

541 RNA was prepared using an RNeasy Plus kit (Qiagen) according to the manufacturer's

2
3
4
5
6
7
/
8
9
10
11
10
12
13
14
15
16
17
10
18
19
20
21
22
25
23
24
25
26
27
28
20
29
30
31
32
33
31
24
35
36
37
38
30
10
40
41
42
43
44
45
16
40
4/
48
49
50
51
51
52
53
54
55
56
50
57
58
59

1

542	instructions. Samples obtained from both WT and $Trps I^{\Delta int/\Delta int}$ animals were
543	homogenized and subjected to the column purification processes. WT, $Trps1^{\Delta Enh2/\Delta Enh2}$,
544	$Trps I^{\Delta Enh3/\Delta Enh3}$, and $Trps I^{\Delta int/\Delta int}$ were used for preparation of the neonatal costal
545	chondrocytes. Cells were harvested as described previously [59]. The cells were cultured
546	in DMEM supplemented with 10% FBS and antibiotics. Cells from passage two were
547	used for qPCR analysis. Purified total RNA (1 μ g) was reverse-transcribed into cDNA
548	using ReverTra Ace (TOYOBO). THUNDERBIRD SYBR qPCR mix (TOYOBO) was used
549	for real-time PCR on a 20 μ l reaction scale. A MiniOpticon qPCR apparatus equipped
550	with CFX managing software (Bio-Rad Laboratories, Berkeley, CA, USA) was used for
551	reaction and data acquisition as described previously [70]. The primers used for real-time
552	PCR were 5'-CAG CTC CCA AGA GCA GAC AAA-3' and 5'-GTC AGG CAA TTG GCA
553	CAA AAA-3' for <i>Trps1</i> , and the primer sequence for <i>Hprt1</i> has been described previously
554	[71].
555	3. In situ hybridization and immunohistochemistry

Sectional *in situ* hybridization was performed as previously described ^[5]. Transverse cryo-sections of E12.5 embryos were prepared at thickness of 14 microns. Sense and antisense *Trps1* cRNA probes were synthesized using the NM_032000.2 nt.412-1291 sequence as a template. Immunohistochemistry was performed on transverse cryo-
560	sections of E12.5 wildtype and $Trps1^{-/-}$ embryos using anti-Sox9 rabbit monoclonal
561	antibody (1:400 #D8G8H, CST, Danvers MA). Endogenous peroxidase activity was
562	inhibited by 0.3% $\rm H_2O_2$ for 15 min at RT. Biotinylated anti-rabbit IgG (4 $\mu g/ml$ Vector
563	Laboratories, Burlingame, CA) and HRP-conjugated streptavidin (2 $\mu\text{g/ml}\textsc{;}$ Abcam,
564	Cambridge, UK) were used for the following reactions. Color development was performed
565	using 3,3'-Diaminobenzidine with nickel enhancement. Normal rabbit IgG (CST) was
566	used instead of the primary antibody as a negative control. The stained sections were
567	then dehydrated and covered with coverslips. Postnatal animals were fixed by perfusion
568	under deep anesthesia. The hindlimbs were further fixed in 4% paraformaldehyde for
569	more than 16 hours at 4 degrees. Then, the samples were decalcified in 10%
570	ethylenediamine tetraacetic acid (EDTA) for 10 to 14 days at 4 degrees Celsius. The
571	decalcified samples were dehydrated, embedded in paraffin, and then sectioned at a 4-
572	micron thickness. Stained images were captured using an Axioskop 2 plus equipped with
573	an Axiocam 208 (Carl Zeiss Microscopy, Jena, Germany) or BZ-X800 with appropriate
574	software (Keyence).
575	4. <u>Statistical analysis.</u>

576 The results are expressed as the means ± standard deviation (SD). The mean values of
577 two samples were compared using Student's *t-test*. Statistical significance was set at P

< 0.05. Multiple comparison of more than three samples were analyzed by one-way analysis of variance (ANOVA), followed by Tukey's post-hoc test using GraphPad Prism8 software. At least three animals per each genotype were used for all the analysis.

3
4
5
6
7
/
8
9
10
11
12
12
13
14
15
16
17
18
19
20
20
21
22
23
24
25
26
20
27
28
29
30
31
32
22
27
34
35
36
37
38
39
10
40
41
42
43
44
45
46
Δ7
77 10
4ð
49
50
51
52
53
57
54
55
56
57
58

59 60

Acknowledgements 582583This work was supported by Grants-in-Aid for Scientific Research from MEXT to MA 584(17K11611, 22K06295), JSPS KAKENHI JP16H06276 (AdAMS) to MA, and the Takeda Science Foundation for SI. The authors acknowledge Dr. Yasuteru Muragaki 585586for sharing the Trps1 knockout strain; Dr. Ryouji Yao, Dr. Hiroshi Takano, Dr. Hitomi 587Yamanaka, and Dr. Masahito Ikawa for their help with mouse generation; and Ms. 588Mariko Kasai for the technical assistance. 589**Declaration of interests** 590None. 591Author contributions 592N.S., S.O., M.A. conceived of the study, T.I., S.A., S.O., M.A. supervised the work, N.S., K.H., S.I., S.O., M.A. designed the experiments, N.S., C.I-Y., Y.I., R.K., K.H., S.O., M.A. 593594performed the experiments and analyzed results, N.S., S.O., M.A. wrote the 595manuscript with input from all authors. 596597

2
3
1
-
5
6
7
8
9
10
11
12
12
13
14
15
16
17
18
19
20
21
22
∠∠ วว
23
24
25
26
27
28
29
30
21
27
32
33
34
35
36
37
38
30
40
4U 41
41
42
43
44
45
46
47
48
49
50
50
51
52
53
54
55
56
57
58
50
59
60

598	References
599	1. Momeni, P., Glockner, G., Schmidt, O. et al. Mutations in a new gene, encoding a zinc-
600	finger protein, cause tricho-rhino-phalangeal syndrome type I. <i>Nat Genet</i> 2000; 24 :71-74.
601	2. Ludecke, H.J., Schaper, J., Meinecke, P. et al. Genotypic and phenotypic spectrum in
602	tricho-rhino-phalangeal syndrome types I and III. <i>Am J Hum Genet</i> 2001; 68 :81-91.
603	3. Le Saout, J., Lefevre, C., Kerboul, B. et al. Osteochondritis of the hip and the tricho-
604	rhino-phalangeal syndrome. <i>Ann de Chirurgie</i> 1984; 38 :357-362.
605	4. Itoh, S., Kanno, S., Gai, Z., et al. Trps1 plays a pivotal role downstream of Gdf5
606	signaling in promoting chondrogenesis and apoptosis of ATDC5 cells. Genes Cells
607	2008; 13 :355-363.
608	5. Michikami, I., Fukushi, T., Honma, S. et al. Trps1 is necessary for normal
609	temporomandibular joint development. <i>Cell Tis Res</i> 2012; 348 :131-140.
610	6. Napierala, D., Sam, K., Morello, R.et al. Uncoupling of chondrocyte differentiation and
611	perichondrial mineralization underlies the skeletal dysplasia in tricho-rhino-phalangeal
612	syndrome. <i>Hum Mol Genet</i> 2008; 17 :2244-2254.
613	7. Napierala, D., Sun, Y., Maciejewska, I.et al. Transcriptional repression of the Dspp
614	gene leads to dentinogenesis imperfect a phenotype in Col1a1-Trps1 transgenic mice. ${\cal J}$
615	<i>Bone Min Res</i> 2012; 27 :1735-1745.

1	
2	
3	
4	
5	
6	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
י 20	
∠∪ ว1	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
27	
27 20	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55	
50 57	
5/	
58	
59	
60	

616	8. Suemoto, H., Muragaki, Y., Nishioka, K. et al. Trps1 regulates proliferation and
617	apoptosis of chondrocytes through Stat3 signaling. <i>Dev Biol</i> 2007; 312 :572-581.
618	9. Kanno, S., Gui, T., Itoh, S.et al. Aberrant expression of the P2 promoter-specific
619	transcript Runx1 in epiphyseal cartilage of Trps1-null mice. Exp Mol Pathol
620	2011; 90 :143-148.
621	10. Nishioka, K., Itoh, S., Suemoto, H. et al. Trps1 deficiency enlarges the proliferative
622	zone of growth plate cartilage by upregulation of Pthrp. <i>Bone</i> 2008; 43 :64-71.
623	11. Wuelling, M., Kaiser, F.J., Buelens, L.A. et al. Trps1, a regulator of chondrocyte
624	proliferation and differentiation, interacts with the activator form of Gli3. Dev Biol
625	2009; 328 :40-53.
626	12. Wuelling, M., Schneider, S., Schrother, V.A. et al. Wnt5a is a transcriptional target
627	of Gli3 and Trps1 at the onset of chondrocyte hypertrophy. <i>Dev Biol</i> 2020; 457 :104-118.
628	13. Maas, S.M., Shaw, A.C., Bikker, H. et al. Phenotype and genotype in 103 patients
629	with tricho-rhino-phalangeal syndrome. <i>Eur J Med Genet</i> 2015; 58 :279-292.
630	14. Fontaine, G., Maroteaux, P., Farriaux, J.P. et al. The tricho-rhino-phalangeal
631	syndrome. Arch Fr Pediatr 1970; 27 :635-647.
632	15. Beals, R.K. Tricho-rhino-phalangeal dysplasia. Report of a kindred. J Bone Joint
633	<i>Surg Am</i> 1973; 55 :821-826.

16. Felman, A.H., Frias, J.L. The trichorhinophalangeal syndrome: study of 16 patients

in one family. AJR Am J Roent 1977;129:631-638. 17. Peltola, J., Kuokkanen, K. Tricho-rhino-phalangeal syndrome in five successive generations: Report on a family in Finland. Acta Dermato-Vener 1978;58:65-68. 18. Howell, C.J., Wynne-Davies, R. The tricho-rhino-phalangeal syndrome. A report of 14 cases in 7 kindreds. J Bone Joint Surg Br 1986;68:311-314. 19. Don, E.K., Currie, P.D., Cole, N.J. The evolutionary history of the development of the pelvic fin/hindlimb. JAnat 2013;222:114-133. 20. Yano, T., and Tamura, K. The making of differences between fins and limbs. J Anat 2013;**222**:100-113. 21. Malashichev, Y., Borkhvardt, V., Christ, B. et al. Differential regulation of avian pelvic girdle development by the limb field ectoderm. Anat Embryol 2005;210:187-197. 22. Delaere, O., Kok, V., Nyssen-Behets, C. et al. Ossification of the human fetal ilium. Acta Anat 1992;143:330-334. 23. Ponseti, I.V. Growth and development of the acetabulum in the normal child. Anatomical, histological, and roentgenographic studies. J Bone Joint Surg Am 1978;**60**:575-585. 24. Harrison, T.J. The influence of the femoral head on pelvic growth and acetabular

2
3
4
5
6
7
, o
0
9
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
26
27
27 20
20
29
30
31
32
33
34
35
36
20
20
38
39
40
41
42
43
44
45
ч5 Л6
40
4/
48
49
50
51
52
53
54
55
55
50
5/
58
59

60

652 form in the rat. *JAnat* 1961;**95**:12-24.

653 25. Harris-Hayes, M., Royer, N.K. Relationship of acetabular dysplasia and

654 femoroacetabular impingement to hip osteoarthritis: a focused review. PM & R : J Inj

655 Funct Rehab 2011;**3**:1055-1067 e1051.

656 26. Anderson, F.A., Jr., Huang, W., Friedman, R.J. et al. Prevention of venous
657 thromboembolism after hip or knee arthroplasty: findings from a 2008 survey of US
658 orthopedic surgeons. J Arthro 2012;27:659-666 e655.

659 27. Diesel, C.V., Ribeiro, T.A., Scheidt, R.B. et al. The prevalence of femoroacetabular
660 impingement in radiographs of asymptomatic subjects: a cross-sectional study. *J Clin*661 *Exp Res Hip Pathol Ther* 2015;25:258-263.

662 28. Storer, S.K., Skaggs, D.L. Developmental dysplasia of the hip. Am Fam Phys
663 2006;74:1310-1316.

664 29. McWilliams, D.F., Doherty, S.A., Jenkins, W.D. et al. Mild acetabular dysplasia and
665 risk of osteoarthritis of the hip: a case-control study. *Annals Rheum Dis* 2010;69:1774666 1778.

30. Jacobsen, S., Sonne-Holm, S. Hip dysplasia: a significant risk factor for the
development of hip osteoarthritis. A cross-sectional survey. *Rheumatology* 2005;44:211218.

1	
2	
3	
4	
5	
6	
7	
/ 0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
רב בי	
∠∠ วว	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
27	
27 20	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55	
54 57	
55	
56	
5/	
58	
59	
60	

670	31. Nomir, A.G., Takeuchi, Y., Fujikawa, J. et al. Fate mapping of Trps1 daughter cells
671	during cardiac development using novel Trps1-Cre mice. <i>Genesis</i> 2016; 54 :379-388.
672	32. Xie, M., Gol'din, P., Herdina, A.N. et al. Secondary ossification center induces and
673	protects growth plate structure. <i>eLife</i> 2020;9.
674	33. Kopydlowski, N.J., Tannenbaum, E.P., Smith, M.V. et al. Characterization of Human
675	Anterosuperior Acetabular Depression in Correlation With Labral Tears. Orthop J
676	Sports Med 2014; 2 :2325967114551328.
677	34. Chatterjee, S., Ahituv, N. Gene Regulatory Elements, Major Drivers of Human
678	Disease. Annu Rev Genomics Hum Genet 2017;18:45-63.
679	35. Dwyer, K., Agarwal, N., Pile, L. et al. Gene Architecture Facilitates Intron-Mediated
680	Enhancement of Transcription. Front Mol Biosci 2021;8:669004.
681	36. Nilsen, T.W., Graveley, B.R. Expansion of the eukaryotic proteome by alternative
682	splicing. <i>Nature</i> 2010; 463 :457-463.
683	37. Niehrs, C., Luke, B. Regulatory R-loops as facilitators of gene expression and genome
684	stability. Nature reviews <i>Mol Cell Biol</i> 2020; 21 :167-178.
685	38. Ding, F., Elowitz, M.B. Constitutive splicing and economies of scale in gene
686	expression. Nat Struct Mol Biol 2019; 26 :424-432.

687 39. Laxa, M. Intron-Mediated Enhancement: A Tool for Heterologous Gene Expression

3	
4	
5	
6	
7	
8	
a	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
∠ ı วว	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
27	
22 22	
22 24	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
13	
77 15	
40 16	
40	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
57	
20	
59	

60

688 in Plants? *Front Plant Sci* 2016;**7**:1977.

40. Shaul, O. How introns enhance gene expression. Int J Biochem Cell Biol 2017;91:145155.

691 41. Ott, C.J., Blackledge, N.P., Kerschner, J.L. et al. Intronic enhancers coordinate
692 epithelial-specific looping of the active CFTR locus. *Proc Nat Acad Sci* 2009;**106**:19934693 19939.

42. Borsari, B., Villegas-Miron, P., Perez-Lluch, S., et al. Enhancers with tissue-specific

activity are enriched in intronic regions. *Genome Res* 2021;**31**:1325-1336.

696 43. Mizuhashi, K., Nagata, M., Matsushita, Y. et al. Growth Plate Borderline

697 Chondrocytes Behave as Transient Mesenchymal Precursor Cells. J Bone Min Res

698 2019;**34**:1387-1392.

