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A B S T R A C T

Recently, numerous prediction methods of time-series data of wave-related phenomena have been developed.
Quantitative evaluation of an error of a predicted result against a reference result is important to improve
prediction accuracy. Many performance metrics are engaged to evaluate their accuracy. However, it is difficult
for them to identify the error causes because all errors, no matter what the cause, are combined together. This
paper presents new representations of performance metrics to separate errors by causes. Performances are
evaluated in a frequency domain instead of a time domain. A frequency domain’s amplitude and phase are
respectively evaluated using performance metrics. In addition, to detect errors due to instantaneous phenomena
and changes in an error trend over time, mean errors are defined by three-time intervals. The original metric
uses all time-series data. On the other hand, a finite interval mean error at the present time is calculated by the
mean of the preceding data. In addition, cumulative mean error at the present time is calculated by the mean
of the data up to the present time. These new representations of performance metrics could help to identify
error causes. Benchmark tests are carried out to demonstrate the validity of the proposed representations.
1. Introduction

The importance of a comparison of two time-series data (e.g. mea-
sured and predicted data) is increasing more and more in response to
the recent developments of real-time wave prediction methods (e.g. Al-
Ani et al., 2020; Law et al., 2020; Iida and Minoura, 2022) and digital
twin technologies (e.g. Lee et al., 2022; Liong and Chua, 2022; Isnaini
et al., 2024) in ocean engineering communities. Integration of real-time
prediction methods of wave-related data into a real operation of vessels
enables us to immediately make a decision on the navigation to avoid
any sudden risk or failure (Lee et al., 2022). Such a decision depends
on the reliability of the predictions. Therefore, it is essential to reveal
the prediction accuracy and its applicability limit.

A primitive method of comparison is to display the two data on
a graph and qualitatively evaluate how much they overlap. Since
visual perception differs for each person, the judgment of whether
the result is acceptable or not also depends on the person. Therefore,
quantitative performance metrics are necessary to ensure a unified
evaluation. Many metrics have been established so far, such as R-
squared, Pearson correction coefficient, mean absolute error (MAE),
mean absolute percentage error (MAPE), mean squared error (MSE),
root mean squared error (RMSE), and normalized root mean squared
error (NRMSE). It is reported that the RMSE is optimal for normal
distribution errors, and the MAE is optimal for Laplacian distribution
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errors (Hodson, 2022). These metrics are widely used in many com-
munities, and the ocean engineering communities also commonly use
these metrics (e.g. Fan et al., 2020; Jörges et al., 2021; Wang et al.,
2021; Lee et al., 2022). As our target data is related to sea waves, the
data often crosses zero and its mean is zero. Therefore, percentage-
type errors become infinite or undefined values at zero-cross points.
To overcome this disadvantage, a mean arctangent absolute percentage
error (MAAPE) was proposed (Kim and Kim, 2016). As for metrics to
wave-related data, Perlin and Bustamante (2016) proposed a surface
similarity parameter (SSP) based on the Sobolev norm. This compares
two data in the frequency domain, and thus wave amplitude and phase
information can be considered.

These performance metrics objectively provide the degree of con-
cordance/discrepancy in data. These are helpful to rank the accuracy
of results by different prediction methods. However, each performance
metric has inherent features, and inadequate choice of the metric could
hide shortcomings. In addition, although these performance metrics are
often used to only justify a proposed result, it is more important to
identify the causes of errors. Otherwise, these prediction methods could
not be improved and might be used even for inadequate situations.

In this paper, new representations of the performance metrics are
proposed to determine the causes of errors. Existing performance met-
rics usually calculate a mean error, that is, all errors, regardless of
vailable online 28 April 2024
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their causes, are displayed together. However, it is desirable to separate
errors by their respective causes. Since wave-related data are expressed
by Fourier series expansion, amplitude and phase information in a
frequency domain are essential. Therefore, we propose to evaluate
these frequency domain’s amplitude and phase respectively instead
of direct evaluation of time-series data. Two prefixes, frequency do-
main’s amplitude (FA-) and frequency domain’s phase (FP-), are applied
to existing metrics, such as FA-MAE (frequency domain’s amplitude
mean absolute error), FA-MAPE (frequency domain’s amplitude mean
absolute percentage error), and FP-MAE (frequency domain’s phase
mean absolute error). These metrics enable us to discuss the errors
in the classical frequency domain. In addition, since existing metrics
are calculated using all time-series data, it is not possible to detect
an instantaneous error and change in a trend of errors over time.
Therefore, we additionally introduce two mean representations. In the
finite interval representation, the error at the current time is defined
as the mean of the preceding 𝑚 data points. On the other hand, in the
cumulative representation, the error at the current time is defined as
the mean of the data from the beginning up to the current time. By
expanding existing performance metrics using these new representa-
tions, many causes of errors could be identified. Of course, whether
new metrics are proposed or not, it is necessary to carefully examine
the causes of errors by seeing time histories and spectra one by one.
However, when the amount of data is huge, careful checking of all
data is impractical. The proposed metrics could be used for the first
screening of the data, and it allows users to focus on the likely source
of errors before deep investigation of the error.

To demonstrate the proposed metrics, some typical wave-related
time-series data are prepared. These are compared by a set of perfor-
mance metrics, and it is shown that each cause can be identified by
seeing these performance evaluations.

2. Brief review of existing performance metrics

Firstly, some performance metrics commonly used in ocean engi-
neering communities are briefly reviewed. Here, two time-series data
𝒙 = (𝑥1, 𝑥2,… , 𝑥𝑁 ), 𝒚 = (𝑦1, 𝑦2,… , 𝑦𝑁 ) are considered where 𝑁 is
the total number of the data. The data 𝒚 is assigned as a reference
value, whereas the data 𝒙 is test data whose error from the reference
needs to be investigated. For example, comparisons of true value 𝒚
vs. observed value 𝒙, or measured value 𝒚 vs. predicted value 𝒙 are
expected. Therefore, when percentage-type errors are considered, the
ratio (denominator) is defined by 𝑑𝑖 = 𝑦𝑖 as data 𝑥𝑖 has a larger
uncertainty. Note that the median 𝑑𝑖 = (𝑥𝑖 + 𝑦𝑖)∕2 may be used for the
denominator if the uncertainties of the two data are comparable.

In the field of ocean science, most of the ocean data have been
analyzed using statistical evaluation methods. However, this paper
focuses more on the evaluation of time-series data, and we do not
deeply explain those statistical methods.

1. R-squared (coefficient of determination)
R-squared (a.k.a. coefficient of determination) is a metric to
evaluate the fitness of two data (e.g. William et al., 2003). This
could be given as

𝑅2 = 1 −

𝑁
∑

𝑖=1
(𝑥𝑖 − 𝑦𝑖)2

𝑁
∑

𝑖=1
(𝑦𝑖 − 𝑦)2

(1)

where 𝑦 is the mean of data 𝒚. Note that the R-squared has some
variations (Kvålseth, 1985), and the first definition of Kvålseth
(1985) is shown here since this may be the most popular defini-
tion. Eq. (1) indicates a ratio of the residual sum of squared to
the total sum of squared. 𝑅2 is commonly used in statistics, but
2

this is also used for comparing two time-series data. The range
of 𝑅2 is [−∞, 1] where 𝑅2 = 1 means a perfect fit, and a high
value of 𝑅2 indicates a strong fit. 𝑅2 could be negative when
∑𝑁

𝑖 (𝑥𝑖−𝑦𝑖)2 >
∑𝑁

𝑖 (𝑦𝑖−𝑦)2. The minimum value of 𝑅2 is 0 when a
linear regression model is compared with a reference. The scatter
plot is often shown in addition to the R-squared and the linear
regression model.

