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ABSTRACT 16 
 17 

The Human Error Probabilities (HEP) can be estimated using multipliers that correspond to the level of 18 

Performance Shaping Factors (PSFs) in the Human Reliability Analysis (HRA). This paper focuses on the 19 

adjustment of multipliers through Bayesian inference based on Monte Carlo techniques using the 20 

experimental results from simulators. Markov Chain Monte Carlo (MCMC) and Bayesian Monte Carlo (BMC) 21 

are used as Bayesian inference methods based on Monte Carlo techniques. MCMC is utilized to obtain the 22 

posterior distribution of the multipliers. BMC is used for the estimation of the moments of the posterior 23 

distribution such as the mean and variance. The results obtained by MCMC and that by BMC well agree with 24 

the reference results. As a case study, the data assimilation was performed using the results of the simulator 25 

experiment of Halden reactor. The results show that the multiplier changes by the result of a particular 26 

scenario and HEP of another scenario that uses the same multiplier also changes by data assimilation. Also, 27 

in the case study, the correlation between multipliers is obtained by the data assimilation and the correlation 28 

contributes to the reduction of uncertainty of HEP. 29 

  30 
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1. Introduction 31 

Failures are generally considered inevitable in the operation of complex systems 32 

such as nuclear power plants [1]. To reduce failures in complex systems, the cause of the 33 

failure needs to be carefully analyzed and tracked down. Human factors are often 34 

involved in the failures even in cases where technical factors are the primary cause of 35 

failure in complex systems [2]. Various studies have been conducted on Human Reliability 36 

Analysis (HRA) methods, especially focusing on nuclear facilities [3-10]. In recent years, 37 

there have been efforts to compare the predictions of HRA methods with experimental 38 

data obtained using full-scale simulators [11-13].  39 

The data assimilation method based on Bayesian theory is useful to improve the 40 

consistency with experimental data. In the field of HRA, studies using Bayesian Networks 41 

have been actively conducted in recent years [14-24]. A data assimilation process based 42 

on Bayesian Networks has been proposed for the evaluation of Performance Shaping 43 

Factors (PSFs) [25]. This Bayesian Network links scenario characteristics to PSFs reported 44 

by student operators considering calculated PSFs, the bias, and context. These 45 

approaches require the construction of the Bayesian Network which incorporates key 46 

parameters affecting the target parameter such as PSFs. As the direct application of 47 

Bayesian theory to Human Error Probability (HEP), the posterior distribution of HEP has 48 

been evaluated using experimental results of the plant simulator [26-29]. In these studies, 49 

the prior distribution of HEP is assumed and the likelihood distribution is evaluated from 50 

the experimental results. If experimental results are obtained for all scenarios required 51 

for risk analysis, necessary HEPs can be rationally prepared by these direct applications of 52 
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Bayesian theory. The HEP adjustment based on Bayesian theory indicates that non-53 

negligible uncertainty exists in HEP. It is considered that this uncertainty is from the 54 

incompleteness of the model and parameters used in HRA.  55 

Various challenges have been pointed out regarding the HRA models. For example, 56 

it is considered that there are correlations and overlaps in the PSFs used in SPAR-H [30], 57 

thus the need for improving the model has been highlighted [31, 32]. The correlation and 58 

overlap can be avoided by increasing the number of PSFs. However, if performance 59 

influencing factors are finely classified, the uncertainty might increase due to the lack of 60 

data related to the classified PSFs. Therefore, in practical, the number of PSFs should be 61 

adjusted considering the application of HRA [33].  62 

There is also significant uncertainty regarding of multiplier of PSFs, primarily due 63 

to parameter and model uncertainty. For instance, the multiplier of Available time used 64 

in SPAR-H has been pointed out for overestimating HEP [34]. Additionally, SPAR-H defines 65 

the failure probability as 1 if the required time is not met, but actually, it is considered 66 

that humans can actually cope with the situation by being flexible [35]. These suggest that 67 

there is a large uncertainty in the multipliers of PSFs used in SPAR-H. It is also stated that 68 

the sources used in HRA are not infallible or infinitely generalizable [36], therefore it is 69 

important to continuously consider improvements in the parameters used in HRA, such 70 

as multipliers. 71 

As a study related to Bayesian inference of multipliers, Y. Kim et al. proposed a 72 

method to estimate the PSF effect from the results of the reliability analysis database 73 

OPERA [37]. In their study, logistic regression was employed, assuming that the 74 



ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B: Mechanical Engineering 

 

4 

 

probability of human error could be expressed from a product of exponential functions. 75 