699 44. Newton, P.T., Li, L., Zhou, B. et al. A radical switch in clonality reveals a stem cell

niche in the epiphyseal growth plate. *Nature* 2019;**567**:234-238.

45. Jacobsen, S., Sonne-Holm, S., Lund, B.et al. Pelvic orientation and assessment of hip

702 dysplasia in adults. *Acta Orthop Scand* 2004;**75**:721-729.

703 46. Jacobsen, S., Sonne-Holm, S., Soballe, K. et al. Radiographic case definitions and

704 prevalence of osteoarthrosis of the hip: a survey of 4 151 subjects in the Osteoarthritis

705 Substudy of the Copenhagen City Heart Study. *Acta Orthop Scand* 2004;**75**:713-720.

1	
2	
3	
4	
5	
6	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
20	
39	
4U 41	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
22	
20	
5/	
58	
59	
60	

706	47. Beck, M., Kalhor, M., Leunig, M. et al. Hip morphology influences the pattern of
707	damage to the acetabular cartilage: femoroacetabular impingement as a cause of early
708	osteoarthritis of the hip. <i>J Bone Joint Surg Br</i> 2005; 87 :1012-1018.
709	48. Ahedi, H.G., Aspden, R.M., Blizzard, L.C. et al. Hip Shape as a Predictor of
710	Osteoarthritis Progression in a Prospective Population Cohort. Arth Care Res
711	2017; 69 :1566-1573.
712	49. Puliyel, J.M., Puliyel, M.M., Varughese, S. The trichorhinophalangeal syndrome with
713	repeated dislocation of the patella. <i>Clin Genet</i> 1992; 41 :139-142.
714	50. Sarin, V.K., Erickson, G.M., Giori, N.J. et al. Coincident development of sesamoid
715	bones and clues to their evolution. <i>Anat Rec</i> 1999; 257 :174-180.
716	51. Eyal, S., Blitz, E., Shwartz, Y. et al. On the development of the patella. <i>Development</i>
717	2015; 142 :1831-1839.
718	52. Sutton, F.S., Jr., Thompson, C.H., Lipke, J. et al. The effect of patellectomy on knee
719	function. J Bone Joint Surg Am volume 1976; 58 :537-540.
719 720	 function. J Bone Joint Surg Am volume 1976;58:537-540. 53. Schindler, O.S., Scott, W.N. Basic kinematics and biomechanics of the patello-
719720721	 function. J Bone Joint Surg Am volume 1976;58:537-540. 53. Schindler, O.S., Scott, W.N. Basic kinematics and biomechanics of the patello- femoral joint. Part 1: The native patella. Acta Orthop Bel 2011;77:421-431.
719720721722	 function. J Bone Joint Surg Am volume 1976;58:537-540. 53. Schindler, O.S., Scott, W.N. Basic kinematics and biomechanics of the patello- femoral joint. Part 1: The native patella. Acta Orthop Bel 2011;77:421-431. 54. Bicos, J., Carofino, B., Andersen, M. et al. Patellofemoral forces after medial

2	
ג ⊿	
5	
6	
7	
, 8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
20	
27	
20	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44 15	
45 16	
40 47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

724 2006;**19**:317-326.

55. McConnell, J. Rehabilitation and nonoperative treatment of patellar instability. *Sp*

726 *Med Arthrosc Rev* 2007;**15**:95-104.

727 56. Driessen, A., Balke, M., Offerhaus, C. et al. The fabella syndrome - a rare cause of

728 posterolateral knee pain: a review of the literature and two case reports. BMC Muscul

729 *Dis* 2014;**15**:100.

57. Zhu, M., Metzen, F., Hopkinson, M. et al. Ablation of collagen XII disturbs joint
extracellular matrix organization and causes patellar subluxation. *iScience*2023;26:107225.

733 58. Buenrostro, J.D., Wu, B., Chang, H.Y. et al. ATAC-seq: A Method for Assaying

734 Chromatin Accessibility Genome-Wide. *Cur Prot Mol Biol* 2015;**109**:21 29 21-21 29 29.

735 59. Gosset, M., Berenbaum, F., Thirion, S. et al. Primary culture and phenotyping of

736 murine chondrocytes. *Nat Protoc* 2008;**3**:1253-1260.

737 60. Langmead, B., Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat

738 *Methods* 2012;**9**:357-359.

739 61. Zhang, Y., Liu, T., Meyer, C.A. et al. Model-based analysis of ChIP-Seq (MACS).

740 *Genome Biol* 2008;**9**:R137.

741 62. Ernst, J., Kheradpour, P., Mikkelsen, T.S. et al. Mapping and analysis of chromatin

2	
3	
4	
5	
c	
0	
/	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
24	
25	
26	
27	
27	
20	
29	
30	
31	
32	
33	
34	
25	
22	
36	
37	
38	
39	
40	
41	
/1 /1	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
57	
52	
20	
59	
60	

state dynamics in nine human cell types. *Nature* 2011;**473**:43-49.

63. Nakato, R., Sakata, T. Methods for ChIP-seq analysis: A practical workflow and

- advanced applications. *Methods* 2021;**187**:44-53.
- 745 64. Atsumi, T., Miwa, Y., Kimata, K. et al. A chondrogenic cell line derived from a
- 746 differentiating culture of AT805 teratocarcinoma cells. *Cell Differ Dev* 1990;**30**:109-116.
- 65. Shukunami, C., Shigeno, C., Atsumi, T. et al. Chondrogenic differentiation of clonal
- 748 mouse embryonic cell line ATDC5 in vitro: differentiation-dependent gene expression of
- 749 parathyroid hormone (PTH)/PTH-related peptide receptor. *J Cell Biol* 1996;**133**:457-468.
- 750 66. Abe, M., Michikami, I., Fukushi, T. et al. (2010). Hand2 regulates chondrogenesis in
- 751 vitro and in vivo. *Bone* 2010;**46**:1359-1368.
- 752 67. Michikami, I., Fukushi, T., Tanaka, M. et al. Kruppel-like factor 4 regulates
- 753 membranous and endochondral ossification. *Exp Cell Res* 2012;**318**:311-325.

68. McLeod, M.J. Differential staining of cartilage and bone in whole mouse fetuses by

alcian blue and alizarin red S. *Teratology* 1980;**22**:299-301.

- 69. Kuroda, Y., Rai, A., Saito, M. et al. Anatomical variation of the Psoas Valley: a
 scoping review. *BMC Muscul Dis* 2020;**21**:219.
- 758 70. Takeuchi, Y., Tatsuta, S., Kito, A. et al. Kruppel-like factor 4 upregulates matrix

759 metalloproteinase 13 expression in chondrocytes via mRNA stabilization. Cell Tissue

1 2 3		
4 5		
6 7 8	760	<i>Res</i> 2020; 382 :307-319.
8 9 10 11	761	71. Fujikawa, J., Takeuchi, Y., Kanazawa, S. et al. Kruppel-like factor 4 regulates matrix
12 13 14	762	metalloproteinase and aggrecanase gene expression in chondrocytes. Cell Tissue Res
15 16 17	763	2017; 370 :441-449.
18 19	764	
20 21 22	765	
22 23 24		
25 26		
27 28		
29 30		
31 32		
33 34		
35 36		
37 38		
39 40		
41 42		
43 44		
45 46		
47 48 40		
50 51		
52 53		
55 54 55		
55 56 57		
58 50		

7	767	Figure 1. Identification of putative enhancers around the <i>Trps1</i> gene.
7	768	(A) Open chromatin regions and histone modification (H3K4me2 and H3K27ac)
7	769	identified by ATAC-seq and ChIP-seq in murine primary costal chondrocytes.
7	770	Overhead view of the murine <i>Trps1</i> genomic region (upper image) and magnified view
7	771	of the first intron (lower image). The first intron of the murine <i>Trps1</i> genomic region is
7	772	highlighted by a red dotted square. Overlapping regions of ATAC-seq and ChIP-seq
7	773	peaks within the first intron of <i>Trps1</i> are highlighted by a pink box. Enhancer 2 (Enh2;
7	774	Chr15:50885838-50889066) and enhancer 3 (Enh3; Chr15:50868499-50872947) are labeled
7	775	with red and blue bars, respectively.
7	776	(B) Genomic alignment of the <i>Trps1</i> gene loci of multiple species. Evolutionary
7	777	conserved sequence alignment of multiple genomes was performed using the ECR
7	778	program from Dcode.org (<u>http://www.dcode.org</u>).
7	779	(C) Luciferase reporter assays for Emh2 and Enh3 in chondrocytic ATDC5 cells. Enh2-,
7	780	Enh3-, or Enh2-Enh3-containing pGL3-promoter luciferase vectors were transfected
7	781	into chondrocytic ATDC5 cells. Cell lysate was harvested after 40 hours post-
7	782	transfection for dual-luciferase assay (*P < 0.05).

1
2
3
4
5
5
0
/
8
9
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
36
37
38
39
40
40 //1
41
42
43
44
45
46
47
48
49
50
51
52
52
55
54 55
55
56
57
58
59

783	(D) Luciferase reporter assays for Enh2 deletion mutants in chondrocytic ATDC5 cells.
784	pGL3-promoter luciferase vectors carrying deleted versions of Enh2 were transfected
785	into ATDC5 cells. Cell lysate was harvested after 40 hours post-transfection for dual-
786	luciferase assay (*P < 0.05).
787	
788	Figure 2. <i>Trps1-^{/-}</i> mice display abnormal coxal bone morphogenesis.
789	(A1) Expression of <i>Trps1</i> detected by <i>in situ</i> hybridization in the developing hip joint of E12.5
790	WT embryo. V and D indicate the ventral and dorsal sides, respectively.
791	(A2 and A3) Sox9 protein localization was detected by immunohistochemistry in the
792	developing hip region of E12.5 WT (A2) and <i>Trps1</i> ^{-/-} (A3) embryos.
793	(B and C) Lateral views of the hindlimb (B) and coxal bone (C) of E15.5 WT and <i>Trps1-/-</i>
794	embryos. Arrowheads in (C) indicates the mineralized region at the primary ossification center
795	within the ilium.
796	(D-F) Medial views of hindlimbs (D), coxal bone (E), and pelvic bone (F) of E17.5 WT (left),
797	$Trps 1^{+/-}$ (mid), and $Trps 1^{-/-}$ (right) embryos. Double arrows in (E) indicated the rostral-caudal
798	length which is shorter in <i>Trps1-/-</i> embryos compared to others. Arrowheads in (E) indicate the
799	reduced range of the mineralized region within the primary ossification center of the ischium
800	and pubis in <i>Trps1-/-</i> embryos. In (F), the angle between the ilium and pubis was highlighted. (G)

801	The measurements of the ilio-pubic angle show that the angle is smaller in <i>Trps1-/-</i> embryos than
802	others (n=3 used for each genotype).
803	Key; ac: primordium of acetabulum, co: primordium of os coxa, fe: femur, fi: fibula. hg:
804	hindgut. il: ilium, is: ischium, pu: pubis, ti: tibia.
805	
806	Figure 3. Delayed maturation of the ilio-pubic junction and abnormal psoas valley
807	invagination in <i>Trps1</i> ^{Δint/Δint} mice.
808	(A-D) Ventral view of 3D-CT (A and B) and toluidine blue-stained frontal section (C and D) of
809	the hip joint in the 1-month-old control and $Trps I^{\Delta int/\Delta int}$ mice. Arrowheads in (B) indicate the
810	mildly expanded width between the mineralized ilium and pubis in Trps I ^{Dint/Dint} mice. Double
811	arrows in (C) and (D) indicate the cartilaginous region at the ilio-pubic junction.
812	(E-H) HE-stained frontal sections (E and F) and ventral views of reconstructed 3D-CT (G and
813	H) of the hip joint in the 3-month-old control and $Trps1^{\Delta int/\Delta int}$ mice. The arrowhead in (H)
814	points to the deeply invaginated psoas valley in <i>Trps1</i> ^{Dint/Dint} mice.
815	(I and J) Measurement of the psoas valley depth. The measured length is indicated by the double
816	arrow in (I). The data of the 2- to 3-month-old control (n=10) and <i>Trps1</i> $\Delta int/\Delta int$ (n=12) mice are
817	shown in (J).

1
2
3
1
-
5
6
/
8
9
10
11
12
13
14
15
16
17
1/ 10
10 10
19
20
21
22
23
24
25
26
27
28
20
29
50 21
51
32
33
34
35
36
37
38
39
40
41
רד ⊿ר
ד∠ ⊿2
45
44
45
46
47
48
49
50
51
52
53
54
54
22
20
5/
58
59

818	(K and L) Toluidine blue-stained sections of distal femur of postnatal 10-day-old control (K)
819	and $Trps l^{\Delta int/\Delta int}$ (L) mice. The invaginating vascular canals into the initial developing site of the
820	secondary ossification center (SOC) are indicated by arrows. Arrowheads in (K) indicate red
821	blood cells (RBCs) at the central region of the distal epiphysis, while RBCs are rarely observed
822	in the similar femoral domain of $Trps I^{\Delta int/\Delta int}$ pups.
823	(M-T) The distal femoral SOC in the 1-month-old control (M-P) or <i>Trps1</i> $\Delta int/\Delta int$ (Q-T) mice.
824	Sections stained with toluidine blue (M, M', Q, and Q') or mRNA detected by in situ
825	hybridization for Collal (N and R), Col2al (O and S), and Coll0al (P and T) are shown. Red
826	arrowheads in (Q') and (S) indicate the remaining cartilage tissue and chondrocytes left behind
827	at the developing SOC.
828	Key; fh: femoral head, il: ilium, isc: ischium, pu: pubis.
829	
830	Figure 4. Skeletal defects in 3-month-old <i>Trps1</i> ^{Δint/-} mice.
831	(A and B) Ventral views of the dissected anatomy of the hip joint region in the control (A) and
832	$Trps I^{\Delta int/-}$ (B) mice. Red dashed lines indicate the acetabular rim, which shows smooth parabolic
833	shape and wedged-shape in the control and $TrpsI^{\Delta int/-}$ mice, respectively.

2
2
5
4
5
6
7
8
0
9
10
11
12
13
14
15
16
17
17
18
19
20
21
22
23
24
27
25
26
27
28
29
30
31
37
JZ 22
22
34
35
36
37
38
30
10
40
41
42
43
44
45
46
47
/ /2
+0 40
49
50
51
52
53
54
55
55
20
5/
58
59
60

834	(C and D) Ventral views of reconstructed 3D-CT of hip joint in the control (C) and $Trps I^{\Delta int/-}$
835	(D) mice. Arrowheads highlight deeply invaginated psoas valley, resulting in severe under-
836	coverage of the femoral head within the acetabulum in $Trps l^{\Delta int/-}$ mice (D).
837	(E-H) Transverse sections of the hip joint stained with HE (E and F) and toluidine blue (G and
838	H) in the control (E and G) and $Trps I^{\Delta int/-}$ (F and H) mice. (G) and (H) show magnified views of
839	areas surrounded by squares in (E) and (F), respectively, on serial sections. Arrowheads in (H)
840	point to the toluidine blue-positive remaining cartilaginous tissue at the ilio-pubic junction in
841	$Trps I^{\Delta int/-}$ mice.
842	(I-L) Frontal (I and J) and medial (K and L) views of reconstructed 3D-CT of knee joints in the
843	control (I and K) and <i>Trps 1</i> ^{Δint/-} (J and L) mice. Medially dislocated patella in <i>Trps 1</i> ^{Δint/-} mice is
844	labelled as pt* in (J) and (L). The arrowheads in (J) points to the flattened trochlear groove in
845	<i>Trps1</i> ^{Dint/-} mice. Arrowheads in (K) and (L) point to the fabella formed within the lateral head of
846	the gastrocnemius muscle. Red dashed lines indicate a round parabolic and straightly shaped
847	surface of the distal femur in the control (K) and $Trps I^{\Delta int/-}$ mice (L), respectively. See also (M)
848	and (N).
849	(M and N) Tomography images at the sagittal mid-planes of the distal femurs in control (M) and
850	<i>Trps1</i> ^{Δint/-} (N) mice. Red dashed lines indicate articular surface of the distal femur in the control
851	(M) and $Trps l^{\Delta int/-}$ (N) mice. Epiphyseal bone marrow space is labelled with yellow asterisks.