2. Pearson correlation coefficient
Pearson correlation coefficient is a metric to evaluate a linear
correlation between two data (e.g. William et al., 2003). This is
defined as

𝐶𝑟 =

𝑁
∑

𝑖=1
(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)

√

√

√

√

𝑁
∑

𝑖=1
(𝑥𝑖 − 𝑥)2

𝑁
∑

𝑖=1
(𝑦𝑖 − 𝑦)2

(2)

where 𝑥 is the mean of data 𝒙. Eq. (2) indicates a ratio of covari-
ance of two data to the product of their standard deviations. The
range of 𝐶𝑟 is [−1, 1]. 𝐶𝑟 = 1 corresponds to a perfect positive
linear relation whereas 𝐶𝑟 = −1 is a negative linear relation.
In addition, 𝐶𝑟 = 0 means no linear relation between the two
data. Pearson correlation coefficient is simple, easy to interpret,
and scale-independent. Therefore, this is used in many fields. In
case two wave-related data are compared, the Pearson correction
coefficient provides the degree of concordance of wave phases.
On the other hand, the concordance rate of wave amplitudes
cannot be evaluated.

3. Mean absolute error (MAE)
Mean absolute error (MAE) is a metric to evaluate an average
absolute error between two data, which is given as

MAE = 1
𝑁

𝑁
∑

𝑖=1
|𝑥𝑖 − 𝑦𝑖| (3)

The range of the MAE is [0,∞] where MAE = 0 is a perfect
agreement of two data and a small value is a small error. The
MAE is simple and easy to interpret. The magnitude of the MAE
depends on the scale of the data.

4. Mean absolute percentage error (MAPE)
Mean absolute percentage error (MAPE) is a metric to evalu-
ate a percentage of absolute error. The MAPE is a percentage
representation of the MAE, which is given as

MAPE = 1
𝑁

𝑁
∑

𝑖=1

|

|

|

|

𝑥𝑖 − 𝑦𝑖
𝑦𝑖

|

|

|

|

(4)

The range of the MAPE is [0,∞] where MAPE = 0 corresponds
to 0% error, and a small value indicates a low percentage of
error. As the MAPE is percentage-type, this metric is scale-
independent. The MAPE is sensitive to small reference values
as this can lead to large percentage errors even if the absolute
errors are small. If the data has zero or near zero, the MAPE
can become undefined or extremely large. Therefore, this metric
is not suitable for wave-related data since such data often cross
zero.

5. Mean squared error (MSE)
Mean square error (MSE) is a metric to evaluate an average
squared error between two data (e.g. Willmott et al., 1985),
which is given as

MSE = 1
𝑁

𝑁
∑

𝑖=1
(𝑥𝑖 − 𝑦𝑖)2 (5)

The range of the MSE is [0,∞] where MSE = 0 is a perfect
agreement of two data, and a small value indicates a small error.
The value of the MAE depends on the scale of the data. Since
values are squared, extreme values are penalized more than
small values, unlike the MAE. Therefore, the MSE is sensitive

to outliers.
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6. Root mean squared error (RMSE)
Root mean squared error (RMSE) is a metric to evaluate an
error between two data (e.g. Willmott et al., 1985). The RMSE
is calculated by taking a squared root of the MSE as

RMSE =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(𝑥𝑖 − 𝑦𝑖)2 (6)

The range of the RMSE is [0,∞] where RMSE = 0 shows a perfect
agreement of two data, and a small value is a small error. Similar
to the MSE, the RMSE is sensitive to extreme values. In addition,
the value of the RMSE depends on the scale of the data. The
RMSE can be rewritten as

RMSE =
√

𝑒2 + 𝑠2 (7)

where

𝑒 = 1
𝑁

𝑁
∑

𝑖=1
(𝑥𝑖 − 𝑦𝑖), 𝑠2 =

1
𝑁

𝑁
∑

𝑖=1
(𝑥𝑖 − 𝑦𝑖 − 𝑒)2 (8)

Here, 𝑒 is a mean error (ME) of two data (i.e. bias) and 𝑠
is a standard deviation. This indicates that the RMSE is the
hypotenuse length of a right-angled triangle, with the side
lengths represented by the mean error and the standard devi-
ation (Pythagorean theorem). As the RMSE can be statistically
interpreted, this is one of the most popular performance metrics
and is widely used. When the mean error (bias) is zero, the RMSE
becomes the standard deviation of the error. Such a situation is
popular for free surface wave problems as the mean is generally
zero. However, when a vessel or offshore structure is considered,
we should carefully check mean phenomena, such as steady
sinkage, steady trim, added wave resistance, and wave drift
force. Either way, it is recommended to show not only the value
of the RMSE but also the values of the mean error and standard
deviation to evaluate the performance.
There are many arguments over whether RMSE or MAE should
be used (Willmott and Matsuura, 2005; Chai and Draxler, 2014;
Hodson, 2022). Hodson (2022) stated that the RMSE is optimal
for normal (Gaussian) errors, and the MAE is optimal for Lapla-
cian errors where these errors follow the normal distribution and
Laplacian distribution, respectively. In any case, it is valuable to
plot a histogram of the residuals and check the error distribution.
Once the likely distribution is determined, a Quantile–Quantile
(Q–Q) plot can also visualize the similarity of the distributions
(generally, the normal distribution is used for the reference).
Note that the MAE and RMSE are generalized in Willmott et al.
(1985).

7. Normalized root mean squared error (NRMSE)
Normalized root mean squared error (NRMSE) is a metric to
evaluate an error between two data in normalized form. The
NRMSE is calculated by normalizing the RMSE as

NRMSE = 1
𝑑

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(𝑥𝑖 − 𝑦𝑖)2 (9)

Here, the RMSE is normalized by 𝑑, and there are some varia-
tions for 𝑑, such as 𝑑 = 𝑦, 𝑒, and 𝑦max − 𝑦min where 𝑦max and 𝑦min
are maximum and minimum values of 𝒚. The range of NRMSE
is [0,∞]. The NRMSE is sensitive to extreme values and is scale-
independent. It is necessary to check the value of 𝑑 to avoid a
division by zero.

8. Mean arctangent absolute percentage error (MAAPE)
Mean arctangent absolute percentage error (MAAPE) is a metric
to evaluate a percentage error and is defined on a finite range
with avoiding zero divisions (Kim and Kim, 2016). The MAAPE
is given as

MAAPE = 1
𝑁
∑

arctan
(

|

|

|

𝑥𝑖 − 𝑦𝑖 |
|

|

)

(10)
3

𝑁 𝑖=1 |
𝑦𝑖 |
The MAAPE is represented by the arctangent of the MAPE;
the MAAPE indicates the angle whereas the MAPE is the ratio.
Therefore, the MAAPE can avoid undefined values by zero divi-
sions. In addition, the range of the MAAPE is finite as [0, 𝜋∕2]
where MAAPE = 0 corresponds to perfect agreement. Since the
MAAPE is represented by arctangent, this weighs more for small
errors. Therefore, this metric is insensitive to extreme errors but
sensitive to small errors. From the MAAPE, the mean arctangent
absolute error (MAAE) could be also defined as

MAAE = 1
𝑁

𝑁
∑

𝑖=1
arctan(|𝑥𝑖 − 𝑦𝑖|) (11)

Since the MAAE is scale-dependent, this expression should not
be used for actual evaluations. However, the introduction of the
MAAE enables the discussion of differences among the MAE,
RMSE, and MAAE as these are all scale-dependent metrics. The
MAE, RMSE, and MAAE are different in terms of what kind of
error is being weighted. The RMSE has a larger slope for larger
errors; the MAAPE has a larger slope for smaller errors. The
MAE has a flat slop for any errors. In the case the accuracy is
emphasized, the MAAE could be suitable. On the other hand, the
RMSE could be suitable in the case the error (especially outliers)
is emphasized. Compared to other metrics, the number of users
of the MAAPE is small, however, this metric has unique and
valuable characteristics.