In general, the probability of human error cannot be simply represented by the product 76 

of exponential functions. For example, HEP does not exceed 1 even if there are many 77 

negative PSFs, so HEP approaches 1 as the negative effect of the PSF becomes stronger. 78 

Conversely, the HEP decreases as the positive effect of the PSF becomes stronger, but it 79 

is likely to have a lower limit [30]. Therefore, rigorously, it is considered that HEP can’t be 80 

expressed as a very simple function of the multiplier. 81 

In this study, we introduce a Bayesian data assimilation method that employs the 82 

Monte Carlo technique for providing a flexible and accurate framework for multiplier 83 

assimilation. Unlike the previous approach [37], this method is not constrained by a 84 

specific formula for calculating HEP, making it universally applicable across a range of HRA 85 

methods, even those that compute HEP using complex functions. Utilizing data from 86 

simulator experiments that include successes and failures to refine the posterior 87 

distribution of multipliers, our approach enhances the reliability of HEP assessments. As 88 

the data assimilation method for input data, methods using sensitivity coefficients [38-89 

44] or Monte Carlo methods [45-48] are widely used in the field of reactor physics. Monte 90 

Carlo methods are often used in probabilistic risk assessment, thus Bayesian inference 91 

based on Monte Carlo techniques is considered to be suitable in practice. Therefore, in 92 

the present paper, we demonstrate the applicability of data assimilation for multipliers 93 

using two major Bayesian data assimilation methods: Markov Chain Monte Carlo (MCMC) 94 

[49] and Bayesian Monte Carlo (BMC) [50]. Also, using the results of the simulator 95 

experiment of Halden reactor, we discuss the assimilated multipliers as a case study. The 96 
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paper is organized as follows: Sec. 2 provides methods of Bayesian estimation based on 97 

the Monte Carlo technique, Sec. 3 shows the numerical results, and Sec. 4 concludes this 98 

study. 99 

 100 

2. Methods of Bayesian Estimation Based on the Monte Carlo Technique 101 

In this section, MCMC and BMC are briefly described, along with the data 102 

assimilation process for multipliers. 103 

 104 

2.1 Data Assimilation Method Based on MCMC 105 

MCMC is a method that utilizes the properties of a Markov chain, irreducibility, 106 

aperiodicity, and detailed balance conditions. While it is not always necessary to hold the 107 

detailed balance condition, algorithms that satisfy this condition are commonly employed. 108 

Let us consider a vector 𝒙 = (𝑥1, 𝑥2, … )T, where T denotes the transpose operation. A 109 

Markov chain 𝒙(0) → 𝒙(1) → ⋯ → 𝒙(𝑖) → 𝒙(𝑖+1)  means that the probability of 110 

transitioning from 𝒙(𝑖) to 𝒙(𝑖+1) is dependent solely on 𝒙(𝑖), regardless of 𝒙(0), 𝒙(1), …, 111 

𝒙(𝑖−1). A typical example of this is a random walk. The irreducibility implies that all pairs 112 

(𝒙(𝑖), 𝒙(𝑗))  can transition to each other. The aperiodicity means that the greatest 113 

common divisor of the step count to return from 𝒙 to 𝒙 is 1. For instance, if we calculate 114 

𝒙(𝑖+1) = 𝒙(𝑖) + Δ𝒙 where Δ𝒙 is a uniform random number between -1 and 1, 𝒙(𝑖+1) can 115 

return to 𝒙(𝑖) in one step when Δ𝒙=0, and it can also return to 𝒙(𝑖) in two steps. Since it 116 

is possible to return to 𝒙(𝑖) at any step, this process is aperiodic. On the other hand, when 117 

|Δ𝒙| is fixed to 1, this process is no longer aperiodic since 𝒙(𝑖+1) ≠ 𝒙(𝑖) . The detailed 118 
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balance condition requires ℙ(𝒙)𝕋(𝒙 → 𝒙′) = ℙ(𝒙′)𝕋(𝒙′ → 𝒙), here, ℙ represents the 119 

probability, and 𝕋  denotes the transition probability. The chain 𝒙(0) → 𝒙(1) → ⋯ →120 

𝒙(𝑖) → 𝒙(𝑖+1) → converges to a stationary distribution in MCMC, and this convergence 121 

property is utilized by using the detailed balance condition in many MCMC algorithms. 122 