3	
4	
5	
6	
7	
8	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
27	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
27	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
-+0 ⊿∩	
49	
50	
51	
52	
53	
54	
55	
56	
57	
50	
20	
59	

852	(O) Ventral views of the 2-day-old knees in the control (left) and $Trps l^{\Delta int/-}$ (right) mice. White
853	arrowheads in point to the stained patella.
854	(P-S) Low (P and Q) and high (R and S) magnified sagittal images of the distal femurs in the
855	control (P and R) and $Trps l^{\Delta int/-}$ (Q and S) mice. Sections were stained with toluidine blue.
856	Double arrows in (R) and (S) indicate epiphyseal growth plate chondrocytes. The asterisk in (S)
857	indicate abnormal accumulation of the toluidine blue-positive cartilage tissue.
858	Key; co: os coxa, fh: femoral head, fi; fibula, poc: primary ossification center, pt: patella, pt*;
859	dislocated patella, soc: secondary ossification center, ti: tibia.
860	
861	
862	
863	

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

Strain		gRNA1	gRNA2
∆Enh1	TC	CACTCCTCCCCGTTGCAAagg	GGTTAATACATGCTGGTCTTtgg
ΔEnh2	CG	CTGCTGCAAGTTTTCTGGggg	ACGGGGAGCAGACTAGGCACcgg
ΔEnh3	CA	GGCAAGATCAGTTCCCAAggg	ACTTTAGGAACAAAACACCagg
ΔEnh2/3 (Δint)	CG	CTGCTGCAAGTTTTCTGGggg	CAGGCAAGATCAGTTCCCAAggg
		Table 1. Sequences of guide RNA	As used in this study
allele		Forward primer	Reverse primer
Trps1 m	ut	CCACACACTATTTTCCATGGG	CCCCTTCTATCGCCTTCTTGA
Trps1 w	't	TAGTAAAGCAGGCCGTGAAG	ACCCAAAGGTCACTTACTGG
Enh1 mut		TTGCCTGATACTGCAGAGT	TGAGGTTGATATGGTTTTCTG
Enh1 w	t	AATCAGTGAAAAATATTTGAG	TGAGGTTGATATGGTTTTCTG
Enh2 m	ut	GCAAGCTCATACAACTTGCCTGT	ACTCCCCCAATTCCTCTTTTCTC
Enh2 w	t	GACGGGTATACCAGGAGAGGATG	ACTCCCCCAATTCCTCTTTTCTC
Enh3 mut		TAGTCAAGTCCACAGGTGGGAAA	AGGACTTCCACTTTACGGAAGC
Enh3 w	t	TAGTCAAGTCCACAGGTGGGAAA	ATAGAACAAGTGGCTCCCAGCTC
Enh2/3 m	nut	TAGTCAAGTCCACAGGTGGGA AA	ACTCCCCCAATTCCTCTTTTCTC
(∆int mu	ıt)		
Enh2/3 v (∆int wt	wt ;)	GAAAATGGACCCTGAGGCTTATG	AAAATGCAAGCTTGGTTTGGTTT
		Table 2. List of genotyping prime	ers used in this study

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33 24	
24 25	
22	
20	
2/ 20	
20	
39 40	
40 //1	
41	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

1	Deletion of Trps1 regulatory elements recapitulates postnatal hip joint abnormalities
2	and growth retardation of Trichorhinophalangeal syndrome in mice
3	
4	Naoya Saeki ^{1,2} , Chizuko Inui-Yamamoto ¹ , Yuki Ikeda ¹ , Rinna Kanai ^{1,3} , Kenji Hata ⁴ ,
5	Shousaku Itoh ⁵ , Toshihiro Inubushi ⁶ , Shigehisa Akiyama ² , Shinsuke Ohba ^{1,*} , Makoto
6	$Abe^{1,*}$
7	
8	¹ Department of Tissue and Developmental Biology, Osaka University Graduate
9	School of Dentistry, Yamada-oka 1-8, Suita, Osaka 565-0871, Japan
10	² Department of Special Needs Dentistry, Osaka University Graduate School of
11	Dentistry, Yamada-oka 1-8, Suita, Osaka 565-0871, Japan
12	³ Department of Fixed Prosthodontics and Orofacial Function, Osaka University
13	Graduate School of Dentistry, Yamada-oka 1-8, Suita, Osaka 565-0871, Japan
14	⁴ Department of Molecular and Cellular Biochemistry, Osaka University Graduate
15	School of Dentistry, Yamada-oka 1-8, Suita, Osaka 565-0871, Japan
16	⁵ Department of Restorative Dentistry and Endodontology, Osaka University
17	Graduate School of Dentistry, Yamada-oka 1-8, Suita, Osaka 565-0871, Japan
18	⁶ Department of Orthodontics and Dentofacial Orthopedics, Osaka University

2	
3	
4	
5	
6	
7	
, 0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
17	
10	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
33	
37	
24	
35	
36	
37	
38	
39	
40	
41	
Δ2	
12	
45	
44	
45	
46	
47	
48	
49	
50	
51	
51	
52	
53	
54	
55	
56	
57	
58	
50	

19 Graduate School of Dentistry, Yamada-oka 1-8, Suita, Osaka 565-0871, Japan

20

1

21 * Corresponding author: Makoto Abe, Department of Tissue and Developmental Biology,

22 Osaka University Graduate School of Dentistry, 1-8 Yamada-oka, Suita, Osaka 565-0871,

23 Japan, Tel: +81-6-6879-2874, FAX: +81-6-6879-2875, Email: makoto.abe.dent@osaka-

24 <u>u.ac.jp</u>

25 * Corresponding author: Shinsuke Ohba, Department of Tissue and Developmental
26 Biology, Osaka University Graduate School of Dentistry, 1-8 Yamada-oka, Suita, Osaka

27 565-0871, Japan, Tel: +81-6-6879-2871, FAX: +81-6-6879-2875, Email:

Review

28 <u>ohba.shinsuke.dent@osaka-u.ac.jp</u>

29

1	
2	
3	
4	
5	
6	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21	
21	
∠∠ วว	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
50 27	
2/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55	
54 57	
55 52	
56	
5/	
58	
59	
60	

32	Trichorhinophalangeal syndrome (TRPS) is a genetic disorder caused by point
33	mutations or deletions in the gene-encoding transcription factor TRPS1. TRPS patients
34	display a range of skeletal dysplasias, including reduced jaw size, short stature, and a
35	cone-shaped digit epiphysis. Certain TRPS patients experience early onset coxarthrosis
36	that leads to a devastating drop in their daily activities. The etiologies of congenital
37	skeletal abnormalities of TRPS were revealed through the analysis of <i>Trps1</i> mutant
38	mouse strains. However, early postnatal lethality in <i>Trps1</i> knockout mice has hampered
39	the study of postnatal TRPS pathology. Here, through epigenomic analysis we identified
40	two previously uncharacterized candidate gene regulatory regions in the first intron of
41	<i>Trps1</i> . We deleted these regions, either individually or simultaneously, and examined
42	their effects on skeletal morphogenesis. Animals that were deleted individually for either
43	region displayed only modest phenotypes. In contrast, the $\mathit{Trps1}^{\Delta int/\Delta int}$ mouse strain with
44	simultaneous deletion of both genomic regions exhibit postnatal growth retardation.
45	This strain displayed delayed secondary ossification center formation in the long bones
46	and misshaped hip joint development that resulted in acetabular dysplasia. Reducing
47	one allele of the $\mathit{Trps1}$ gene in $\mathit{Trps1}^{\Delta int}$ mice resulted in medial patellar dislocation that
48	has been observed in some patients with TRPS. Our novel Trps1 hypomorphic strain

recapitulates many postnatal pathologies observed in human TRPS patients, thus positioning this strain as a useful animal model to study postnatal TRPS pathogenesis. Our observations also suggest that *Trps1* gene expression is regulated through several regulatory elements, thus guaranteeing robust expression maintenance in skeletal cells.

2
3
1
4
5
6
7
Q
0
9
10
11
12
12
13
14
15
16
10
17
18
19
20
20
21
22
23
24
27 27
25
26
27
28
20
29
30
31
27
22
33
34
35
36
20
37
38
39
10
41
41
42
43
44
1 T A E
40
46
47
48
10
49
50
51
52
53
54
55
56
57
57
58
50

60

55 Introduction

56	Trichorhinophalangeal syndrome (TRPS) is an autosomal-dominant genetic disorder
57	caused by mutations or deletions in the transcription factor TRPS1 [1]. The occurrence
58	rate of TRPS is extremely low and is estimated to be 1 in 50,000 live births [2]. Patients
59	with TRPS display several congenital skeletal pathologies, including micrognathia, a
60	cone-shaped epiphysis of the phalangeal bone, short stature, and hip joint dysplasia
61	(OMIM #150230, #190350, #190351). Growth failure becomes pronounced as patients
62	grow, and many patients suffer from early onset coxarthritis [3]. The role of TRPS1
63	during embryonic long bone development has been thoroughly investigated using murine
64	models of TRPS $[4\cdot 8]$. The lack of <i>Trps1</i> in mice results in reduced chondrocyte
65	proliferation and delayed hypertrophic differentiation of long bone epiphyseal and
66	temporomandibular joint growth plates [5; 8]. These changes involve altered Wnt5a-,
67	Pthlh-, Hedgehog-, and Stat3-mediated signaling due to the absence of <i>Trps1</i> [8-12]. In
68	addition, altered growth plate characteristics indirectly lead to the uncoupling of growth
69	plate maturation rate and perichondrial ossification in Trps1 mutant mice, ultimately
70	resulting in accelerated bone collar formation [6]. These observations underscore the
71	crucial role of Trps1 during endochondral ossification of long bone.

72 Despite accumulating knowledge regarding TRPS1 during embryonic long bone

development, the etiologies of postnatal skeletal pathologies of TRPS remain elusive ^[2]. Greater than 50% of patients with TRPS experience developmental dysplasia of the hip [2; 3; 13]. The femoral heads of young patients with TRPS display Perthes disease-like symptoms, although the damaged joints do not recover $[14 \cdot 18]$. This clinical evidence indicates the crucial role(s) played by TRPS1 in the context of joint development and postnatal maintenance at various anatomical sites; however, few studies have described the exact roles played by Trps1 in hip joint development. The hind limbs of tetrapods are derived from the pelvic fins of ancestral fishes ^[19]. Although the pelvic fins in fish are considered to play minor roles in swimming, they have clearly shifted to robust weight-bearing limbs in tetrapods ^[20]. The pelvic girdle connects the axial and hindlimb skeletons. Unlike the long bones, os coxae (hip bones) form through the gradual fusion of three initially separated bones, including the ilium, ischium, and pubis. Each bone piece is formed through endochondral ossification that is initiated by the condensation of mesenchymal cells originating from the mesodermal cells of the somatopleure [21]. The cartilage primordium of the ilium, ischium, and pubis fuses and establishes a complex triradiate zone at the site of the future acetabulum, where the femoral heads articulate. In humans, primary ossification centers are sequentially formed, first in the ilium primordium and then in the ischium and pubis

^[22]. Secondary ossification occurs at multiple locations in the pelvis that include the iliac crest, the pubic symphysis, and the ischial tuberosity ^[23]. The triradiate zone of the acetabulum remains un-ossified until mid-puberty and functions as a cartilaginous growth plate that allows the acetabulum to expand to accommodate the enlarging femoral head [²⁴]. As the pelvis is one of the weight-bearing joints in all terrestrial animals, precise morphogenesis of the hip joint structure is crucial for locomotion. Indeed, the hip joint morphology appears quite delicate, and both under- and over-coverage of the acetabulum on the femur raises clinical issues such as acetabular dysplasia or femoroacetabular impingement (FAI) [²⁵⁻²⁷]. Severe under-coverage can cause hip instability, subluxation, or dislocation [28; 29]. Increased stress due to under-coverage is one of the causes of acetabular labral hypertrophy and tears that, in some cases, force joint surgery to prevent the onset of coxarthritis [³⁰]. In this report, we describe developmental dysplasia of the hip during the embryonic

105 stages in newly developed *Trps1* hypomorphic mouse strains. *Trps1* hypomorphic mice 106 survived postnatally but displayed under-coverage of the femoral head in the 107 acetabulum. Further reduction in *Trps1* gene dosage resulted in a reduced survival rate; 108 however, surviving adult mice exhibited major skeletal abnormalities observed in human TRPS patients. These observations reinforce the crucial roles played by Trps1 in normal

3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
20 21	
21	
22	
23	
24	
25	
25	
26	
27	
28	
29	
20	
30	
31	
32	
33	
3/	
24	
35	
36	
37	
38	
20	
59	
40	
41	
42	
43	
10	
44	
45	
46	
47	
48	
40	
49	
50	
51	
52	
52	
- J J	
54	
55	

hip joint morphogenesis and partially explain the etiology of coxarthrosis observed in certain patients with TRPS. to per peries

114

Results

1

2	
3	
4	
5	
6	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
26	
20	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
45 46	
40	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
55	
50	
5/	
58	
59	

60

115 1. <u>Identification of putative enhancers in the first intron of the murine *Trps1* gene</u>

116 Our previous study indicated that several Trps1 regulatory sequence for its tissuespecific expression locates at the proximal promoter region of the Trps1 gene ³¹. As 117regulations of the Trps1 gene transcription in several tissues were unclear from the 118previous study (e.g., growth plate chondrocytes and kidney ureteric bud), we aimed to 119120 identify other *Trps1* enhancers by uncovering the chromatin profiles at the *Trps1* gene locus in murine costal chondrocytes. Chondrocytes were used in this study, as Trps1⁺ 121mice exhibit severe cartilage defects during the late embryonic stages [4; 6; 8; 10], and short 122123stature is a prominent feature of postnatal human TRPS pathologies [2]. Chromatin accessibility (ATAC-seq) and histone modifications for active enhancer signatures (ChIP-124125seq for H3K27ac and H3K4me2) were assessed. Comparison of ATAC-seq and ChIP-seq 126 peaks revealed that several open chromatin regions were accompanied with the active 127enhancer signatures (Fig. 1A). Among them, we found two prominent regions in the first 128intron of the Trps1 gene body, each of which were approximately 3 kb (Enh2; 129Chr15:50885838-50889066) to 5 kb (Enh3; Chr15:50868499-50872947) in length (Fig. 130 1A). The identified mouse genomic sequence showed almost 75% homologies to human

2	
3	
4	
5	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
21	
21	
32	
33	
34	
35	
36	
37	
38	
39	
40	
/1	
40	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
22	
54 57	
55	
56	
57	
58	
59	

1

TRPS1 genomic sequences (Enh2, human Chr8:115664810-115668001; Enh3, human 131 132Chr8:115646975-115650605). Multispecies sequence alignment of the Trps1 gene using 133the Evolutionary Conserved Regions (ECR) program Dcode.org (<u>http://www.dcode.org</u>) revealed that several intronic regions including Enh2 and Enh3, as well as the TSS 134135proximal promoter region, were conserved between mice, humans, opossums, and 136chickens, while all exons displayed the highest conservation (Fig. 1B). Although frogs 137exhibited some alignment with other higher vertebrates within the fourth intron, 138similarities within the first intron were limited. 139The Enh2 and Enh3 elements were cloned and inserted into a luciferase vector 140 containing the minimum promoter. We performed luciferase assays using the vectors in 141ATDC5 chondrocytic cells to ask whether the two elements could induce transcriptional 142activation either individually or simultaneously (Fig. 1C). Enh2 augmented 143transcriptional activity, whereas Enh3 fragment did not (Fig. 1C). Furthermore, tandem 144 constructs carrying both Enh2 and Enh3 induced less activities than those carrying 145Enh2 alone (Fig. 1C). To identify the responsible domain for transcriptional activation 146in Enh2, we analyzed luciferase activities using Enh2 deletion mutant constructs (each 147fragment of almost 1 kb in length). This assay revealed that two thirds in the 5' side of 148 the Enh2 contains responsible elements for its activity (Fig. 1D).