9. Surface similarity parameter (SSP)
Surface similarity parameter (SSP) is a metric to evaluate a
normalized error using the Sobolev norm (frequency domain
values) (Perlin and Bustamante, 2016), which is given as

SSP =

√

√

√

√

∫ |𝑋(𝜔) − 𝑌 (𝜔)|2𝑑𝜔

∫ |𝑌 (𝜔)|2𝑑𝜔
(12)

≈

√

√

√

√

∑𝑁
𝑖=1 |𝑋𝑖 − 𝑌𝑖|

2

∑𝑁
𝑖=1 |𝑌𝑖|

2
(13)

where complex functions 𝑋(𝜔) and 𝑌 (𝜔) are Fourier transform
of 𝑥(𝑡) and 𝑦(𝑡). Eq. (13) is a discrete representation of Eq. (12)
where 𝑋𝑖 = 𝑋(𝜔𝑖), 𝑌𝑖 = 𝑌 (𝜔𝑖), and 𝜔𝑖 (𝑖 = 1, 2,… , 𝑁) is
a discrete frequency. Note that the original SSP is normalized
by the median (Perlin and Bustamante, 2016), but Eq. (12) is
normalized by 𝑌 (𝜔) to uniform the expression with other met-
rics. The SSP compares two data in the frequency domain, and
information of both amplitude and phase are considered. Similar
to the MAAPE, the SPP is not a popular metric. Nevertheless, the
SSP is a good candidate for the performance metric for wave-
related data since the frequency domain analysis is popular and
easy to understand.

10. Other metrics
We reviewed some typical performance metrics above, however,
these have further variations, such as relative mean error (RME),
symmetric mean absolute percentage error (SMAPE), mean ab-
solute scaled error (MASE), and so on. These are given as the
following equations:

RME = MAE
MAD

=
∑𝑁

𝑖=1 |𝑥𝑖 − 𝑦𝑖|
∑𝑁

𝑖=1 |𝑦𝑖 − 𝑦|
(14)

SMAPE = 1
𝑁

𝑁
∑

𝑖=1

|𝑥𝑖 − 𝑦𝑖|
(|𝑥𝑖| + |𝑦𝑖|)∕2

(15)

MASE = MAE
MAENaı̈ve

=
1
𝑁

∑𝑁
𝑖=1 |𝑥𝑖 − 𝑦𝑖|

1
𝑁−1

∑𝑁
𝑖=2 |𝑦𝑖−1 − 𝑦𝑖|

(16)

where MAD is the mean absolute deviation, and MAENaı̈ve is the
mean absolute error using the Naïve forecasting, i.e. 𝑥𝑖 = 𝑦𝑖−1.
In this paper, these variations are not considered.
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Table 1
Summary of the existing performance metrics.

No. Metric Characteristics

1 R-squared 𝑅2 𝑅2 evaluates the fitness of two data, especially for a regression model.
2 Pearson correlation coefficient 𝐶𝑟 𝐶𝑟 evaluates a linear relation of two data. The concordance of wave

phase is estimated, and the amplitude is out of the estimation.
3 Mean absolute error (MAE) The MAE is scale-dependent, weighting-free,

and optimal for Laplacian distribution errors.
4 Mean absolute percentage error (MAPE) The MAPE is percentage type of the MAE and scale-independent.

This has a problem for zero division.
5 Mean squared error (MSE) The MSE is scale-dependent and outlier-sensitive.

Generally, the RMSE is used instead of the MSE.
6 Root mean squared error (RMSE) The RMSE is a hypotenuse length of a triangle with legs of a mean error

and standard deviation. This is scale-dependent, outlier-sensitive,
and optimal for normal distribution errors.

7 Normalized root mean squared error (NRMSE) The NRMSE is scale-independent. The interpretation depends
on the form of normalization.

8 Mean arctangent absolute percentage error (MAAPE) The MAAPE represents errors by the angle. This is scale-independent
and zero-division-free. This is outlier-insensitive and sensitive to small
error.

9 Surface similarity parameter (SPP) The SPP evaluates errors of complex amplitude in the frequency
domain. This is scale-independent.
F

H
t
𝑋
b

⎧

⎪

⎪

⎨

⎪

⎪

⎩

w
t

a
F

It is also mentioned that dynamic time warping (DTW) evaluates
the similarity of two time-series data (see Senin, 2008). The MAE
is based on the Manhattan distance, and thus the distance is
calculated by reference data and test data at the same time.
On the other hand, the DTW measures the distance between
two data whose time scales or speeds are different. Note that
methods of distance measures are reviewed by Ding et al. (2008).
Edit distance (a.k.a. Levenshtein distance) approaches might be
also applicable to evaluate the similarity of two data by trans-
forming real values of time-series data to strings (e.g. a symbolic
aggregate approximation, SAX (Lin et al., 2003)). These metrics
are generally used for more complicated time-series data, such
as for data mining of stock prices or human behavior patterns.
Time series of ocean waves and their related, i.e. our targets,
are commonly represented by the summation of trigonometric
functions. Therefore, these distance measures need not necessar-
ily be applied. Common time-series representation methods are
reviewed by Lin et al. (2003).

Characteristics of these metrics are summarized in Table 1.

. New representations of performance metrics

As seen in Section 2, there are various metrics to compare the
wo time-series data. However, it is difficult for these metrics to
dentify the cause of errors because all errors, no matter what the
ause, are included together in the evaluation. Therefore, this paper
resents new representations of performance metrics to separate errors
y causes. Perlin and Bustamante (2016) proposed the SSP which
valuates data in the frequency domain. Since waves can be represented
y Fourier series expansion, such an evaluation is essential and easy to
nderstand. However, the SSP includes both amplitude and phase infor-
ation, and these cannot be decoupled. In order to identify the cause,

t is desirable to separately consider the errors of amplitude and phase.
herefore, we introduce two prefixes, a frequency domain’s amplitude
FA-) and frequency domain’s phase (FP-), which are added in front of
he name of the performance metric. When these representations are
pplied to MAE, MAPE, and ME, they are defined as

FA-MAE = 1
𝑁𝜔

𝑁𝜔
∑

𝑖=1
FA-AE𝑖 (17)

A-MAPE = 1
𝑁𝜔

𝑁𝜔
∑

𝑖=1
FA-APE𝑖 (18)

FP-MAE = 1
𝑁𝜔
∑

FP-AE𝑖 (19)
4

𝑁𝜔 𝑖=1
W

FP-ME = 1
𝑁𝜔

𝑁𝜔
∑

𝑖=1
FP-E𝑖 (20)

where

FA-AE𝑖 = 2
𝑁

|

|

(|𝑋𝑖| − |𝑌𝑖|)|| (21)

A-APE𝑖 =
|

|

|

|

|𝑋𝑖| − |𝑌𝑖|
|𝑌𝑖|

|

|

|

|

(22)

FP-AE𝑖 =
{

|PE𝑖| (|PE𝑖| ≤ 𝜋)
2𝜋 − |PE𝑖| (|PE𝑖| > 𝜋)

(23)

FP-E𝑖 =

⎧

⎪

⎨

⎪

⎩

PE𝑖 − 2𝜋 (PE𝑖 > 𝜋)
PE𝑖 (−𝜋 < PE𝑖 ≤ 𝜋)
PE𝑖 + 2𝜋 (PE𝑖 ≤ −𝜋)

(24)