The present study uses a fundamental implementation based on the Random 123 

Walk MH algorithm. The random walk MH algorithm [51, 52] was implemented based on 124 

the steps outlined in the flowchart shown in Fig. 1: 125 

i. In the first step (step 𝑛 = 1), the initial values of the multipliers are defined as 126 

the expectation of the prior distribution. 127 

ii. In the next step, the candidate �̃� is calculated from recent values of multipliers 128 

using the Markov chain. 𝒙 is obtained as 129 

�̃� = 𝒙(𝑛−1) + 𝜺, (1) 

where, 𝜺  is a vector of the random float number obtained by the normal 130 

distribution whose expectation is zero. The standard deviation of the normal 131 

distribution is a hyperparameter of the algorithm and has a major impact on the 132 

convergence of the multiplier. The dependency of the hyperparameter on the 133 

convergence is discussed in Sec. 4.1.  134 

iii. The acceptance probability is calculated by 135 

𝛼 = min {
𝑓(�̃�)

𝑓(𝒙(𝑛−1))
, 1}, (2) 

where, 𝑓  is the target distribution. Let 𝑓  be the posterior distribution, using 136 

Bayesian theory,  𝑓(𝒙) (𝒙(𝑛−1))⁄  shown in Eq. (2) can be rewritten as 137 
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𝑓(�̃�)

𝑓(𝒙(𝑛−1))
= (

ℙ(𝑵, 𝒌|�̃�)ℙ(𝒙)

ℙ(𝐷)
) (

ℙ(𝑵, 𝒌|𝒙(𝑛−1))ℙ(𝒙(𝑛−1))

ℙ(𝐷)
)⁄

=
ℙ(𝑵, 𝒌|𝒙)ℙ(�̃�)

ℙ(𝑵, 𝒌|𝒙(𝑛−1))ℙ(𝒙(𝑛−1))
, 

(3) 

where, 𝒌(= (𝑘1, 𝑘2, … )T )  is a vector of the number of failures, 𝑵(=138 

(𝑁1, 𝑁2, … )T ) is the number of demands, and ℙ(𝐷) is the marginal likelihood. 𝒌 139 

and 𝑵 contain the experimental results of all scenarios. Eqs. (2) and (3) show that 140 

the acceptance probability is obtained by the likelihood and the probability of �̃� 141 

and 𝒙(𝑛−1). ℙ(�̃�) and ℙ(𝒙(𝑛−1)) can be calculated by the prior distribution. In the 142 

present paper, the likelihood is calculated from binomial distribution as well as 143 

other studies that aim to obtain the prior distribution of human error probability 144 

using simulator data [26-29]. For scenario 𝑖 , the likelihood is described using 145 

experimental results and the multipliers 𝒙: 146 

ℙ(𝑁𝑖, 𝑘𝑖|𝒙) =
𝑁𝑖!

𝑘𝑖! (𝑁𝑖 − 𝑘𝑖)!
𝑝ℎ𝑒𝑝,𝑖(𝒙)𝑘𝑖 (1 − 𝑝ℎ𝑒𝑝,𝑖(𝒙))

𝑁𝑖−𝑘𝑖

, (4) 

where, 𝑝ℎ𝑒𝑝,𝑖(𝒙) is HEP obtained by multipliers 𝒙 for the scenario 𝑖. The likelihood 147 

that experiment results of all scenarios are obtained can be described as 148 

ℙ(𝑵, 𝒌|𝒙) = ∏ ℙ(𝑁𝑖 , 𝑘𝑖|𝒙)

𝑖

. (5) 

iv. 𝒙(𝑛) is updated by 149 

𝒙(𝑛) = {
  �̃�                       for �̃� ≤ 𝛼 and 𝑥1̃, 𝑥2̃ … > 0

𝒙(𝑛−1)                                           otherwise
, (6) 

where, �̃� is the uniform random float number in the interval (0,1). It should be noted 150 

that  𝑥1̃, 𝑥2̃ … > 0 shown in Eq. (6) is not generally used in MCMC implementations. In 151 
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the present study, the proposal distribution is assumed to normally distribute, which 152 

allows for negative values. As a result, the multipliers obtained during the MCMC 153 

process may include negative values. Even if multiple values are negative, the 154 

calculated failure probability may still be positive. For instance, when HEP can be 155 

calculated as the multiplication of the nominal HEP and multipliers, if two multipliers 156 

are negative, the resulting HEP will be positive. In such cases, the likelihood might be 157 

high despite the inappropriate negative values of multipliers. Therefore, we have 158 

adopted 𝑥1̃, 𝑥2̃ … > 0 in Eq. (6) for updating 𝒙(𝑛) only when all multipliers are positive. 159 

v. Return to ii. after increasing step number 𝑛 by one. 160 

 161 

2.2 Data Assimilation Method Based on BMC 162 

BMC is a data assimilation technique widely used in the analysis of reactor physics 163 

and nuclear data evaluation [45-48]. BMC can estimate moments of the posterior 164 

distribution such as the mean and variance. This section provides a derivation of the 165 

method to calculate moments of the posterior distribution using BMC. Firstly, let us 166 

consider computing the expectation of the function value 𝑓(𝒙) for multipliers 𝒙 which 167 

follows the prior distribution ℙ(𝒙). In the Monte Carlo calculation, the expectation is 168 

approximately expressed as  169 

𝔼ℙ(𝒙)(𝑓(𝒙)) = ∫ 𝑓(𝒙)ℙ(𝒙) 𝑑𝒙 ≈
1

𝑀
∑ 𝑓(𝒙𝑚)