1	
2	
2	
د	
4	
5	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
17	
12	
10	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
32	
33	
34	
25	
22	
36	
37	
38	
39	
40	
41	
42	
12	
45 44	
44	
45	
46	
47	
48	
49	
50	
51	
51	
52	
53	
54	
55	
56	
57	
58	
50	
22	

149	
150	2. Individual deletion of Enh1, Enh2, and Enh3 causes mildly abnormal acetabular rim
151	morphology when combined with heterozygous deletion of the Trps1 gene
152	To investigate the potential <i>in vivo</i> roles of Enh2 and Enh3, we generated
153	$Trps1^{\Delta Enh2/\Delta Enh2}$ and $Trps1^{\Delta Enh3/\Delta Enh3}$ mice, which lack Enh2 and Enh3 (Suppl. Fig. 1)
154	using CRISPR/Cas9 genome editing. In addition to $Trps1^{\Delta Enh2/\Delta Enh2}$ and $Trps1^{\Delta Enh3/\Delta Enh3}$
155	mice, we also generated a mouse strain which lacks the majority of the previously
156	identified proximal promoter sequences of Trps1 gene (Enh1) while retaining the
157	potential basal promoter sequence ($Trps1^{\Delta Enh1/\Delta Enh1}$; Suppl. Fig. 1) [³¹].
158	$Trps1^{\Delta Enh1/\Delta Enh1}$ mice were viable and gained body weight, and this did not differ from
159	control (WT and <i>Trps1</i> ^{AEnh1/+}) mice (Suppl. Fig. 2A). <i>Trps1</i> ^{AEnh2/AEnh2} (Suppl. Fig. 2B) and
160	<i>Trps1</i> ^{\DEnh3/\DEnh3} (Suppl. Fig. 2C) mice were also viable and gained body weight compared
161	to their control mice. The genotype distribution at the weaning time were as predicted
162	in all three strains, thus indicating that the Enh1 (Suppl. Fig. 2D), Enh2 (Suppl. Fig.
163	2E), and Enh3 (Suppl. Fig. 2F) sequence deletion did not affect the survival rate during
164	this developmental period. As Trps1 conventional knockout mice display numerous
165	skeletal abnormalities at the embryonic stage, we analyzed $Trps1^{\Delta Enh1/\Delta Enh1}$,
166	$Trps1^{\Delta Enh2/\Delta Enh2}$, and $Trps1^{\Delta Enh3/\Delta Enh3}$ neonates (PNd0; Suppl. Figs. 2G-2R). The

2
3
4
5
6
7
/ 0
8
9
10
11
12
13
14
15
15
16
17
18
19
20
21
22
~~ 72
∠⊃ 24
24
25
26
27
28
29
20
20
31
32
33
34
35
36
37
20
20
39
40
41
42
43
44
45
46
40
4/
48
49
50
51
52
53
57
54
55
56
57
58
59
60

167	morphology and sizes of the craniofacial (Suppl. Figs. 2G, 2J, 2M, and 2P), the forelimb
168	skeletons (Suppl. Figs. 2H, 2K, 2N, and 2Q), and hindlimb (Suppl. Figs 2I, 2L, 2O, and
169	2R) appeared normal in $Trps I^{\Delta Enh1/\Delta Enh1}$ (Suppl. Figs. 2J-2L), $Trps I^{\Delta Enh2/\Delta Enh2}$ (Suppl. Figs.
170	2M-2O), and $Trps1^{\Delta Enh3/\Delta Enh3}$ (Suppl. Figs. 2P-2R) mice compared to the WT control mice
171	(Suppl. Figs. 2G-2I).
172	The skeletal morphology of <i>Trps1</i> ^{ΔEnh1/ΔEnh1} (Suppl. Figs. 3C, 3K, and data not shown),
173	<i>Trps1</i> ^{\DEnh2/\DEnh2} (Suppl. Figs. 3E, 3M, and data not shown), and <i>Trps1</i> ^{\DEnh3/\DEnh3} (Suppl.
174	Figs. 3G, 3O, and data not shown) at the postnatal mature stage was overtly normal in
175	3D-CT images compared to the wild-type (Suppl. Figs. 3A, 3I, and data not shown) or
176	<i>Trps1</i> ^{+/-} mice (Suppl. Figs. 3B, 3J, and data not shown). However, simultaneous deletion
177	of Enh1 and another allele of $Trps1$ gene ($Trps1^{\Delta Enh1/\cdot}$), which was assumed to result in
178	reduced baseline <i>Trps1</i> expression compared to homozygous deletion of Enh1
179	$(Trps1^{\Delta Enh1/\Delta Enh1})$, resulted in deeper invagination of the psoas valley of the hip joint than
180	the other control mice (Suppl. Fig. 3D). The knee joints of $Trps I^{\Delta Enh1/-}$ mice appeared
181	normal in both 3D-CT images and histological sections (Suppl. Figs. 3L and data not
182	shown). Trps1 ^{AEnh2/-} (Suppl. Fig. 3F) and Trps1 ^{AEnh3/-} (Suppl. Fig. 3H) mice, which one
183	allele of the <i>Trps1</i> gene was deleted, also showed modestly deepened psoas valley, which
184	resulted in a small under-coverage of the femoral head by the acetabulum. Knee joints

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
20
27
28
29
50 21
27
22 22
37
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

of *Trps1*^{AEnh2/-} (Suppl. Figs. 3N and data not shown) and *Trps1*^{AEnh2/-} (Suppl. Fig. 3P and
data not shown) mice appeared normal in both 3D-CT images and histological sections.
Thus, individual deletions of Enh1, Enh2, or Enh3 only result in modest skeletal
phenotypes in mice.

189

190 3. <u>*Trps1*⁺ mouse embryos show defects in pelvic bone ossification</u>

We observed modest hip joint abnormalities in $Trps 1^{\Delta \text{Enh}1/-}$, $Trps 1^{\Delta \text{Enh}2/-}$, $Trps 1^{\Delta \text{Enh}3/-}$ mice. 191192It has been established that a high proportion of patients with TRPS experience early onset coxarthritis ^[2]. Although *Trps1⁺* mice have been used to investigate the skeletal 193194 pathologies of TRPS, hip joint formation in this mutant strain has not yet been examined 195in detail. Therefore, we set out to address this issue in *Trps1*⁺⁻ mice (Fig. 2). *Trps1* was 196 expressed in the hip joint region between the developing acetabulum of the coxa and the 197femoral head at E12.5 (Fig. 2A1). The cartilage primordia of both coxa and femur, which 198 were characterized by Sox9 expression, were normally formed in WT (Fig. 2A2) and Trps1⁺ (Fig. 2A3) embryos. At E15.5, the pelvic bone (os coxa), femur, tibia, and fibula 199200containing mineralized primary ossification centers were observed in WT, Trps1+/-, and 201Trps1⁺⁻ embryos (Figs. 2B and 2C, and data not shown). Although pelvic bone exhibited ossification in the iliac portion and length of pelvis was similar in WT and Trps1⁺⁻ 202

2
3
4
5
6
7
/ Q
0
9
10
11
12
13
14
15
16
17
18
19
20
20
∠ ı วว
22
23
24
25
26
27
28
29
30
31
32
22
27
24 25
22
36
3/
38
39
40
41
42
43
44
45
46
47
<u>1</u> 2
40
49 50
50
51
52
53
54
55
56
57
58
59
60
00

203	embryos, mineralized region was limited in $Trps I^{\prime -}$ embryos (arrowheads in Fig. 2C). At
204	E17.5, although primary ossification of the ilium, ischium, and pubis was initiated in
205	WT, $Trps1^{+/-}$, and $Trps1^{-/-}$ embryos, the length of pelvic bone was shorter in $Trps1^{-/-}$
206	embryos (Figs. 2D, 2E). Furthermore, the lateral view of the pelvic bone revealed that
207	the angle between the anterior (ilium) and posterior (ischium and pubis) portion is
208	sharply bent in <i>Trps1</i> ^{-/-} embryos compared to WT and <i>Trps1</i> ^{+/-} (Fig. 2F, 2G). Thus, the
209	global lack of <i>Trps1</i> results in developmental abnormalities in mineralization, growth,
210	and morphological curvature of the coxa.
211	
212	3. <u>Trps1^{Aint/Aint} mice lacking both Enh2 and Enh3 displayed growth delays and skeletal</u>
213	defects
214	To examine the potential cooperative effects of Enh2 and Enh3 on <i>Trps1</i> expression and
215	skeletal development, we generated mutant mice lacking a 20 kb region within the first
216	intron of <i>Trps1</i> , which contains both Enh2 and Enh3, by genome editing (Suppl. Fig. 1).
217	Homozygous intron knockout mice (referred to as $Trps1^{\Delta int/\Delta int}$ mice hereafter) survived
218	postnatally and were fertile, even in $\mathit{Trps1}^{\Delta int/\Delta int}$ male and female mating pairs. The
219	number of $\mathit{Trps1}^{\Delta int/\Delta int}$ mice at postnatal 3 weeks was slightly lower than expected, thus
220	suggesting that some <i>Trps1</i> ^{Δint/Δint} mice died before weaning (Suppl. Fig. 4A). <i>Trps1</i> ^{Δint/Δint}

mice exhibited significantly lower body weight during postnatal periods (statistically significant through postnatal weeks 3 to 9) compared to that of the WT or Trps 1^{\dint/+} mice (Suppl. Fig. 4B). When expression level of *Trps1* was examined in several organs of the early postnatal pups (Suppl. Fig. 4C), Trps1 levels were significantly reduced in the kidney, pelvis, scapula, and rib cartilage of $Trps1^{\Delta int/\Delta int}$ mice (Suppl. Fig. 4C). The reduction in *Trps1* expression was mild in the pelvic and rib cartilage. In contrast, there were no significant changes in *Trps1* expression in the heart or skin, and vibrissa follicle of *Trps1*^{Aint/Aint} mice. *Trps1* expression was also assessed in cultured costal chondrocytes prepared from the WT, $Trps1^{\Delta Enh2/\Delta Enh2}$, $Trps1^{\Delta Enh3/\Delta Enh3}$, and $Trps1^{\Delta int/\Delta int}$ mice (Suppl. Fig. 4D). In $Trps 1^{\Delta int/\Delta int}$ chondrocytes, the Trps 1 expression level was significantly decreased to approximately 40% of the WT; the level was also significantly reduced in *Trps1*^{\(\Delta Enh3\(\Delta Enh3\)} chondrocytes (Suppl. Fig. 3D), whereas the reduction was mild compared to that in the cells of $Trps1^{\Delta int/\Delta int}$ pups. We next analyzed the skeletons of newborn *Trps1*^{Aint/Aint} pups (Suppl. Figs. 4).

234 We field analyzed the skeletons of flewborn IIpsI with pups (Suppl. Figs. 4). 235 Compared to the control pups, $TrpsI^{\Delta int/\Delta int}$ pups showed no obvious defects in their body 236 size (Suppl. Fig. 5A). The morphologies of the head and neck skeletons (Suppl. Figs. 5B-237 5G), the mineralization of the vertebral body and arches (Suppl. Figs. 5H-5M), the 238 morphogenesis and ossification of the forelimb morphogenesis and ossification were

normal in these mutants (Suppl. Figs. 5N-5Q), the gross appearance of the hind limb was also similar between the control and mutants (Suppl. Figs. 5R-5U). However, $Trps I^{\text{Aint/Aint}}$ pups displayed 14% reduction in the size of the pelvis (Suppl. Fig. 5T; P<0.001) and a tendency of reduction in the length of the femur (Fig. 5U). 4. Adult *Trps 1*^{Aint/Aint} mice display developmental delays in formation of pelvic girdle and secondary ossification center The defects of the pelvis and femur in $Trps I^{Aint/Aint}$ mice led us to focus on their hip joints. They survived to the mature stage, and this allowed us to examine the postnatal structure of the hip joint in these mutants. At 1-month postnatal, 3D-CT images showed well-mineralized hip bones in both control (Fig. 3A) and *Trps1*^{Δint/Δint} mice (Fig. 3B). The cartilaginous ilio-pubic junction appeared to be wider in *Trps I*^{Aint/Aint} mutants at this developmental stage (arrowheads in Fig. 3B). Histological analysis revealed that the cartilaginous remnants between the ilio-pubic junctions were more abundant in $Trps I^{\Delta int/\Delta int}$ mice (Fig. 3D), whereas they were in the well-defined narrow cartilaginous domains in the control mice (Fig. 3C). At 3-months postnatal, the cartilaginous ilio-pubic junctional domain were replaced by mature bone in both control (Fig. 3E) and Trps 1^{Aint/Aint} mice (Fig. 3F). However, 3D-CT images showed that the psoas valley of
Trps 1^{Aint/Aint} mice (arrowheads in Fig. 3H) was more deeply invaginated than that of control mice (Fig. 3G), thus resulting in increased psoas valley depth in the mutants (Figs. 3I and 3J). The formation of a secondary ossification center (SOC) is crucial for reducing the physical impact of the cartilaginous epiphyseal growth plate [³²]. On day 10 postnatal, in Trps1^{\dint/\dint} mice (Fig. 3L) the initiation of SOC formation was delayed compared to that in control mice (Fig. 3K); both vascular canal invasion and hypertrophic differentiation of the epiphyseal resting chondrocytes were delayed in *Trps1*^{Δint/Δint} mice. In the first postnatal month when the SOC is usually fully formed, the SOC was formed in both the control (Figs. 3M and 3M') and the *Trps1*^{\dint/\dint} mice (Figs. 3Q and 3Q'). Osteoblasts expressing Collal were observed in the SOC of the control (Fig. 3N) and Trps 1^{Aint/Aint} mice (Fig. 3R). However, cartilaginous remnants stained for toluidine blue (see red arrowheads in Fig. 3Q' compared to Fig. 3M') were detected in the *Trps1*^{Aint/Aint} SOC; cells in the remnants expressed *Col2a1* (see red arrows in Fig. 3S compared to Fig. 30) but not Col10a1 (Figs. 3P and 3T). Thus, adult Trps1Aint/Aint mice exhibited developmental delays in coxa and SOC formation. Furthermore, Trps1Aint/Aint mice displayed an increase in the psoas valley depth, possibly resulting in regional under-coverage of the femoral head within the acetabulum.