PE𝑖 = arg(𝑋𝑖) − arg(𝑌𝑖) (25)

ere, 𝑋(𝜔) and 𝑌 (𝜔) are complex values that are given by the Fourier
ransform of 𝑥(𝑡) and 𝑦(𝑡). The discrete form of 𝑋(𝜔) is expressed by
𝑖 = 𝑋(𝜔𝑖). In this paper, the discrete Fourier transforms are defined
y the following equations:

𝑋(𝜔𝑘) =
𝑁−1
∑

𝑛=0
𝑥(𝑡𝑛)

(

𝑒−
2𝜋𝑖
𝑁
)𝑘𝑛

𝑥(𝑡𝑛) =
1
𝑁

𝑁−1
∑

𝑘=0
𝑋(𝜔𝑘)

(

𝑒−
2𝜋𝑖
𝑁
)−𝑘𝑛

(26)

Therefore, |𝑋𝑖| denotes amplitude, and arg(𝑋𝑖) represents phase of
hich range is (−𝜋, 𝜋]. Note that 𝑁𝜔 is the number of data within

he range of [𝜔min, 𝜔max], and thus 𝑁𝜔 ≤ 𝑁 . FA-AE𝑖 is an absolute
error of amplitude at each frequency, and these means (i.e. MAE) are
represented by FA-MAE. As shown in Eq. (21), the value is normalized
by 𝑁∕2 because a single-sided spectrum is used. This operation scales
it to a component of the original amplitude. Here, we could define
another prefix using a frequency domain’s spectrum (FS-), such as

FS-MAE𝑖 = 1
𝑁𝜔

𝑁𝜔
∑

𝑖=1
FS-AE𝑖 (27)

FS-AE𝑖 = |

|

𝛷𝑋 (𝜔𝑖) −𝛷𝑌 (𝜔𝑖)|| (28)

where

𝛷𝑋 (𝜔𝑖) =
1

2𝛥𝜔

(

2|𝑋(𝜔𝑖)|
𝑁

)2
(29)

is a spectrum of 𝑋(𝜔𝑖). This prefix directly compares the spectra. Since
mplitude and spectrum satisfy a relation 2|𝑋|∕𝑁 =

√

2𝛷𝑋𝛥𝜔, FA- and
S- are similar metrics. However, FA-AE𝑖 ≠

√

2𝛥𝜔FS-AE𝑖 for the errors.
hich is more suitable depends on the problem. The ranges of FA-AE ,
𝑖
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Table 2
Benchmark sets of two-wave data. 𝒚 is reference data, and 𝒙 is test data.

Case 𝒚 𝒙

1 Irregular waves based on Pierson–Moskowitz spectrum Waves with +𝜋∕2 phase shift from 𝒚
2 Waves with +𝜋 phase shift from 𝒚
3 Waves with −𝜋∕2 phase shift from 𝒚
4 Waves with different random phase from 𝒚
5 Waves with 𝑦𝑖 multiplied by 0.8
6 Waves with 𝑦𝑖 multiplied by 5/3
7 Waves 𝑦 plus 0.1 (mean value shift)
8 Phase shifted waves using finite-depth dispersion relation Phase shifted waves using deep water dispersion relation
9 Irregular waves based on Pierson–Moskowitz spectrum Waves 𝒚 plus high-frequency noise
10 Waves 𝒚 plus low-frequency noise
11 Waves 𝒚 with 𝑥𝑖 > 1.5 → 𝑥𝑖 = 0 for modeling data missing
12 Experimentally measured JONSWAP waves (including reflected waves) Predicted waves using an uni-directional prediction method
13 Predicted waves using a bi-directional prediction method
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FA-MAE, FS-AE𝑖 and FS-MAE are [0,∞], and 0 indicates a perfect
greement. FA-APE𝑖 is an absolute percentage error of amplitude at
ach frequency, and these means are represented by FA-MAPE. Here,
he ranges of FA-APE𝑖 and FA-MAPE are [0,∞] where 0 is a perfect

agreement. Note that representations of FA-RMSE, FA-NRMSE, or FA-
MAAPE are possible, but only MAE and MAPE are shown as these two
metrics are used in a later section. PE𝑖 is a raw error of phase, and a
phase error whose range is deformed as (−𝜋, 𝜋] is defined by FP-E𝑖. On
the other hand, the absolute error of phase is given by FP-AE𝑖 where the
range is [0, 𝜋]. The mean values of these metrics are named FP-ME and
FP-MAE. It should be noted that the percentage representation is not
applied to phase functions because the phase does not have magnitude.

Existing metrics evaluate data as one value (mean value) using all
data. However, this cannot capture instantaneous errors and changes
in a trend of errors over time. Therefore, we further introduce two
variations of performance metrics. Here, it is defined that an original
performance metric is expressed as follows:

Original performance metric = 𝑓
(

(𝑥1, 𝑥2,… , 𝑥𝑁 ), (𝑦1, 𝑦2,… , 𝑦𝑁 )
)

(30)

where 𝑓 (⋅) is any of a performance metric (e.g. RMSE). Eq. (30)
indicates that the performance metric is calculated using all time-series
data (𝑖 = 1, 2,… , 𝑁) of 𝒙 and 𝒚. On the other hand, in order to capture
he instantaneous error, the performance metric at time 𝑖 is calculated
sing the finite number 𝑚 of data. This metric is named a finite interval
erformance metric and is given as

inite interval performance metric(𝑖) = 𝑓 ((𝑥𝑖−𝑚+1,… , 𝑥𝑖), (𝑦𝑖−𝑚+1,… , 𝑦𝑖))

(31)

ere, 𝑚 can be either a constant or a variable: e.g. 𝑚 is a constant when
fixed time interval is used, and 𝑚 is a variable when a time interval is

alculated by the number of zero-up cross waves. This metric is defined
hen 𝑖 ≥ 𝑚. Here, we define the interval by the past data because
e expect real-time prediction. However, if a posteriori estimation is

onsidered, the 𝑖th data could be the center of the interval.
Moreover, a cumulative performance metric is defined as

umulative performance metric(𝑖) = 𝑓 ((𝑥1,… , 𝑥𝑖), (𝑦1,… , 𝑦𝑖)) (32)

here the performance metric at the time 𝑖 is calculated using the data
ntil 𝑖. This representation is useful to investigate the changes in a
rend of errors over time. Combinations of these three representations
acilitate the identification of causes of errors.

It is worth noting that the finite interval representation is similar
o the short-time Fourier transform (Allen and Rabiner, 1977) where
he time-series data is divided into segments. This plots the changes
n the spectrum in time. On the other hand, Welch’s method (Welch,
967) and the averaged periodogram method (a.k.a. Bartlett’s method
Bartlett, 1948)) average segmented spectra to reduce noises. These
ethods apply frequency domain analysis to segmented time-series
ata. Our ideas are the extension of their concepts to not only frequency
5

omain analysis but also time domain analysis.
. Benchmark tests

To investigate how performance metrics behave for comparisons of
ave-related data, benchmark tests are carried out. We consider typical

auses of errors, such as phase differences, amplitude differences, mean
rift, different dispersion, frequency-dependent noises, missing data,
nd trend change. Corresponding 13 wave data are prepared as the
enchmarks, and these are listed in Table 2. The following subsections
xplain the details of the data and discuss the comparisons.