2	
2	
5	
4	
5	
6	
7	
/	
8	
9	
10	
10	
11	
12	
12	
13	
14	
15	
16	
10	
17	
18	
10	
20	
20	
21	
22	
23	
24	
25	
26	
20	
27	
28	
20	
29	
30	
31	
32	
22	
33	
34	
35	
26	
50	
37	
38	
30	
72	
40	
41	
<u>4</u> 2	
12	
43	
44	
45	
16	
40	
47	
48	
10	
49	
50	
51	
52	
52	
53	
54	
55	
55	
20	
57	
58	
50	
59	
60	

275	
276	5. <u>Trps1^{\dint/-} mice display reduced survival rates</u> , severe growth defects, acetabular
277	dysplasia, and patella dislocation.
278	$TrpsI^{\Delta int/-}$ mice were generated by mating $TrpsI^{\Delta int}$ mice with $TrpsI^{+/-}$ mice. Timed
279	mating embryos were collected at E17.5. $Trps1^{\Delta int/-}$ embryos were visually
280	indistinguishable from WT embryos (Suppl. Fig. 6A). However, on postnatal day 5 (Suppl.
281	Fig. 6B) or at later mature stages (Suppl. Fig. 6C), $Trps 1^{\Delta int/-}$ mice were significantly
282	smaller. Also, the number of the $TrpsI^{\Delta int/-}$ animals surviving to the weanling stage were
283	extremely low compared to other genotypes (Suppl. Fig. 6D).
284	We first analyzed skeletal development of <i>Trps1</i> ^{Δint/-} embryos at E18.5 (Suppl. Figs. 6E-
285	6Q). As described above, body size was comparable between control and $Trps1^{\Delta int/-}$
286	embryos (Suppl. Fig. 6E). Control and Trps 1 ^{Aint/-} embryos demonstrated no obvious
287	difference in craniofacial skeletons (Suppl. Figs. 6F-6I, 6L, and 6M), appendicular
288	skeletons (Suppl. Figs. 6J, 6K), sternum (Suppl. Figs. 6N and 6O), and rib cage (Suppl.
289	Figs. 6P and 6Q). Thus, despite the postnatal growth defects of $Trps1^{\Delta int/-}$ mice, their
290	embryonic skeletal defects were negligible small.
291	We analyzed <i>Trps1</i> expression in tissues harvested from rib, knee, vertebral cartilage
292	and kidney from postnatal day 0 pups (Suppl. Figs. 7A-7D). The expression level of <i>Trps1</i>

1	
2	
3	
4	
5	
6	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21	
21	
∠∠ วว	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
20	
2/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55	
54 57	
55 52	
56	
5/	
58	
59	
60	

293	showed increased tendency in $\mathit{Trps1}^{+/-}$ mice, while $\mathit{Trps1}$ expression was not significantly
294	reduced in <i>Trps1</i> ^{Δint1/-} tissues obtained from rib (Suppl. Fig. 7A), knee (Suppl. Fig. 7B),
295	and vertebral cartilage (Suppl. Fig. 7C). In contrast, $Trps1$ expression in $Trps1^{\Delta int/-}$
296	neonate kidney showed significant reduction (Suppl. Fig. 7D).
297	We obtained two surviving <i>Trps1</i> ^{Δint/-} mice at the weaning stage (Suppl. Fig. 6D). These
298	mice survived for more than 3 months postnatally (samples were collected at 3- and 6-
299	months postnatally). They were both female, but neither gave birth to pups. Macroscopic
300	anatomy (Figs. 4A and 4B) and 3D-CT analysis (Figs. 4C and 4D) revealed a deeply
301	invaginated psoas valley together with severe under-coverage of the femoral head within
302	the acetabulum. Histologically, the cartilaginous ilio-pubic junction remained even in 3-
302 303	the acetabulum. Histologically, the cartilaginous ilio-pubic junction remained even in 3- month-old <i>Trps1</i> ^{Aint/-} mice (Figs. 4F and 4H), but not in the control mice (Figs. 4E and
302 303 304	the acetabulum. Histologically, the cartilaginous ilio-pubic junction remained even in 3- month-old <i>Trps1</i> ^int/- mice (Figs. 4F and 4H), but not in the control mice (Figs. 4E and 4G).
302 303 304 305	the acetabulum. Histologically, the cartilaginous ilio-pubic junction remained even in 3- month-old <i>Trps I</i> ^{Aint/-} mice (Figs. 4F and 4H), but not in the control mice (Figs. 4E and 4G). 3D-CT analysis also revealed other skeletal pathologies of the <i>Trps I</i> ^{Aint/-} mice, including
302 303 304 305 306	 the acetabulum. Histologically, the cartilaginous ilio-pubic junction remained even in 3- month-old <i>Trps1</i>^{Δint/-} mice (Figs. 4F and 4H), but not in the control mice (Figs. 4E and 4G). 3D-CT analysis also revealed other skeletal pathologies of the <i>Trps1</i>^{Δint/-} mice, including the medial dislocation of the patella (Figs. 4I and 4J; observed in four out of four knees),
302 303 304 305 306 307	the acetabulum. Histologically, the cartilaginous ilio-pubic junction remained even in 3- month-old <i>Trps1</i> ^int/- mice (Figs. 4F and 4H), but not in the control mice (Figs. 4E and 4G). 3D-CT analysis also revealed other skeletal pathologies of the <i>Trps1</i> ^int/- mice, including the medial dislocation of the patella (Figs. 4I and 4J; observed in four out of four knees), reduced development of the fabella that is a sesamoid bone embedded in the lateral head
 302 303 304 305 306 307 308 	the acetabulum. Histologically, the cartilaginous ilio-pubic junction remained even in 3- month-old <i>Trps1</i> ^{Aint/-} mice (Figs. 4F and 4H), but not in the control mice (Figs. 4E and 4G). 3D-CT analysis also revealed other skeletal pathologies of the <i>Trps1</i> ^{Aint/-} mice, including the medial dislocation of the patella (Figs. 4I and 4J; observed in four out of four knees), reduced development of the fabella that is a sesamoid bone embedded in the lateral head of the gastrocnemius muscle (Figs. 4K and 4L; observed in four out of four knees), shallow
 302 303 304 305 306 307 308 309 	the acetabulum. Histologically, the cartilaginous ilio-pubic junction remained even in 3- month-old <i>Trps I</i> ^{Aint/-} mice (Figs. 4F and 4H), but not in the control mice (Figs. 4E and 4G). 3D-CT analysis also revealed other skeletal pathologies of the <i>Trps I</i> ^{Aint/-} mice, including the medial dislocation of the patella (Figs. 4I and 4J; observed in four out of four knees), reduced development of the fabella that is a sesamoid bone embedded in the lateral head of the gastrocnemius muscle (Figs. 4K and 4L; observed in four out of four knees), shallow and flattened trochlear groove (Figs. 4J and 4L; observed in four out of four knees), and

was not observed in perinatal Trps1^{Aint/-} pups (Fig.4O), dislocation was likely to occur postnatally in the mutants. Histologically, Trps 1^{Δint/-} mice showed not just the reduced size of the SOC, but also the presence of cartilaginous remnant even at 3-months postnatal (Figs. 4P-4S). Thus, Trps1^{\dint/-} mice displayed more severe pathologies than *Trps1* $^{\Delta int/\Delta int}$ mice. for peer peries

2	
3	
4	
5	
6	
7	
/ 0	
ð	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
יש 20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
20	
20	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
л 0 Л1	
רד ⊿ר	
42	
45	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55	
54 55	
55	
56	
57	
58	
59	

60

317 Discussion

318	The pelvic girdle functions as a load-bearing structure in both bipedal and quadrupedal
319	animals. The precise morphogenesis and alignment of the pelvis, femur, and other joint
320	structures are crucial for tolerating various types and times of hip joint movement
321	without friction. Compared to the knowledge of genes involved in fore- and hindlimb
322	development, much less is known regarding the genetic regulation of pelvic girdle
323	development. Here, we demonstrate that the transcription factor Trps1 is important for
324	normal pelvic development. We observed that the size relationship between the femoral
325	head and acetabulum was altered when the expression of <i>Trps1</i> was low. In particular,
326	the development of the pubic bone was mostly affected, and the acetabulum of the ilio-
327	pubic junction exhibited under-coverage of the femoral head. These observations
328	reinforce the indispensable role of Trps1 in the normal pelvic girdle morphogenesis. The
329	psoas valley is an anterior depression located at the acetabular rim and coincides with a
330	site commonly associated with acetabular labral pathology [³³]. The invagination of the
331	psoas valley was severely affected in $Trps1^{\Delta int/\Delta int}$ and surviving $Trps1^{\Delta int/-}$ mice. This
332	phenotype may partly explain the etiology of frequently observed hip dysplasia and early
333	onset coxarthrosis in patients with TRPS.
334	

Postnatal skeletal dysplasia by deletion of potential regulatory elements in the first
 intron of murine *Trps1* gene
 Our understanding of the transcriptional regulation of *Trps1* expression is still limited.

Advances in high-throughput sequencing have revealed chromatin accessibility, chromatin modifications, and transcription factor binding sites [³⁴]. The functional significance of computational data from ATAC-seq and ChIP-seq needs to be verified experimentally, most ideally by in vivo strategies. We identified several enhancer candidates in the murine *Trps1* gene region that were mostly regionalized to the 5' side of the first intron. This genomic region is well conserved in mammals (opossums and humans), whereas the chicken sequence is much less conserved. To examine their biological significance, we deleted the identified sequences using genome editing approaches in mice. Furthermore, we generated compound heterozygous mice in which the enhancers were deleted with a disrupted *Trps1* gene in another allele.

348 Chondrocytes derived from $Trps I^{\Delta int/\Delta int}$ mice exhibited an approximately 60% reduction 349 in Trps 1 expression compared to the WT cells. Interestingly, chondrocytes harvested 350 from $Trps I^{\Delta Enh3/\Delta Enh3}$ mice also exhibited reduced Trps 1 expression (and $Trps 1^{\Delta Enh2/\Delta Enh2}$ 351 exhibited a tendency for reduction) compared to the WT cells. This observation indicated 352 that there were at least two independent enhancers, which regulates Trps 1 expression,

1
2
3
4
5
6
7
/
ð
9
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
26
27
27
20
29
30
31
32
33
34
35
36
37
20
20
39
40
41
42
43
44
45
46
47
48
49
50
50
21
52
53
54
55
56
57
58
59

353	within the first intron of the <i>Trps1</i> gene.
-----	---

354The presence of introns in the gene body is known to play various roles in the cell, where 3551) they upregulate transcription through intron-mediated enhancement of transcription [³⁵], 2) they increase proteomic complexity through alternative splicing [³⁶], and 3) they 356357alleviate the genotoxic R-loop formation that appears during the transcriptional process ^[37]. Introns can regulate gene expression, where they reside both at the level of 358transcription [³⁸] and post-transcriptionally [^{39; 40}]. Recent evidence suggests that many 359360 key cis-regulatory regions are located in the introns of their target genes [41]; especially, tissue-specific enhancers are highly enriched in intronic regions, regulating the 361expression of genes that function in tissue-specific manners [42]. Furthermore, an 362363 intergenic-to-intronic active enhancer continuum is observed during the transition from 364 developmental to adult stages; the most differentiated tissues tend to exhibit higher rates of intronic enhancers [42]. Given these, the genomic regions that we identified as 365366 enhancer candidates are possibly involved in tissue-specific expression and functions of 367*Trps1*. Skeletal phenotypes of our enhancer deleted mice further support this notion. 368Individual deletions of Enh1, Enh2, and Enh3 caused subtle phenotypes in mice, 369 suggesting that each of the single enhancer is functionally dispensable for normal 370 skeletal development or they have functional redundancy. Importantly, these mutants

1
2
3
4
5
6
7
, 0
0
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
22
24
25
20
27
28
29
30
31
32
33
34
35
36
37
38
30
10
40
41
42
43 44
44
45
46
47
48
49
50
51
52
53
54
55
56
57
50
50 50
22

371	displayed a mildly deformed acetabulum when the Trps1 gene dosage was further
372	reduced by deletion of one allele of <i>Trps1</i> . This result raises the possibility that each
373	enhancer contributes to hip joint maturation when the genetic robustness of Trps.
374	expression is reduced. This idea was supported by the observation that more severe
375	acetabular defects were present when Enh2 and Enh3 were simultaneously deleted. The
376	coincidence of the defective anatomical site observed in different <i>Trps1</i> enhancer mutant
377	strains and the difference in the severities observed strongly indicate that normal
378	acetabular morphogenesis depends upon a sufficient <i>Trps1</i> gene dose.
379	$Trps I^{\Delta int/-}$ mice display the most severe growth defects among the mice we tested;
380	however, these defects became apparent postnatally. Recent evidence suggests that
381	postnatal skeletal growth is driven by the activation of the stem cell niche that appears
382	in synchronization with the maturation of SOC [43; 44]. The postnatal growth defects and
383	defective SOC formation in $TrpsI^{Aint/-}$ mice suggest that the diminished chondrocyte stem
384	cell population may be the cause of their gradual pronounced shortening of body length.
385	
386	2. <u>Skeletal pathologies in TRPS patients and TRPS mouse models</u>
387	Greater than 50% of patients with TRPS exhibit developmental dysplasia of the hip $[2^{2}$
388	¹³]. These malformations include coxa plana (resembling the femoral head morphology

in Perthes disease), coxa magna (relative enlargement of the femoral head), and coxa vara (reduction of the femoral neck shaft angle). Possibly due to these abnormal developments, older patients with TRPS display hip abnormalities associated with degenerative coxarthrosis. Although these reports suggest important roles for Trps1 in hip joint development, they have not been investigated by mouse genetics to date. The present study addressed this issue. Conventional *Trps1*^{-/-} mice exhibited a reduction in the size of the ilium, ischium, and pubis. The width of the pelvic floor was narrower, and the subpubic angle was more acute in $Trps1^{\prime}$ embryos. As the pubic symphysis is normally observed in *Trps1*^{/-} mice, the short anterior-posterior length of the pelvis appears to be compensated for by the bending of the pelvis at the ilium and ischium/pubis border (Suppl. Fig. 5). As the pelvis and femur phenotypes of $Trps1^{\Delta int/\Delta int}$ mice were similar to those of Trps1^{*r*} mice at the perinatal stage, we examined the hip joint morphology of *Trps 1*^{Δint/Δint} mice at the adult stage. The pubic bone element was particularly affected in *Trps I*^{Aint/Aint} mice, and consequently the acetabulum of the pubic bone region was poorly formed, ultimately resulting in undercoverage of the femoral heads. These morphological changes often lead to altered joint load and motion, thus causing the onset of degenerative joint pathologies [45; 46]. These conclusions are further supported by reports correlating an increased risk

407 of osteoarthritis with morphological deformities of the proximal femur and acetabulum
408 [^{47; 48}].

Trps $I^{\Delta int/-}$ mice displayed patella formation in the normal position; however, in adult mice that survived to the mature stage, medial patellar dislocation was observed in all examined knees. Significantly, it has been reported that some patients with TRPS display an abnormal patella with recurrent dislocation ^[49]. The patella is the largest sesamoid bone embedded in the quadriceps tendon and facilitates musculoskeletal function. Development of the patella was originally thought to occur inside the tendons in response to mechanical signals from the attaching muscles ^[50]; however, it is now established that in the mouse embryo, the patella initially develops as a bony process at the anterodistal surface of the femur from Sox9 and Scleraxis double-positive progenitor cells and separates from the distal femur via Gdf5-positive joint formation ^[51]. Postnatally, the patella plays a crucial role in knee mechanics and stability and facilitates hind limb function and locomotion [52]. The patella increases the distance between the quadriceps and knee, and thereby increasing the moment arm of the muscle and enhancing its extension force by 50% [53]. The normal patellar position in newborn $Trps I^{\Delta int/-}$ pups indicates that patella development initiates normally at the correct location, and the dislocation occurred postnatally in the mutants. The patella stability

425	involves a balance between the stabilizing patellofemoral ligaments, the osteoarticular
426	surface, the position of the patella (high riding patella; patella alta), decreased depth or
427	flattened trochlear groove, and the muscular actions of the quadriceps muscles [54]. 3D-
428	CT images of the distal femur of the $\mathit{TrpsI}^{\Delta int/-}$ mice indicate the flattened surface at the
429	femoral trochlear groove at 3- and 6-months-of-age. The medial and lateral facets of the
430	groove are not obvious but rather exhibit convexity, ultimately resulting in apparent
431	trochlear dysplasia [55]. Interestingly, the medial fabella, a sesamoid bone embedded in
432	the medial head of the gastrocnemius muscle, exhibited a severe reduction in size. It is
433	important to note that in quadrupedal mammals, the fabella is believed to play a role
434	very similar to that of the patella in redirecting the extension forces of the knee joint
435	from one point to another [56]. The exact causes of the flattened femoral trochlear groove
436	and reduced medial fabella size are not clear. Skin and joint laxity is a characteristic
437	feature of patients with TRPS. These features of TRPS have been described as symptoms
438	that are similar to those observed in patients with Ehlers-Danlos syndrome. Importantly,
439	a mouse model of Ehlers-Danlos syndrome exhibited severe growth retardation, delays
440	in SOC formation, and patellar dislocation, all of which were observed in $\mathit{Trps1}^{\Delta int/-}$ mice
441	[57].
442	

3. The *Trps1*^{Δint/Δint} mouse strain as a novel TRPS disease model for postnatal studies. The etiologies of TRPS have been investigated using several animal models of TRPS. Most of these studies were performed using homozygous knockout mice. Although they are useful, they possess significant limitations due to their early postnatal lethality. Patients with TRPS exhibit various postnatal diseases. These conditions include skeletal dysplasia, coxarthrosis, and progressive short stature [2]. Our novel *Trps1*^{Aint/Aint} mouse strain could partially overcome this limitation, contributing to the postnatal studies of CO ROUR TRPS pathologies.

2
3
4
5
6
7
8
9
10
11
10
12
13
14
15
16
17
18
19
20
21
22
22
25
24
25
26
27
28
29
30
31
22
J∠ 22
33
34
35
36
37
38
39
40
41
40 40
ד∠ ⊿2
43
44
45
46
47
48
49
50
51
52
52 52
55 F 4
54
55
56
57
58
59

60

452 Materials and Methods

453 1. <u>ATAC-seq and ChIP-seq of mouse costal chondrocytes.</u>

454Assays for transposase-accessible chromatin using high-throughput sequencing (ATACseq) ⁵⁸ was performed using costal chondrocytes isolated from neonatal mouse ribs ⁵⁹. 455Approximately 50,000 cells were lysed using lysis buffer (10 mM Tris-HCl, pH 7.4, 10 456mM NaCl, 3 mM MgCl₂, and 0.1% IGEPAL CA-630) to release the nuclei and then 457458treated with Tn5 transposase (Illumina #FC121-1030) at 37°C for 30 minutes. The adaptors were ligated and amplified using polymerase chain reaction (PCR) for high-459throughput sequencing. Paired-end sequencing (100 bp) was performed using an 460 461Illumina HiSeq platform at the Osaka University Research Institute for Microbial 462Diseases NGS Core Facility. Qualified sequencing reads were aligned to the reference 463genome (mm9) using Bowtie 2 (ver. 2.4.4) ⁶⁰, and MACS2 was used for peak calling [⁶¹]. 464Two biological replicates were analyzed for ATAC-seq. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) was performed using antibodies against histone 465modifications [62]. Primary chondrocytes were crosslinked with 1% formaldehyde for 5 466 467min. Crosslinking was quenched with 1 M glycine for 5 min. Cells were lysed and 468chromatin was sonicated with Covaris M220. Fragmented DNA was immunoprecipitated using an antibody against acetylated H3 lysine 27 (H3K27ac) (Cell Signaling Technology 469

3 4		
5 6 7	470	(CST) #8173, 2 µg per reaction) or against demethylated H3 lysine 4 (H3K4me2) (CST,
/ 8		
9 10 11	471	#9725, 2 μg per reaction). H3K27ac is associated with active enhancer regions, while
12 13	472	H3K4me2 is predominantly enriched around the functional cis-regulatory elements as
14 15 16	473	well as transcription start sites (TSS) 63 . All immunoprecipitation was performed for 4
17 18 19	474	hours at 4°C. ChIP samples were washed, eluted at 65°C for 30min, and reverse
20 21		
22 23	475	crosslinked at 65°C overnight. DNA was purified using DNA purification spin columns.
24 25 26	476	Library preparation, sequencing, and peak calling were performed as described above.
27 28 29	477	ATAC-seq and ChIP-seq data have been deposited in the NCBI Gene Expression
30 31	478	Omnibus with the accession code GSE237889
32 33 34	479	(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE237889).
35 36 37	480	2. <u>Luciferase assays</u>
38 39 40	481	The enhancer 2 (Enh2; 2,981 bp) and enhancer 3 (Enh3; 5,370 bp) genomic fragments
41 42 43	482	were amplified using a high-fidelity KODFX DNA polymerase (TOYOBO, Osaka, Japan)
44 45 46	483	by the primer sequences listed in Table 1. The A-tailed fragments were subcloned into
47 48 49	484	the pTA2 vector (TOYOBO). The inserts were released and subcloned into the pGL3-
50 51 52	485	promoter vector (Promega) to generate Enh2-Luciferase and Enh3-Luciferase constructs.
53 54 55	486	The Enh3 fragment was inserted into the Enh2-Luciferase clone to generate an Enh2-
56 57 58 59 60	487	Enh3-Luciferase construct. Firefly Luciferase vectors and pTK-Renilla luciferase vector

2
3
4
5
6
7
, 8
0
9
10
11
12
13
14
15
16
17
18
10
19
20
21
22
23
24
25
26
20
27
28
29
30
31
32
33
34
35
26
30
37
38
39
40
41
42
43
7J 11
- 1 F
40
46
47
48
49
50
51
52
52
22
54
55
56
57
58

60

488 (Promega) were transfected into ATDC5 chondrocytic cell line seeded onto 12-well 489 culture plates ^{64; 65} with ScreenFect A (Fujifilm, Osaka, Japan) for 6 h. The cells were 490rinsed once with phosphate buffered saline (PBS) and then cultured in DMEM/F-12 491media (Sigma) supplemented with 10% fetal bovine serum (FBS). After cultured for an 492additional 40 h, the cells were lysed with 200 μ l of luciferase lysis buffer (Promega). 493Luciferase measurements and normalization were performed as described previously [66; 494⁶⁷]. The experiments were performed in triplicate and performed at least three times, 495and representative data are presented in the figures. 3. <u>Animals</u> 496Conventional Trps1 knockout mouse strain (Trps1⁺ mice) has been described 497498previously [5, 8]. Trps1 enhancer-deleted strains were generated by CRISPR/Cas9 499 genome editing. Δ Enh1 strain was generated by the deletion of the enhancer 1 (Enh1) 500sequence, which is located upstream of *Trps1* TSS [³¹]. Enh2 and Enh3 are located in the 501first intron of the Trps1 gene; approximately 3 kb (Enh2), 4 kb (Enh3), and 20 kb genomic 502regions containing both of the enhancers were deleted in Δ Enh2, Δ Enh3, and Δ int strains, 503respectively. The guide RNA sequences used for genome editing are listed in Table 1. 504crRNA, tracrRNA, and the Cas9 protein complex were electroporated into fertilized eggs 505(C57BL/6J) and cultured *in vitro* until the two-cell stage. Eggs were implanted into the

2
3
1
4
5
6
7
Q
0
9
10
11
12
12
15
14
15
16
17
10
18
19
20
21
22
22
23
24
25
26
20
27
28
29
30
21
51
32
33
34
35
22
36
37
38
39
10
40
41
42
43
44
45
45
46
47
48
10
42
50
51
52
53
55
54
55
56
57
58
50
59
60

506	fallopian tubes of pseudo-pregnant female mice. F0 mice with successful deletions were
507	initially mated with C57BL/6J wild-type (WT) mice (Japan SLC, Inc., Shizuoka, Japan)
508	for germline transmission. Non-mosaic heterozygotes of F1 males and females were used
509	for breeding. To generate $Trps1$ double heterozygotes including $Trps1^{\Delta int/-}$ mice, we
510	crossed <i>Trps1</i> enhancer-deleted strain with conventional <i>Trps1</i> heterozygous knockout
511	strain. Genotyping was performed using the genomic DNA purified from tail clips or skin
512	tissue. Primer used for genotyping are listed in Table 2.
513	Body weight was measured every week after weaning until week 9. For embryonic stage
514	sample preparation, noon of the day the vaginal plug appeared was considered as
515	embryonic day (E) 0.5. Pregnant female mice were humanely euthanized, and embryos
516	were collected by C-section. All animal experiments were approved by the Animal
517	Experiment Committee of the Osaka University Graduate School of Dentistry (Animal
518	Protocol #29-016-0). Experimental procedures were performed according to the
519	Association for Assessment and Accreditation of Laboratory Animal Care International
520	and local guidelines. The rooms were maintained at 22 to 26 degrees under 12 h
521	light/dark cycle.
522	4. <u>Skeletal analysis</u>

523 Alizarin red and alcian blue staining of bone and cartilage was performed as previously

described [68]. Three-dimensional micro-computed tomography (3D-CT) images of the pelvic region were captured by R-mCT2 (Rigaku, Tokyo, Japan) at Field of view (FOV) 20 at 90V and 160μ A. Images were created using three-dimensional reconstruction imaging software (TRI/ 3D-BON; RATOC System Engineering Co., Ltd., Tokyo, Japan). The psoas valley depth was measured according to a previous report ^[69]. Briefly, a straight line passing through the upper and lower hip labra was drawn. A line perpendicular to and crossing the center of the femoral head was drawn. The lengths of the psoas valleys depth were measured using the ImageJ software. As there could be sex-specific variations in pelvic girdle morphology, we used only male mice for the postnatal study. Sex was not determined for the embryonic stage samples used in this study. 4. Total RNA isolation from primary costal chondrocytes and reverse transcription-<u>quantitative PCR (RT-qPCR).</u> Postnatal day 3 (PNd3) pups were humanely euthanized by injecting them with an overdose of anesthetic drugs, and various tissues or organs were dissected in cold PBS under a stereoscopic microscope. Each tissue and organ was stored separately in 350 µl buffer RLT (Qiagen, Hilden, Germany) supplemented with beta-mercaptoethanol. Total

541 RNA was prepared using an RNeasy Plus kit (Qiagen) according to the manufacturer's

2
3
4
5
6
7
/
8
9
10
11
10
12
13
14
15
16
17
10
18
19
20
21
22
 22
25
24
25
26
27
28
20
29
30
31
32
33
24
24
35
36
37
38
30
10
40
41
42
43
44
45
16
40
47
48
49
50
51
51
52
53
54
55
56
57
57
58
59

1

542	instructions. Samples obtained from both WT and $Trps1^{\Delta int/\Delta int}$ animals were
543	homogenized and subjected to the column purification processes. WT, $Trps1^{\Delta Enh2/\Delta Enh2}$,
544	$Trps1^{\Delta Enh3/\Delta Enh3}$, and $Trps1^{\Delta int/\Delta int}$ were used for preparation of the neonatal costal
545	chondrocytes. Cells were harvested as described previously ^[59] . The cells were cultured
546	in DMEM supplemented with 10% FBS and antibiotics. Cells from passage two were
547	used for qPCR analysis. Purified total RNA (1 μ g) was reverse-transcribed into cDNA
548	using ReverTra Ace (TOYOBO). THUNDERBIRD SYBR qPCR mix (TOYOBO) was used
549	for real-time PCR on a 20 μl reaction scale. A MiniOpticon qPCR apparatus equipped
550	with CFX managing software (Bio-Rad Laboratories, Berkeley, CA, USA) was used for
551	reaction and data acquisition as described previously ⁷⁰ . The primers used for real-time
552	PCR were 5'-CAG CTC CCA AGA GCA GAC AAA-3' and 5'-GTC AGG CAA TTG GCA
553	CAA AAA-3' for <i>Trps1</i> , and the primer sequence for <i>Hprt1</i> has been described previously
554	[71].
555	3. In situ hybridization and immunohistochemistry

Sectional *in situ* hybridization was performed as previously described ^[5]. Transverse cryo-sections of E12.5 embryos were prepared at thickness of 14 microns. Sense and antisense *Trps1* cRNA probes were synthesized using the NM_032000.2 nt.412-1291 sequence as a template. Immunohistochemistry was performed on transverse cryo-

sections of E12.5 wildtype and Trps1^{-/-} embryos using anti-Sox9 rabbit monoclonal antibody (1:400 #D8G8H, CST, Danvers MA). Endogenous peroxidase activity was inhibited by 0.3% H₂O₂ for 15 min at RT. Biotinylated anti-rabbit IgG (4 µg/ml Vector Laboratories, Burlingame, CA) and HRP-conjugated streptavidin (2 μ g/ml; Abcam, Cambridge, UK) were used for the following reactions. Color development was performed using 3,3'-Diaminobenzidine with nickel enhancement. Normal rabbit IgG (CST) was used instead of the primary antibody as a negative control. The stained sections were then dehydrated and covered with coverslips. Postnatal animals were fixed by perfusion under deep anesthesia. The hindlimbs were further fixed in 4% paraformaldehyde for more than 16 hours at 4 degrees. Then, the samples were decalcified in 10% ethylenediamine tetraacetic acid (EDTA) for 10 to 14 days at 4 degrees Celsius. The decalcified samples were dehydrated, embedded in paraffin, and then sectioned at a 4-micron thickness. Stained images were captured using an Axioskop 2 plus equipped with an Axiocam 208 (Carl Zeiss Microscopy, Jena, Germany) or BZ-X800 with appropriate software (Keyence). 4. <u>Statistical analysis.</u>

576 The results are expressed as the means \pm standard deviation (SD). The mean values of 577 two samples were compared using Student's *t-test*. Statistical significance was set at P

< 0.05. Multiple comparison of more than three samples were analyzed by one-way analysis of variance (ANOVA), followed by Tukey's post-hoc test using GraphPad Prism8 software. At least three animals per each genotype were used for all the analysis.