.1. Errors due to phase, amplitude, and mean drift (cases 1 to 7)

For cases 1 to 7, irregular waves based on the Pierson–Moskowitz
pectrum (Pierson Jr. and Moskowitz, 1964) are used as the reference
ata 𝒚. These are given as

(𝑡) =
𝑁
∑

𝑛=1

√

2𝛷(𝜔𝑛)𝛥𝜔𝑛 cos (𝜔𝑛𝑡 + 𝜀𝑛) (33)

where

𝛷(𝜔) = 𝐴
𝜔5

𝑒−
𝐵
𝜔4 , 𝐴 = 172.8

𝐻2
1∕3

𝑇 4
1

, 𝐵 = 691.2
𝑇 4
1

(34)

Here, 𝛷 is the Pierson–Moskowitz type frequency spectrum, 𝑇1 is a
mean wave period, and 𝐻1∕3 is a mean wave height. In this paper,
mean wave period 𝑇1 = 8.0 s and mean wave height 𝐻1∕3 = 3.0 m
are used. Irregular waves consist of 100 frequency components, and
each component has a random phase. The frequency step size is decided
based on 𝛷(𝜔𝑛)𝛥𝜔 = const., i.e. the step size is unequally spaced so
s to avoid periodicity with 2𝜋∕𝛥𝜔. In addition, the time step size is

𝛥𝑡 = 0.1 s. The data are evaluated in the time range of 100 waves of
the reference 𝒚 where the number of waves is counted by zero-up cross
method. Cutting-off frequencies 𝜔min = 0.45 rad∕s and 𝜔max = 1.3 rad∕s
are used to calculate frequency domain values (i.e. FS-MAE, FA-MAE,
FA-MAPE, FP-MAE, and FP-ME).

As the first 4 benchmarks (cases 1 to 4), the errors due to the phase
difference are considered. Test data 𝒙 are generated by shifting phases
of the reference 𝒚: +𝜋∕2 phase shift for case 1, +𝜋 for case 2, −𝜋∕2 for
case 3, and random phase for case 4 (different random seeds are used
from 𝒚). On the other hand, cases 5 and 6 change their amplitudes from
the reference: 𝒚 is multiplied by 0.8 for case 5, and 𝒚 is multiplied by
5∕3 for case 6. For case 7, 0.1 m is added to the reference 𝒚; the mean
value is shifted from 0 to 0.1. The first 10 waves of these data are shown
in Fig. 1 where cases 1 to 4 are shown in Fig. 1(a) and cases 5 to 7 are
in Fig. 1(b).

4.1.1. Discussion on phase differences (cases 1 to 4)
Table 3 shows the evaluated performance values. These are eval-

uated using Pearson correlation coefficient 𝐶𝑟, MAE, RMSE, ME, SD,
MAAPE, FS-MAE, FA-MAE, FA-MAPE, FP-MAE, and FP-ME. The bold
values represent values that can identify the cause of the difference
between reference and test data.
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Table 3
Performance metric for benchmark sets. The values needed when identifying the causes of errors are shown in bold.

Case 𝒚 𝒙 𝐶𝑟 MAE RMSE ME SD MAAPE FS-MAE FA-MAE FA-MAPE FP-MAE FP-ME
[−1, 1] [0,∞] [0,∞] [0,∞] [0,∞] [0, 𝜋∕2] [0,∞] [0,∞] [0,∞] [0, 𝜋] [−𝜋, 𝜋]

1 PM irregular waves +𝜋∕2 pha. 0.00 0.94 1.16 0.00 1.16 0.91 0.01 0.00 0.03 1.57 1.57
2 +𝜋 pha. −1.00 1.33 1.65 0.00 1.65 1.11 0.00 0.00 0.00 3.14 3.14
3 −𝜋∕2 pha. 0.00 0.94 1.16 0.00 1.16 0.90 0.01 0.00 0.03 1.57 −1.57
4 Random pha. 0.01 0.88 1.10 0.00 1.10 0.88 0.41 0.03 0.35 1.51 −0.13
5 ×0.8 amp. 1.00 0.13 0.16 0.00 0.16 0.20 0.27 0.02 0.20 0.00 0.00
6 ×5∕3 amp. 1.00 0.44 0.55 0.00 0.55 0.59 1.31 0.06 0.67 0.00 0.00
7 +0.1 mean 1.00 0.10 0.10 0.10 0.00 0.30 0.00 0.00 0.00 0.00 0.00
8 Finite depth disp. Deep water disp. 0.97 0.15 0.20 0.00 0.20 0.36 0.00 0.00 0.01 0.14 0.13
9 PM irregular waves High-freq. noise 0.98 0.13 0.16 0.00 0.16 0.32 0.10 0.01 0.38 0.41 −0.03
10 Low-freq. noise 0.98 0.13 0.16 0.00 0.16 0.33 0.15 0.01 0.17 0.22 0.03
11 𝑥𝑖 > 1.5 missing 0.92 0.06 0.33 −0.06 0.32 0.03 0.23 0.02 0.34 0.41 0.01
12 Experiment Uni prediction 0.73 0.23 0.36 0.00 0.36 0.60 0.02 0.02 0.52 0.59 0.07
13 Bi prediction 0.96 0.11 0.16 0.00 0.16 0.49 0.01 0.01 0.28 0.16 0.00
Fig. 1. Reference and test wave data in cases 1 to 7. Waves are based on Pierson–Moskowitz spectrum with mean wave period 𝑇1 = 8.0 s and mean wave height 𝐻1∕3 = 3.0 m.
The first 10 waves of reference data are shown although the full time length is 100 waves.
The differences in cases 1 to 4 are due to phases. Values of FS-MAE,
FA-MAE, and FA-MAPE are almost 0 except for case 4; wave ampli-
tudes of test data are the same as the reference. On the other hand,
𝐶𝑟, FP-MAE, and FP-ME show errors for these cases. The correlation
coefficient indicates that 0.00 for ±𝜋∕2 gap, and 𝐶𝑟 = −1.00 for 𝜋 gap.
Similarly, FP-MAE shows 1.57(≈ 𝜋∕2) for ±𝜋∕2 gap, and 3.14(≈ 𝜋) for 𝜋
gap. These values indicate phase-originated errors. Nevertheless, these
metrics evaluate only phase gap magnitude, and direction (i.e. pulse
or minus) is not a concern. FP-ME shows a direct phase difference
value as seen in cases 1 to 3. As for case 4, test data have different
random phases from the reference data, but their amplitudes are the
same. 𝐶𝑟 = 0.01(≈ 0) and FP-MAE= 1.51(≈ 𝜋∕2) indicate the possibility
of the random phase, but this cannot be distinguished from the case of
±𝜋∕2 phase shift. To identify whether random or ±𝜋∕2, FP-ME needs
to be checked. FP-ME is zero when the phase is exactly the same or
random. However, FP-ME= −0.13 implies that the phases are neither
±𝜋∕2 difference nor perfectly random. In addition, looking at FA-MAE
and FA-MAPE, these have non-zero values. These are because the raw
Fourier transformed data are used and any smoothing technique is not
6

applied. Therefore, the obtained spectra are spiky and these result in
apparent errors. In addition, leakage error occurs for the test data since
the same time range as 𝒚 is used. It could be an option to preprocess
the data using a window function and smoothing technique before
comparisons. Discussion on smoothing will be shown in Section 4.2.2

4.1.2. Discussion on amplitude differences and mean drift (cases 5 to 7)
The differences in cases 5 and 6 are due to the scales of amplitudes.

Therefore, no phase differences are indicated as 𝐶𝑟 = 1, FP-MAE= 0,
and FP-ME= 0. FA-MAPE identifies these scale-originated amplitude
difference: theoretical values are FA-MAPE= |(0.8 − 1.0)∕1.0| = 0.2 for
case 5, and FA-MAPE= |(5∕3 − 1.0)∕1.0| = 0.67 for case 6. The results
in Table 3 show identical values. The feature of amplitude differences
is whether scale or different relations could be determined by seeing
FA-AE𝑖 and FA-APE𝑖 in the frequency domain although this graph is
not shown here. Note that 𝐶𝑟 = 1 when the phase difference is zero,
and thus 𝐶𝑟 cannot identify the difference in amplitude.

As for case 7, the difference is due to adding a constant value of 0.1
to 𝒙. This is nothing related to wave components, and thus 𝐶𝑟 = 1, FA-
MAE=0, FA-MAPE=0, FP-MAE=0, and FP-ME=0. Note that the mean
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Fig. 2. Reference and test wave data in case 8. The reference data is phase-shifted by finite-depth dispersion relation whereas the test data is calculated by deep water dispersion
relation. Distance is 𝑥 = 50 m, and water depth ℎ = 30 m is used for the finite-depth dispersion waves. (a) The first 10 waves of reference data are shown although the full time
length is 100 waves. (b) Distributions of FA-AE𝑖 and FA-APE𝑖 in frequency domain. (c) Distributions of FP-AE𝑖 and FP-APE𝑖 in frequency domain. Theoretical phase difference is
also plotted. Cutting-off frequencies are 𝜔min = 0.45 rad∕s and 𝜔max = 1.3 rad∕s.
drift could be appeared at 𝜔 = 0 within the frequency spectrum, but this
frequency is excluded by applying cutting-off frequency 𝜔min. ME=0.1
identifies this mean drift. As other conditions are the same, MAE and
RMSE also become 0.1.

Summarizing above, 𝐶𝑟, FP-MAE, and FP-ME identify the difference
of phase (i.e. horizontal/time translation). To distinguish phase gaps of
±𝜋∕2, 0, and random, both FP-MAE and FP-ME need to be checked. FA-
MAPE identifies the difference of scale of amplitude (i.e. vertical scale)
as this metric is percentage type. ME identifies the difference of mean
value (i.e. vertical translation) as this metric is magnitude type. MAE,
RMSE, and MAAPE are metrics that evaluate the overall concordance
between two data. Compared to cases 1 to 7, MAE and RMSE rank these
data in the order of cases 7, 5, 6, 4, 3, 1, and 2 (cases 1 and 3 are almost
equal). On the other hand, MAAPE ranks them in the order of cases 5,
7, 6, 4, 3, 1, and 2. Among these cases, the first and second changes
depending on the metrics.

4.2. Frequency-dependent errors due to noises and dispersion (cases 8 to
10)

Causes of differences between cases 1 to 7 can be identified by
using mean performance metrics as shown in Table 3. However, these
are not always sufficient for identifying the causes of errors since
some errors depend on frequency. Cases 8 to 10 correspond to these
frequency-dependent errors.

For case 8, two waves related to different dispersion relations are
considered. Waves are generated by applying phase shift (𝜔𝑡 − 𝑘𝑥) to
irregular waves used for the reference of cases 1 to 7. Here, 𝑘 is a
wave number, and 𝑥 is the distance where 𝑥 = 50 m is used. For
the reference data 𝒚, we consider the finite-depth dispersion relation
𝜔2∕𝑔 = 𝑘F tanh 𝑘Fℎ where 𝑔 is gravitational acceleration, ℎ = 30 m
is water depth, and 𝑘F is a wave number for finite-depth dispersion.
On the other hand, the compared data 𝒙 is calculated by deep water
dispersion relation 𝜔2∕𝑔 = 𝑘D where 𝑘D is a wave number for deep
water dispersion. These waves are shown in Fig. 2(a) (10 waves are
plotted against 100 waves).
7

Moreover, we consider the frequency-dependent noises for cases 9
and 10. The reference data 𝒚 is the same as those of cases 1 to 7. For the
test data 𝒙, high and low-frequency noises are added to the reference
𝒚. The noise spectra are given as

𝛷(𝜔) = 𝑎𝑒𝑏(𝜔−𝑐) (35)

Here, 𝑎 = 0.1, 𝑏 = 4.0, and 𝑐 = 𝜔max = 1.3 are used for the high-
frequency noise (case 9), and 𝑎 = 0.1, 𝑏 = −4.0, and 𝑐 = 𝜔min = 0.45
are used for the low-frequency noise (case 10). The first 10 waves are
shown in Fig. 3(a) against 100 waves.

4.2.1. Discussion on different dispersion (case 8)
Values of performance metrics for case 8 are shown in Table 3. As

FA-MAE= 0.00 and FA-MAPE=0.01, the difference is not by amplitude.
On the other hand, FP-MAE=0.14 and FP-ME=0.13 imply the difference
in phase. However, the cause could not be identified by these values.
Therefore, FA-AE𝑖, FA-APE𝑖, FP-AE𝑖, and FP-E𝑖 are investigated to
visualize the tendency for frequencies. Results of FA-AE𝑖 and FA-APE𝑖
are shown in Fig. 2(b), and the results of FP-AE𝑖 and FP-E𝑖 are shown
in Fig. 2(c). Here, theoretical phase difference 𝑘D𝑥−𝑘F𝑥 is also plotted
in Fig. 2(c). The deep water assumption is valid when the water depth
satisfies ℎ ≥ 𝜆∕2; frequency satisfies 𝜔 ≥ 1.01 rad∕s. FP-AE𝑖 and FP-
E𝑖 indicate that waves by deep water dispersion agree with that by
finite depth dispersion for these frequencies. On the other hand, the
phase difference increases as the frequency becomes small. As shown in
Fig. 2(c), such the phase difference coincides with the theoretical phase
difference. As a result, it is identified that the cause of the difference is
due to the dispersion relation.

4.2.2. Discussion on frequency-dependent noises (cases 9 and 10)
Here, we consider the spectrum errors instead of amplitude errors.

To investigate the difference in the spectrum, the obtained spectra
are shown in Figs. 3(b) and 3(c), respectively. In addition, results of
the FS-AE𝑖 are also plotted in Figs. 3(d) and 3(e). Figs. 3(b) and 3(d)
correspond to the results of the high frequency noise, and Figs. 3(c) and
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Fig. 3. Reference and test wave data in cases 9 to 10. (a) The first 10 waves of reference data are shown against 100 waves. (b) and (c) Spectra of time-series data. (d) and
(e) Distributions of FP-AE𝑖. Cutting-off frequencies are 𝜔min = 0.45 rad∕s and 𝜔max = 1.3 rad∕s. The raw results and smoothed results are shown where 3 points centered moving
average is applied 50 times to obtain the smoothed spectra.
3(e) are for the high-frequency noise. Target wave spectrum (i.e. (34))
and noises (i.e. (35)) are also put in the figures. Moreover, the results
of raw data and smoothed data are compared where the smoothed data
are labeled MA (moving average). Smoothed spectra are calculated by
iterating 50 times of 3 points centered moving average. The FS-AE𝑖 is
calculated by the smoothed spectra. Note that the results of Table 3
are estimated using raw data. Both cases show good agreement with
target errors. Table 3 indicates that the comparisons of raw data show
FS-MAE=0.10 and 0.15 for high and low noise cases, respectively. On
the other hand, the comparisons of smoothed data show FS-MAE=0.04
and 0.03 for these cases, that is, the smoothing levels the errors.

4.3. Errors in time series data (cases 11 to 13)

In order to consider the cases whose causes of differences are related
to time-series, cases 11 to 13 are considered. Case 11 uses the same
irregular wave data as cases 1 to 7 for the reference 𝒚. Test data 𝒙
is almost the same as 𝒚, but the data are set to 0 when 𝑥𝑖 > 1.5.
This imitates the missing data where such phenomenon sometimes
occurs when values exceed the sensor’s measurable range or sensors
are attached in the vicinity of the water line of an offshore structure.
These data are shown in Fig. 4(a). Here, 100 waves are considered and
all data are shown.