3
4
5
6
7
8
9
10
11
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
20
20
21
21
2∠ 22
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
57
52 53
55 54
54
55
56
57
58

59 60

Acknowledgements 582583This work was supported by Grants-in-Aid for Scientific Research from MEXT to MA 584(17K11611, 22K06295), JSPS KAKENHI JP16H06276 (AdAMS) to MA, and the Takeda Science Foundation for SI. The authors acknowledge Dr. Yasuteru Muragaki 585586for sharing the Trps1 knockout strain; Dr. Ryouji Yao, Dr. Hiroshi Takano, Dr. Hitomi 587Yamanaka, and Dr. Masahito Ikawa for their help with mouse generation; and Ms. 588Mariko Kasai for the technical assistance. 589**Declaration of interests** 590None. 591Author contributions 592N.S., S.O., M.A. conceived of the study, T.I., S.A., S.O., M.A. supervised the work, N.S., K.H., S.I., S.O., M.A. designed the experiments, N.S., C.I-Y., Y.I., R.K., K.H., S.O., M.A. 593594performed the experiments and analyzed results, N.S., S.O., M.A. wrote the 595manuscript with input from all authors. 596597

2	
3	
4	
5	
6	
7	
, Q	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
∠∪ ว1	
21	
22	
23	
24	
25	
26	
27	
28	
29	
20	
21	
21	
32	
33	
34	
35	
36	
37	
38	
39	
40	
<u>Δ1</u>	
41	
4Z	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52 52	
J 7 7	
54	
55	
56	
57	
58	
59	
60	

598	References

599	1. Momeni. P.,	Glockner.	G., Schmidt.	O. et al	. Mutations in a	a new gene.	encoding a	a zinc [.]
000	1. 1.101110111, 1.	, ononini,	o., sommut,	0.00 41		a non gono,	chicouning (<i>x</i> 21110

- 600 finger protein, cause tricho-rhino-phalangeal syndrome type I. *Nat Genet* 2000;**24**:71-74.
- 601 2. Ludecke, H.J., Schaper, J., Meinecke, P. et al. Genotypic and phenotypic spectrum in
- tricho-rhino-phalangeal syndrome types I and III. Am J Hum Genet 2001;68:81-91.
- 3. Le Saout, J., Lefevre, C., Kerboul, B. et al. Osteochondritis of the hip and the tricho-
- 604 rhino-phalangeal syndrome. *Ann de Chirurgie* 1984;**38**:357-362.
- 4. Itoh, S., Kanno, S., Gai, Z., et al. Trps1 plays a pivotal role downstream of Gdf5
 signaling in promoting chondrogenesis and apoptosis of ATDC5 cells. *Genes Cells*2008;13:355-363.
- 608 5. Michikami, I., Fukushi, T., Honma, S. et al. Trps1 is necessary for normal
- 609 temporomandibular joint development. *Cell Tis Res* 2012;**348**:131-140.

610 6. Napierala, D., Sam, K., Morello, R.et al. Uncoupling of chondrocyte differentiation and

- 611 perichondrial mineralization underlies the skeletal dysplasia in tricho-rhino-phalangeal
- 612 syndrome. *Hum Mol Genet* 2008;**17**:2244-2254.
- 613 7. Napierala, D., Sun, Y., Maciejewska, I.et al. Transcriptional repression of the Dspp
- 614 gene leads to dentinogenesis imperfect aphenotype in Col1a1-Trps1 transgenic mice. J
- 615 Bone Min Res 2012;**27**:1735-1745.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

616	8. Suemoto, H., Muragaki, Y., Nishioka, K. et al. Trps1 regulates proliferation and
617	apoptosis of chondrocytes through Stat3 signaling. <i>Dev Biol</i> 2007; 312 :572-581.
618	9. Kanno, S., Gui, T., Itoh, S.et al. Aberrant expression of the P2 promoter-specific
619	transcript Runx1 in epiphyseal cartilage of Trps1-null mice. Exp Mol Pathol
620	2011; 90 :143-148.
621	10. Nishioka, K., Itoh, S., Suemoto, H. et al. Trps1 deficiency enlarges the proliferative
622	zone of growth plate cartilage by upregulation of Pthrp. <i>Bone</i> 2008; 43 :64-71.
623	11. Wuelling, M., Kaiser, F.J., Buelens, L.A. et al. Trps1, a regulator of chondrocyte
624	proliferation and differentiation, interacts with the activator form of Gli3. Dev Biol
625	2009; 328 :40-53.
626	12. Wuelling, M., Schneider, S., Schrother, V.A. et al. Wnt5a is a transcriptional target
627	of Gli3 and Trps1 at the onset of chondrocyte hypertrophy. <i>Dev Biol</i> 2020;457:104-118.
628	13. Maas, S.M., Shaw, A.C., Bikker, H. et al. Phenotype and genotype in 103 patients
629	with tricho-rhino-phalangeal syndrome. <i>Eur J Med Genet</i> 2015; 58 :279-292.
630	14. Fontaine, G., Maroteaux, P., Farriaux, J.P. et al. The tricho-rhino-phalangeal
631	syndrome. Arch Fr Pediatr 1970; 27 :635-647.
632	15. Beals, R.K. Tricho-rhino-phalangeal dysplasia. Report of a kindred. J Bone Joint
633	Surg Am 1973; 55 :821-826.

16. Felman, A.H., Frias, J.L. The trichorhinophalangeal syndrome: study of 16 patients in one family. AJR Am J Roent 1977;129:631-638. 17. Peltola, J., Kuokkanen, K. Tricho-rhino-phalangeal syndrome in five successive generations: Report on a family in Finland. Acta Dermato-Vener 1978;58:65-68. 18. Howell, C.J., Wynne-Davies, R. The tricho-rhino-phalangeal syndrome. A report of 14 cases in 7 kindreds. J Bone Joint Surg Br 1986;68:311-314. 19. Don, E.K., Currie, P.D., Cole, N.J. The evolutionary history of the development of the pelvic fin/hindlimb. JAnat 2013;222:114-133. 20. Yano, T., and Tamura, K. The making of differences between fins and limbs. J Anat 2013;**222**:100-113. 21. Malashichev, Y., Borkhvardt, V., Christ, B. et al. Differential regulation of avian pelvic girdle development by the limb field ectoderm. Anat Embryol 2005;210:187-197. 22. Delaere, O., Kok, V., Nyssen-Behets, C. et al. Ossification of the human fetal ilium. Acta Anat 1992;143:330-334. 23. Ponseti, I.V. Growth and development of the acetabulum in the normal child. Anatomical, histological, and roentgenographic studies. J Bone Joint Surg Am 1978;**60**:575-585. 24. Harrison, T.J. The influence of the femoral head on pelvic growth and acetabular

2
3
Δ
- -
5
6
7
8
0
9
10
11
12
12
13
14
15
16
17
17
18
19
20
20
21
22
23
24
27
25
26
27
28
20
29
30
31
32
52
33
34
35
36
50
37
38
39
10
40
41
42
43
44
44
45
46
47
10
40
49
50
51
50
52
53
54
55
56
20
57
58
59

60

652 form in the rat. *J Anat* 1961;**95**:12-24.

653 25. Harris-Hayes, M., Royer, N.K. Relationship of acetabular dysplasia and

654 femoroacetabular impingement to hip osteoarthritis: a focused review. PM & R : J Inj

655 Funct Rehab 2011;**3**:1055-1067 e1051.

656 26. Anderson, F.A., Jr., Huang, W., Friedman, R.J. et al. Prevention of venous
657 thromboembolism after hip or knee arthroplasty: findings from a 2008 survey of US
658 orthopedic surgeons. J Arthro 2012;27:659-666 e655.

659 27. Diesel, C.V., Ribeiro, T.A., Scheidt, R.B. et al. The prevalence of femoroacetabular
660 impingement in radiographs of asymptomatic subjects: a cross-sectional study. *J Clin*661 *Exp Res Hip Pathol Ther* 2015;25:258-263.

662 28. Storer, S.K., Skaggs, D.L. Developmental dysplasia of the hip. Am Fam Phys
663 2006;74:1310-1316.

664 29. McWilliams, D.F., Doherty, S.A., Jenkins, W.D. et al. Mild acetabular dysplasia and
665 risk of osteoarthritis of the hip: a case-control study. *Annals Rheum Dis* 2010;69:1774666 1778.

30. Jacobsen, S., Sonne-Holm, S. Hip dysplasia: a significant risk factor for the
development of hip osteoarthritis. A cross-sectional survey. *Rheumatology* 2005;44:211218.

1	
2	
3	
4	
5	
6	
7	
/ 0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
רב בי	
∠∠ วว	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
27	
27 20	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55	
54 57	
55	
56	
5/	
58	
59	
60	

670	31. Nomir, A.G., Takeuchi, Y., Fujikawa, J. et al. Fate mapping of Trps1 daughter cells
671	during cardiac development using novel Trps1-Cre mice. <i>Genesis</i> 2016; 54 :379-388.
672	32. Xie, M., Gol'din, P., Herdina, A.N. et al. Secondary ossification center induces and
673	protects growth plate structure. <i>eLife</i> 2020;9.
674	33. Kopydlowski, N.J., Tannenbaum, E.P., Smith, M.V. et al. Characterization of Human
675	Anterosuperior Acetabular Depression in Correlation With Labral Tears. Orthop J
676	Sports Med 2014; 2 :2325967114551328.
677	34. Chatterjee, S., Ahituv, N. Gene Regulatory Elements, Major Drivers of Human
678	Disease. Annu Rev Genomics Hum Genet 2017;18:45-63.
679	35. Dwyer, K., Agarwal, N., Pile, L. et al. Gene Architecture Facilitates Intron-Mediated
680	Enhancement of Transcription. Front Mol Biosci 2021;8:669004.
681	36. Nilsen, T.W., Graveley, B.R. Expansion of the eukaryotic proteome by alternative
682	splicing. <i>Nature</i> 2010; 463 :457-463.
683	37. Niehrs, C., Luke, B. Regulatory R-loops as facilitators of gene expression and genome
684	stability. Nature reviews <i>Mol Cell Biol</i> 2020; 21 :167-178.
685	38. Ding, F., Elowitz, M.B. Constitutive splicing and economies of scale in gene
686	expression. Nat Struct Mol Biol 2019; 26 :424-432.

687 39. Laxa, M. Intron-Mediated Enhancement: A Tool for Heterologous Gene Expression

3	
4	
5	
6	
7	
/ 0	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
27	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
47 40	
40 40	
49	
50	
51	
52	
53	
54	
55	
56	
57	
50	
20	
59	
60	

688 in Plants? Front Plant Sci 2016;7:1977.

40. Shaul, O. How introns enhance gene expression. Int J Biochem Cell Biol 2017;91:145155.

691 41. Ott, C.J., Blackledge, N.P., Kerschner, J.L. et al. Intronic enhancers coordinate
692 epithelial-specific looping of the active CFTR locus. *Proc Nat Acad Sci* 2009;**106**:19934693 19939.

42. Borsari, B., Villegas-Miron, P., Perez-Lluch, S., et al. Enhancers with tissue-specific

activity are enriched in intronic regions. *Genome Res* 2021;**31**:1325-1336.

696 43. Mizuhashi, K., Nagata, M., Matsushita, Y. et al. Growth Plate Borderline

697 Chondrocytes Behave as Transient Mesenchymal Precursor Cells. J Bone Min Res

698 2019;**34**:1387-1392.

699 44. Newton, P.T., Li, L., Zhou, B. et al. A radical switch in clonality reveals a stem cell

niche in the epiphyseal growth plate. *Nature* 2019;**567**:234-238.

45. Jacobsen, S., Sonne-Holm, S., Lund, B.et al. Pelvic orientation and assessment of hip

702 dysplasia in adults. *Acta Orthop Scand* 2004;**75**:721-729.

703 46. Jacobsen, S., Sonne-Holm, S., Soballe, K. et al. Radiographic case definitions and

704 prevalence of osteoarthrosis of the hip: a survey of 4 151 subjects in the Osteoarthritis

705 Substudy of the Copenhagen City Heart Study. *Acta Orthop Scand* 2004;**75**:713-720.

2
3
4
5
ر د
6
7
8
9
10
10
11
12
13
14
15
10
16
17
18
19
20
20 21
21
22
23
24
25
25
26
27
28
29
20
20
31
32
33
34
25
22
36
37
38
39
10
40
41
42
43
44
15
7J AC
40
47
48
49
50
50
21
52
53
54
55
55
20
57
58
59
60
~~

706	47. Beck, M., Kalhor, M., Leunig, M. et al. Hip morphology influences the pattern of
707	damage to the acetabular cartilage: femoroacetabular impingement as a cause of early
708	osteoarthritis of the hip. <i>J Bone Joint Surg Br</i> 2005; 87 :1012-1018.
709	48. Ahedi, H.G., Aspden, R.M., Blizzard, L.C. et al. Hip Shape as a Predictor of
710	Osteoarthritis Progression in a Prospective Population Cohort. Arth Care Res
711	2017; 69 :1566-1573.
712	49. Puliyel, J.M., Puliyel, M.M., Varughese, S. The trichorhinophalangeal syndrome with
713	repeated dislocation of the patella. <i>Clin Genet</i> 1992; 41 :139-142.
714	50. Sarin, V.K., Erickson, G.M., Giori, N.J. et al. Coincident development of sesamoid
715	bones and clues to their evolution. <i>Anat Rec</i> 1999; 257 :174-180.
716	51. Eyal, S., Blitz, E., Shwartz, Y. et al. On the development of the patella. <i>Development</i>
717	2015;142:1831-1839.
718	52. Sutton, F.S., Jr., Thompson, C.H., Lipke, J. et al. The effect of patellectomy on knee
719	function. J Bone Joint Surg Am volume 1976;58:537-540.
720	53. Schindler, O.S., Scott, W.N. Basic kinematics and biomechanics of the patello-
721	femoral joint. Part 1: The native patella. Acta Orthop Bel 2011;77:421-431.
722	54. Bicos, J., Carofino, B., Andersen, M. et al. Patellofemoral forces after medial
723	patellofemoral ligament reconstruction: a biomechanical analysis. J Knee Surg

2	
ر ۸	
4	
с С	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
32	
27	
54 25	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

724 2006;**19**:317-326.

55. McConnell, J. Rehabilitation and nonoperative treatment of patellar instability. *Sp*

726 *Med Arthrosc Rev* 2007;**15**:95-104.

727 56. Driessen, A., Balke, M., Offerhaus, C. et al. The fabella syndrome - a rare cause of

728 posterolateral knee pain: a review of the literature and two case reports. BMC Muscul

729 *Dis* 2014;**15**:100.

57. Zhu, M., Metzen, F., Hopkinson, M. et al. Ablation of collagen XII disturbs joint
extracellular matrix organization and causes patellar subluxation. *iScience*2023;26:107225.

733 58. Buenrostro, J.D., Wu, B., Chang, H.Y. et al. ATAC-seq: A Method for Assaying

734 Chromatin Accessibility Genome-Wide. *Cur Prot Mol Biol* 2015;**109**:21 29 21-21 29 29.

735 59. Gosset, M., Berenbaum, F., Thirion, S. et al. Primary culture and phenotyping of

736 murine chondrocytes. *Nat Protoc* 2008;**3**:1253-1260.

737 60. Langmead, B., Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat

738 *Methods* 2012;**9**:357-359.

739 61. Zhang, Y., Liu, T., Meyer, C.A. et al. Model-based analysis of ChIP-Seq (MACS).

740 *Genome Biol* 2008;**9**:R137.

741 62. Ernst, J., Kheradpour, P., Mikkelsen, T.S. et al. Mapping and analysis of chromatin

2	
3	
Λ	
-	
S	
6	
7	
8	
0	
9	
10	
11	
12	
12	
15	
14	
15	
16	
17	
17	
18	
19	
20	
21	
<u>~</u> 」 つつ	
22	
23	
24	
25	
20	
26	
27	
28	
20	
20	
30	
31	
32	
22	
22	
34	
35	
36	
37	
20	
38	
39	
40	
Δ1	
11	
42	
43	
44	
45	
16	
40	
47	
48	
49	
50	
20	
51	
52	
53	
51	
4 	
55	
56	
57	
50	
20	
59	
60	

state dynamics in nine human cell types. *Nature* 2011;**473**:43-49.

63. Nakato, R., Sakata, T. Methods for ChIP-seq analysis: A practical workflow and

- advanced applications. *Methods* 2021;**187**:44-53.
- 745 64. Atsumi, T., Miwa, Y., Kimata, K. et al. A chondrogenic cell line derived from a
- 746 differentiating culture of AT805 teratocarcinoma cells. *Cell Differ Dev* 1990;**30**:109-116.
- 65. Shukunami, C., Shigeno, C., Atsumi, T. et al. Chondrogenic differentiation of clonal
- 748 mouse embryonic cell line ATDC5 in vitro: differentiation-dependent gene expression of
- 749 parathyroid hormone (PTH)/PTH-related peptide receptor. *J Cell Biol* 1996;**133**:457-468.
- 750 66. Abe, M., Michikami, I., Fukushi, T. et al. (2010). Hand2 regulates chondrogenesis in
- 751 vitro and in vivo. *Bone* 2010;**46**:1359-1368.
- 752 67. Michikami, I., Fukushi, T., Tanaka, M. et al. Kruppel-like factor 4 regulates
- 753 membranous and endochondral ossification. *Exp Cell Res* 2012;**318**:311-325.

68. McLeod, M.J. Differential staining of cartilage and bone in whole mouse fetuses by

alcian blue and alizarin red S. *Teratology* 1980;**22**:299-301.

- 69. Kuroda, Y., Rai, A., Saito, M. et al. Anatomical variation of the Psoas Valley: a
 scoping review. *BMC Muscul Dis* 2020;**21**:219.
- 758 70. Takeuchi, Y., Tatsuta, S., Kito, A. et al. Kruppel-like factor 4 upregulates matrix

759 metalloproteinase 13 expression in chondrocytes via mRNA stabilization. Cell Tissue

2 3 4		
4 5 6		
7	760	<i>Res</i> 2020; 382 :307-319.
8 9 10 11	761	71. Fujikawa, J., Takeuchi, Y., Kanazawa, S. et al. Kruppel-like factor 4 regulates matrix
12 13 14	762	metalloproteinase and aggrecanase gene expression in chondrocytes. Cell Tissue Res
15 16 17	763	2017; 370 :441-449.
18 19	764	
20 21 22	765	
23 24		
25 26 27		
27 28 29		
30 31		
32 33		
34 35 36		
37 38		
39 40		
41 42 43		
44 45		
46 47		
48 49 50		
50 51 52		
53 54		
55 56		
57 58		

59 60

766	Legends to Figures
-----	--------------------

767	Figure 1. Identification of putative enhancers around the <i>Trps1</i> gene.
768	(A) Open chromatin regions and histone modification (H3K4me2 and H3K27ac)
769	identified by ATAC-seq and ChIP-seq in murine primary costal chondrocytes.
770	Overhead view of the murine <i>Trps1</i> genomic region (upper image) and magnified view
771	of the first intron (lower image). The first intron of the murine <i>Trps1</i> genomic region is
772	highlighted by a red dotted square. Overlapping regions of ATAC-seq and ChIP-seq
773	peaks within the first intron of <i>Trps1</i> are highlighted by a pink box. Enhancer 2 (Enh2;
774	Chr15:50885838-50889066) and enhancer 3 (Enh3; Chr15:50868499-50872947) are labeled
775	with red and blue bars, respectively.
776	(B) Genomic alignment of the <i>Trps1</i> gene loci of multiple species. Evolutionary
777	conserved sequence alignment of multiple genomes was performed using the ECR
778	program from Dcode.org (<u>http://www.dcode.org</u>).
779	(C) Luciferase reporter assays for Emh2 and Enh3 in chondrocytic ATDC5 cells. Enh2-,
780	Enh3-, or Enh2-Enh3-containing pGL3-promoter luciferase vectors were transfected
781	into chondrocytic ATDC5 cells. Cell lysate was harvested after 40 hours post-
782	transfection for dual-luciferase assay (*P < 0.05).

1
2
3
4
5
6
7
/ 0
0
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
32
34
35
36
27
27
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

783	(D) Luciferase reporter assays for Enh2 deletion mutants in chondrocytic ATDC5 cells.
784	pGL3-promoter luciferase vectors carrying deleted versions of Enh2 were transfected
785	into ATDC5 cells. Cell lysate was harvested after 40 hours post-transfection for dual-
786	luciferase assay (* $P < 0.05$).
787	
788	Figure 2. <i>Trps1-¹⁻</i> mice display abnormal coxal bone morphogenesis.
789	(A1) Expression of <i>Trps1</i> detected by <i>in situ</i> hybridization in the developing hip joint of E12.5
790	WT embryo. V and D indicate the ventral and dorsal sides, respectively.
791	(A2 and A3) Sox9 protein localization was detected by immunohistochemistry in the
792	developing hip region of E12.5 WT (A2) and <i>Trps1</i> (A3) embryos.
793	(B and C) Lateral views of the hindlimb (B) and coxal bone (C) of E15.5 WT and <i>Trps1-/-</i>
794	embryos. Arrowheads in (C) indicates the mineralized region at the primary ossification center
795	within the ilium.
796	(D-F) Medial views of hindlimbs (D), coxal bone (E), and pelvic bone (F) of E17.5 WT (left),
797	$Trps1^{+/-}$ (mid), and $Trps1^{-/-}$ (right) embryos. Double arrows in (E) indicated the rostral-caudal
798	length which is shorter in <i>Trps1</i> -/- embryos compared to others. Arrowheads in (E) indicate the
799	reduced range of the mineralized region within the primary ossification center of the ischium
800	and pubis in <i>Trps1</i> -/- embryos. In (F), the angle between the ilium and pubis was highlighted. (G)

801	The measurements of the ilio-pubic angle show that the angle is smaller in <i>Trps1</i> -/- embryos than
802	others (n=3 used for each genotype).
803	Key; ac: primordium of acetabulum, co: primordium of os coxa, fe: femur, fi: fibula. hg:
804	hindgut. il: ilium, is: ischium, pu: pubis, ti: tibia.
805	
806	Figure 3. Delayed maturation of the ilio-pubic junction and abnormal psoas valley
807	invagination in <i>Trps1</i> ^{Δint/Δint} mice.
808	(A-D) Ventral view of 3D-CT (A and B) and toluidine blue-stained frontal section (C and D) of
809	the hip joint in the 1-month-old control and $Trps I^{\Delta int/\Delta int}$ mice. Arrowheads in (B) indicate the
810	mildly expanded width between the mineralized ilium and pubis in <i>Trps1</i> ^{Dint/Dint} mice. Double
811	arrows in (C) and (D) indicate the cartilaginous region at the ilio-pubic junction.
812	(E-H) HE-stained frontal sections (E and F) and ventral views of reconstructed 3D-CT (G and
813	H) of the hip joint in the 3-month-old control and $Trps1^{\Delta int/\Delta int}$ mice. The arrowhead in (H)
814	points to the deeply invaginated psoas valley in Trps1 ^{Dint/Dint} mice.
815	(I and J) Measurement of the psoas valley depth. The measured length is indicated by the double
816	arrow in (I). The data of the 2- to 3-month-old control (n=10) and $Trps I^{\Delta int/\Delta int}$ (n=12) mice are
817	shown in (J).

2
З
5
4
5
6
7
,
8
9
10
11
11
12
13
14
15
15
16
17
18
10
17
20
21
22
25
<u>ک</u> ک
24
25
26
20
27
28
29
30
21
31
32
33
31
25
35
36
37
20
20
39
40
41
 ⊿⊃
42
43
44
45
16
40
47
48
49
50
50
51
52
53
-
54
55
56
57
57
F O
58

818	(K and L) Toluidine blue-stained sections of distal femur of postnatal 10-day-old control (K)
819	and $Trps I^{\Delta int/\Delta int}$ (L) mice. The invaginating vascular canals into the initial developing site of the
820	secondary ossification center (SOC) are indicated by arrows. Arrowheads in (K) indicate red
821	blood cells (RBCs) at the central region of the distal epiphysis, while RBCs are rarely observed
822	in the similar femoral domain of $Trps l^{\Delta int/\Delta int}$ pups.
823	(M-T) The distal femoral SOC in the 1-month-old control (M-P) or <i>Trps1</i> $\Delta int/\Delta int$ (Q-T) mice.
824	Sections stained with toluidine blue (M, M', Q, and Q') or mRNA detected by in situ
825	hybridization for Collal (N and R), Col2al (O and S), and Coll0al (P and T) are shown. Red
826	arrowheads in (Q') and (S) indicate the remaining cartilage tissue and chondrocytes left behind
827	at the developing SOC.
828	Key; fh: femoral head, il: ilium, isc: ischium, pu: pubis.
829	
830	Figure 4. Skeletal defects in 3-month-old <i>Trps1</i> ^{∆int/-} mice.
831	(A and B) Ventral views of the dissected anatomy of the hip joint region in the control (A) and
832	$Trps I^{\Delta int/-}$ (B) mice. Red dashed lines indicate the acetabular rim, which shows smooth parabolic
833	shape and wedged-shape in the control and $Trps I^{\Delta int/-}$ mice, respectively.

1	
2	
3	
4	
5	
6	
7	
/	
ð	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
27	
J∠ 22	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
11	
44	
40	
40	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
50	
20	
29	
60	

834	(C and D) Ventral views of reconstructed 3D-CT of hip joint in the control (C) and $Trps l^{\Delta int/-}$
835	(D) mice. Arrowheads highlight deeply invaginated psoas valley, resulting in severe under-
836	coverage of the femoral head within the acetabulum in $Trps I^{\Delta int/-}$ mice (D).
837	(E-H) Transverse sections of the hip joint stained with HE (E and F) and toluidine blue (G and
838	H) in the control (E and G) and $Trps I^{\Delta int/-}$ (F and H) mice. (G) and (H) show magnified views of
839	areas surrounded by squares in (E) and (F), respectively, on serial sections. Arrowheads in (H)
840	point to the toluidine blue-positive remaining cartilaginous tissue at the ilio-pubic junction in
841	$Trps I^{\Delta int/-}$ mice.
842	(I-L) Frontal (I and J) and medial (K and L) views of reconstructed 3D-CT of knee joints in the
843	control (I and K) and $Trps l^{\Delta int/-}$ (J and L) mice. Medially dislocated patella in $Trps l^{\Delta int/-}$ mice is
844	labelled as pt* in (J) and (L). The arrowheads in (J) points to the flattened trochlear groove in
845	Trps I ^{Dint/-} mice. Arrowheads in (K) and (L) point to the fabella formed within the lateral head of
846	the gastrocnemius muscle. Red dashed lines indicate a round parabolic and straightly shaped
847	surface of the distal femur in the control (K) and $Trps I^{\Delta int/-}$ mice (L), respectively. See also (M)
848	and (N).
849	(M and N) Tomography images at the sagittal mid-planes of the distal femurs in control (M) and
850	$Trps I^{\Delta int/-}$ (N) mice. Red dashed lines indicate articular surface of the distal femur in the control
851	(M) and $Trps I^{\Delta int/-}$ (N) mice. Epiphyseal bone marrow space is labelled with yellow asterisks.
2	
--------	--
З	
ر م	
4	
5	
6	
7	
, 0	
8	
9	
10	
11	
11	
12	
13	
14	
15	
10	
16	
17	
18	
10	
20	
20	
21	
22	
22	
23	
24	
25	
26	
27	
27	
28	
29	
30	
21	
51	
32	
33	
34	
25	
55	
36	
37	
38	
20	
59	
40	
41	
42	
12	
43	
44	
45	
46	
10	
4/	
48	
49	
50	
50	
51	
52	
53	
51	
54	
55	
56	
57	
50	
28	
FO	

(O) Ventral views of the 2-day-old knees in the control (left) and *Trps1*^{Δint/-} (right) mice. White arrowheads in point to the stained patella. (P-S) Low (P and Q) and high (R and S) magnified sagittal images of the distal femurs in the control (P and R) and *Trps1*^{Δint/-} (Q and S) mice. Sections were stained with toluidine blue. Double arrows in (R) and (S) indicate epiphyseal growth plate chondrocytes. The asterisk in (S) indicate abnormal accumulation of the toluidine blue-positive cartilage tissue. Key; co: os coxa, fh: femoral head, fi; fibula, poc: primary ossification center, pt: patella, pt*; dislocated patella, soc: secondary ossification center, ti: tibia. e periev

2
2
3
4
5
6
7
/
8
9
10
11
11
12
13
14
15
15
16
17
18
10
19
20
21
22
22
23
24
25
26
20
27
28
29
30
21
51
32
33
34
25
22
36
37
38
20
39
40
41
42
43
44
44
45
46
47
10
4ð
49
50
51
50
J∠ 52
53
54
55
56
57

	Strain	gRNA1		gRNA2		
	∆Enh1	TCCACTCCTCCCCGTTGCAAagg		GGTTAATACATGCTGGTCTTtgg		
	∆Enh2	CGCTGCTGCAAGTTTTCTGGggg		ACGGGGAGCAGACTAGGCACcgg		
	∆Enh3	CAGGCAAGATCAGTTCCCAAggg		ACTTTAGGAACAAAACACCagg		
	ΔEnh2/3 (Δint)	CGCTGCTGCAAGTTTTCTGGggg		CAGGCAAGATCAGTTCCCAAggg		
	Table 1. Sequences of guide RNAs used in this study					
	allele		Forward primer	Reverse primer		
	Trps1 mu	; CCACA	ACACTATTTTCCATGGG	CCCCTTCTATCGCCTTCTTGA		
	Trps1 wt	TAGT	AAAGCAGGCCGTGAAG	ACCCAAAGGTCACTTACTGG		
	Enh1 mu	TTGO	CCTGATACTGCAGAGT	TGAGGTTGATATGGTTTTCTG		
	Enh1 wt	AATCA	GTGAAAAATATTTGAG	TGAGGTTGATATGGTTTTCTG		
	Enh2 mu	GCAAG	CTCATACAACTTGCCTGT	ACTCCCCCAATTCCTCTTTTCTC		
	Enh2 wt	GACGGG	TATACCAGGAGAGGATG	ACTCCCCCAATTCCTCTTTTCTC		
	Enh3 mu	Enh3 mut TAGTCAAGTCCACAGGTGGGAAA		AGGACTTCCACTTTACGGAAGC		
	Enh3 wt	3 wt TAGTCAAGTCCACAGGTGGGAAA		ATAGAACAAGTGGCTCCCAGCTC		
Enh2/3 mut		t				

TAGTCAAGTCCACAGGTGGGA AA

GAAAATGGACCCTGAGGCTTATG

 (∆int mut) Enh2/3 wt

 $(\Delta int wt)$

 Table 2. List of genotyping primers used in this study

ACTCCCCCAATTCCTCTTTTCTC

AAAATGCAAGCTTGGTTTGGTTT

31 32

33 34

35 36

37 38

39 40

41 42

43 44 45

46 47

48 49

50

51 52

53

54

55

56 57

58

59 60 Trps1 ISH E15.5 Trps1-WT Trps1 E15.5 С A1 Ď WT Sox9 IHC E17.5 A2 E17.5 Trps1[≁] Sox9 IHC E17.5 (seause) 150 G

> Figure 2 279x215mm (300 x 300 DPI)

A3

Figure 3

Figure 4

215x279mm (300 x 300 DPI)