Furthermore, we consider a case where the error trend changes over
time. Cases 12 and 13 are related to such a situation. The reference
8

data of cases 12 and 13 are experimentally measured time-series data
of water surface elevation. The experiment was carried out in a two-
dimensional wave tank at Osaka University, Japan (Iida, 2023). The
tank length is 14 m, and irregular waves based on the JONSWAP
spectrum (Stansberg et al., 2002) (the significant wave period 𝑇1∕3 =
1.2 s and wave height 𝐻1∕3 = 1.5 cm) were generated by a wave
maker at the one end of the tank (this is 1/100 length and 1/10 time
scale experiment against real ocean problems). Since the length of the
tank is finite-length, waves are reflected by another end. Therefore,
measured data contains not only progressive waves but also regressive
waves after reflected waves reach the measurement position. Here,
such waves are predicted by two methods. The one is based on a uni-
directional prediction method (Iida and Minoura, 2022) which predicts
waves using the information of up-wave position. The accuracy of this
prediction method should become worse after reflected waves reach
the measured position. Another method is based on a bi-directional
prediction method (Iida, 2023) which predicts waves using information
on both up-wave and down-wave positions. Because this method can
consider both progressive and regressive wave components, this predic-
tion method should keep the accuracy level. Both methods are based
on the same linear finite-depth water wave impulse response function,
and thus the output waves are calculated by the convolution integral of
the impulse response function and input wave time-series data at the
measured positions. The difference is whether or not the data at the
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Fig. 4. Reference and test data in case 11. The missing data is set to 0 when the value of 𝒙 is bigger than 1.5. (a) Time history of 100 zero-up cross waves. (b) Finite interval
performance metrics (5-waves). (c) Cumulative performance metrics.
Fig. 5. Comparison of different intervals of finite interval RMSE for case 11.
down-wave position was used in combination with the up-wave posi-
tion’s data. Case 12 denotes the comparison between the experimental
data and estimated data using the uni-directional prediction method.
Case 13 is the comparison between the experimental data and estimated
data using the bi-directional prediction method. Data were measured
60 s, and measured and predicted results are shown in Fig. 6(a). Note
that wave data are smoothed for this paper, and thus the results are
9

not exactly the same as (Iida, 2023). To calculate performance metrics,
cutting-off frequencies 𝜔min = 3 rad∕s and 𝜔max = 12 rad∕s are used.

4.3.1. Discussion on missing data (case 11)
Table 3 indicated that RMSE=0.33 shows an error of non-negligible

magnitude While MAE=0.06 and MAAPE=0.03 indicate good concor-
dance. To investigate the difference with respect to time, finite-time
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interval and cumulative performances are calculated. Here, 5 waves
are used for the finite-time interval. 5-wave MAE, RMSE, and MAAPE
are plotted in Fig. 4(b), and cumulative MAE, RMSE, and MAAPE are
plotted in Fig. 4(c). Looking at Fig. 4(b), the performances deteriorate
after data missing occurs. These magnitudes are particularly high for
the 5-wave RMSE. On the other hand, the 5-wave MAAPE is insensitive
to data missing. This is because weighting to outlier is different for
these metrics. As discussed in Section 2. 8, the MAAPE is represented
by the arctangent, and thus larger values converge to 𝜋∕2. On the other
hand, the RMSE evaluates larger values to a greater extent as this is
represented as a square. Due to this difference, results of cumulative
performances show different tendencies. As the MAAPE is insensitive
to the outlier, the cumulative MAAPE is almost 0, and the final value
(i.e. value in Table 3) is MAAPE=0.03. On the other hand, the error of
the cumulative RMSE dramatically increases after the first outlier even
though data 𝒙 is the same as data 𝒚 except for data missing zones. The
MAE does not weigh for any data, and results are in moderation. These
results indicate that the RMSE is not a good metric to evaluate overall
performance when outliers are included. The MAAPE is insensitive to
outliers, and thus the MAAPE is preferable if users want to avoid the
influence of outliers. On the other hand, if users want to detect outliers,
the finite-interval RMSE is a good metric as this is sensitive to outliers.

To investigate the influence of the range of the finite interval
metrics on the performance evaluation, different ranges of intervals are
plotted in Fig. 5. 2-waves, 10-waves, and 50-waves RMSE are shown.
The shorter the interval, the sharper the peak. On the other hand, the
longer interval results in a broader base around the peak. An appropri-
ate interval range depends on the phenomenon to be detected. When
the longer interval is used, this becomes a similar result of cumulative
metric (see the 50-wave RMSE in Fig. 5 and the cumulative RMSE in
Fig. 4(c)). Since cumulative representation needs computational costs
for long time-series data, sufficiently long finite interval representation
can be an alternative to the cumulative representation.

4.3.2. Discussion on trend change due to wave reflection (cases 12 and 13)
To investigate the error trend in time, cumulative performance

metrics are shown in Figs. 6(b) and 6(c) where Fig. 6(b) is for the
uni-directional prediction method and Fig. 6(c) is for the bi-directional
prediction method. Cumulative 𝐶𝑟 and RMSE in Fig. 6(b) indicate that
the accuracy of the prediction becomes worse after 𝑡 = 26 s. On the
other hand, the results of Fig. 6(c) do not show such a tendency.
Because the difference between the two prediction methods is whether
regressive waves are considered or not, it can be identified that the re-
flected waves reach the measured position at this time. The cumulative
RMSE emphasizes such differences as this weighs more for excessive
errors.

Looking at Table 3, the amplitude is moderate as FA-MAPE= 0.28
for the bi-directional prediction. To investigate this error, the frequency
domain’s amplitudes are plotted in Fig. 7. Fig. 7(a) shows amplitudes
2|𝑋|∕𝑁 and 2|𝑌 |∕𝑁 , and these FA-AE𝑖 and FA-APE𝑖 are displayed in
Fig. 7(b). These indicate that errors are around 𝜔 = 5.34 rad∕s and
𝜔 > 10 rad∕s. The difference in 𝜔 > 10 rad∕s could be a result of
the almost calm surface of the time-series data until 𝑡 < 10 s where
waves had not reached the wave probes and noise is dominant. The
frequency 𝜔 = 5.34 rad∕s corresponds to non-dimensional frequency
′ = 𝜔

√

ℎ∕𝑔 = 5.34
√

0.45∕9.81 = 1.14 where finite-depth dispersion
elation is dominant. Since these prediction methods are based on the
nalytical solution of the impulse response function, the finite-depth
ispersion is approximated. As a result, it is demonstrated that the pre-
iction accuracy of amplitude deteriorates around such a frequency (see
ig. 3 of Iida, 2023). Therefore, the results are reasonable under the
imitation of the theory.
10
5. Example of the procedure to identify error causes

We investigated some typical cases of comparisons of time-series
data related to wave phenomena. Since we already know the causes of
these errors, we showed the minimum results necessary to identify the
causes. However, the causes of errors are unknown for the real prob-
lems. Therefore, an example of an estimation procedure is summarized
as follows:

1. Check error characteristics in time
Firstly, it is recommended to check the data’s stationarity in
time. Inputs outside valid measurement range or instrument
malfunctions can result in missing or deformed data. Stationarity
could be also broken by changes in physical conditions, such as
ship speed change, wind trend change, and wave reflection (in a
tank experiment). These errors deteriorate overall performances.
To detect such time transition, finite interval and cumulative
metrics are useful, e.g. finite interval MAE and cumulative MAE.

2. Check performance metrics over all time-series data
If data is stationary, overall performances are evaluated using
all time-series data. The correlation coefficient 𝐶𝑟 can evalu-
ate the phase concordance. Calculating the ME is important to
check the drift of the data and estimation. When the ME is
zero, the RMSE becomes a standard deviation. To evaluate time-
series concordance, a combination of the MAE, RMSE, and the
MAAPE is preferable because these have different features; the
MAE is scale-dependent and weight-free for errors, the RMSE is
scale-dependent and outlier-sensitive, and the MAAPE is scale-
independent and small-error-sensitive. When comparing more
than two data, the check of the ranking order of these metrics
could be helpful to discuss the difference in error trends.

3. Check frequency domain’s amplitude and phase
If an error exists in the overall performance metrics, it is nec-
essary to check the errors in both amplitude and phase, respec-
tively. Firstly, mean performances, FA-MAE, FA-MAPE, FP-MAE,
and FP-ME, are calculated, and the likely source of errors is de-
termined. After that, such an error (such as FA-AE𝑖) is displayed
in the frequency domain. It would be better to first calculate the
values in the frequency domain from the raw data to check for
error trends. Then, how smoothing and cut-off frequencies will
be applied are decided, and performance metrics are calculated
again.

4. Connect the error causes to the physical/theoretical reasons
Once a source of errors is determined, we need to consider the
physical/theoretical reason for the errors. It is necessary to check
whether the data is measured/predicted within the applicable
range of the measurement apparatus/theory. In some cases,
the target phenomena occur beyond the measurable sampling
time, range, and theoretical assumptions (such as linearity/weak
non-linearity, harmonics, incompressibility, inviscidity, and so
on).

6. Discussion on applicability and limitations

As we are interested in real-time wave predictions, our primary
targets are wave-related time-series data ranging from a few seconds
to minutes. Therefore, the proposed performance metrics could be
applicable to real-time wave predictions (e.g. Al-Ani et al., 2020; Law
et al., 2020; Iida and Minoura, 2022; Law et al., 2022; He et al., 2023),
predictions of ship and platform’s motions (e.g. Naaijen et al., 2018; Liu
et al., 2020; Lee et al., 2022; Liong and Chua, 2022; Lee et al., 2023;
Kinugasa et al., 2023; Isnaini et al., 2024), wave load (e.g. Ren et al.,
2023), energy harvesting of WEC (e.g. Halliday et al., 2005; Korde,
2017), and so on. The proposed metrics could facilitate improving these
predictions.

On the other hand, the frequency domain’s metrics (i.e. FA- and FP-
) might be inadequate for predictions of wave peak (e.g. Kagemoto,
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Fig. 6. Reference and test data in cases 12 and 13. The reference data is experimentally measured water surface whereas test data are predicted surfaces based on both uni-directional
and bi-directional predictions. The reference data includes progressive and regressive wave components. (a) Time history of the surface elevation. (b) Cumulative performance
metrics in case 12 (uni-directional prediction). (c) Cumulative performance metrics in case 13 (bi-directional prediction).
Fig. 7. Frequency domain’s amplitude and errors in case 13 (results between experiment and bi-directional prediction method).
2020, 2022) and significant wave height (e.g. Fan et al., 2020; Jörges
et al., 2021) since these do not contain frequency information. Finite
interval and cumulative metrics could be applied to these data to check
stationarity in time. Note that the time-series of significant wave height
does not cross zero, and the mean value is also important. In addition,
11
the frequency domain’s metrics are also inadequate for predictions of
strongly nonlinear phenomena, such as slamming (e.g. Terada et al.,
2017).

In this paper, we only consider the time-series data and its frequency
component, i.e. 𝑡 and 𝜔. However, the proposed method can be used
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for spatial data, such as snapshots of the free surface, and this is
transformed into the wave number 𝑘 domain. In addition, space–time
data could be also evaluated by extending the proposed method. This
means that this method is applicable to directional spectrum evalua-
tion, i.e. multi-directional wave predictions (e.g. Belmont et al., 2006,
2014; Wang et al., 2021; Kim et al., 2024).

Direct time series metrics are applicable to any time-series data
regardless of the applicability of the frequency domain’s metrics. How-
ever, cumulative representation could require a huge amount of data as
time passes. This tendency is especially excessive when the frequency
domain’s metrics are combined with cumulative ones, e.g. Cumulative
FA-MAE. In such a case, finite-interval representation is recommended.

When the data are based on physics or mathematics, identification
of a cause of errors could be possible as the behind mechanics of the
data may be obvious. On the other hand, it is not easy to interpret the
error of the data predicted by AI technologies where these attempts are
rapidly increasing recent years, (e.g. Fan et al., 2020; Kagemoto, 2020;
Jörges et al., 2021; Lee et al., 2023; Kinugasa et al., 2023). It is thought
that insufficient training data in the short and long-wavelength regions,
where these corresponding spectral densities are relatively small, could
reduce the accuracy of prediction in these regions. It seems also difficult
to predict wave phases whose behavior is likely to be random. These
errors could be visualized by evaluating spectrum and phase in the
frequency domain, i.e. FS- and FP-. It is worth noting that the proposed
metrics could be used not only for the evaluation of errors but also for
loss functions in the machine learning process, such as Wedler et al.
(2022).

In this paper, we are not able to demonstrate the comparison
using real ocean wave time-series data. Since real-time wave prediction
methods are still developing, most of the comparisons are made using
laboratory experiments. We expect these will be applied to real ocean
wave problems soon, and then the proposed performance metrics will
really be needed.

7. Conclusion

As the quantitative evaluation is important to compare and discuss
errors of two time-series data related to waves, we studied how to use
performance metrics. Firstly, existing performance metrics, R-squared,
Pearson correlation coefficient, mean absolute error (MAE), mean ab-
solute percentage error (MAPE), mean squared error (MSE), root mean
squared error (RMSE), normalized RMSE, mean arctangent absolute
percentage error (MAAPE), and surface similarity parameter (SSP), are
reviewed. Each metric has inherent features, and none is the universally
best. It is important to understand these features and choose adequate
metrics for a target problem.

These metrics are used to calculate the mean value of all time-
series data. As a result, we could not identify causes of errors using
such a mean value as all errors are all together regardless of causes.
However, it is essential to identify the causes of errors to understand
the limitations of the performance and improve accuracy. Therefore,
we proposed new representations of performance metrics to be able
to separate errors by causes. Since wave-related data can be trans-
formed to the frequency domain by the Fourier transform, errors in
the frequency domain’s amplitude and phase are independently evalu-
ated. Here, two prefixes, the frequency domain’s amplitude (FA-) and
frequency domain’s phase (FP-), are applied to existing performance
metrics, e.g. FA-MAE, FA-MAPE, FP-MAE, and FP-ME. In addition, to
deal with instantaneous errors and changes in a trend of errors over
time, means of two different intervals are defined whereas original
performance metrics are calculated by all data. Finite interval represen-
tation evaluates the mean error at time 𝑖 using preceding 𝑚 data. On
the other hand, cumulative representation evaluates the mean error at
time 𝑖 using all data until 𝑖. By combining these new representations
f metrics with existing metrics, we can examine the error causes more
eeply.
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For the demonstrations, some examples of comparisons were shown.
Example benchmarks cover typical causes of errors, such as phase
difference, amplitude difference, mean drift, different dispersion, fre-
quency noises, data missing, and time trend change due to wave
reflection. In all cases, the causes of errors can be identified using
proposed performance metrics. Since we already know the cause of
these errors, the effort of the investigations could be minimal. However,
sources of errors are generally unknown for the real problems, and
thus we summarized the estimation procedure. Firstly, we need to
check the error characteristics in time. Secondly, performances are
estimated using a set of metrics for overall time-series data. After that,
performances in the frequency domain need to be checked. When a
source of errors is determined, we need to connect the error sources
to the physical/theoretical reasons.

We believe our study facilitates the appropriate comparisons of
wave-related data and improves the accuracy of time-series prediction
methods in the field of ocean engineering.
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