𝑀

𝑚=1

, (7) 

here, 𝑀 represents the sample size in the Monte Carlo calculation, and 𝒙𝑚 denotes the 170 

multipliers in sample 𝑚, generated according to the distribution ℙ(𝒙). Next, we consider 171 
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computing the expected value of 𝑓(𝒙)  for 𝒙  which follows the posterior distribution 172 

ℙ(𝒙|𝑵, 𝒌). Similar to Eq. (7), the expectation is expressed as 173 

𝔼ℙ(𝒙|𝑵, 𝒌)(𝑓(𝒙)) = ∫ 𝑓(𝒙)ℙ(𝒙|𝑵, 𝒌) 𝑑𝒙. (8) 

Based on the Bayesian theory, the posterior distribution of 𝒙 is expressed as 174 

ℙ(𝒙|𝑵, 𝒌) =
ℙ(𝒙|𝑵, 𝒌)ℙ(𝒙)

∫ ℙ(𝒙|𝑵, 𝒌)ℙ(𝒙) 𝑑𝒙
. (9) 

Substituting Eq. (8) into Eq. (9) and introducing the approximation formula from the 175 

Monte Carlo calculation described in Eq. (7), we can express the expected value 176 

𝔼𝑃(𝒙|𝑵, 𝒌)(𝑓(𝒙)) as follows: 177 

𝔼ℙ(𝒙|𝑵, 𝒌)(𝑓(𝒙)) =
1

∫ ℙ(𝒙|𝑵, 𝒌)ℙ(𝒙) 𝑑𝒙
∫ 𝑓(𝒙) ℙ(𝑵, 𝒌|𝒙)ℙ(𝒙) 𝑑𝒙

≈
1

∫ ℙ(𝑵, 𝒌|𝒙)ℙ(𝒙) 𝑑𝒙

1

𝑀
∑ 𝑓(𝒙𝑚)ℙ(𝑵, 𝒌|𝒙𝑚)

𝑀

𝑚=1

. 

(10) 

∫ ℙ(𝑵, 𝒌|𝒙)ℙ(𝒙)𝑑𝒙 shown in Eq. (10) can be expressed as follows by incorporating the 178 

approximation formula described in Eq. (7): 179 

∫ ℙ(𝑵, 𝒌|𝒙)ℙ(𝒙) 𝑑𝒙 ≈
1

𝑀
∑ ℙ(𝑵, 𝒌|𝒙𝑚)

𝑀

𝑚=1

. (11) 

By substituting Eq. (11) into Eq. (10), the expected value of 𝑓(𝒙) for 𝒙  following the 180 

posterior distribution ℙ(𝒙|𝑵, 𝒌) can be expressed as follows: 181 

𝔼ℙ(𝒙|𝑵, 𝒌)(𝑓(𝒙)) ≈
∑ 𝑓(𝒙𝑚)ℙ(𝑵, 𝒌|𝒙𝑚)𝑀

𝑚=1

∑ ℙ(𝑵, 𝒌|𝒙𝑚)𝑀
𝑚=1

. (12) 

We can obtain the expectation of 𝒙 in the posterior distribution by defining 𝑓(𝒙) = 𝒙. the 182 

expected value of 𝑖-th multiplier in the posterior distribution is written as 183 
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𝔼(𝑥𝑖,𝑝𝑜𝑠𝑡) = 𝔼ℙ(𝒙|𝑵, 𝒌)
(𝑥𝑖) =

∑ 𝑥𝑚,𝑖ℙ(𝑵, 𝒌|𝒙𝑚)𝑀
𝑚=1

∑ ℙ(𝑵, 𝒌|𝒙𝑚)𝑀
𝑚=1

 (13) 

where, 𝑥𝑖  is the 𝑖 -th multiplier and 𝑥𝑚,𝑖  is  𝑖 -th multiplier of sample 𝑚 . Next, let's us 184 

consider the covariance between the 𝑖 -th multiplier denoted as 𝑥𝑖,𝑝𝑜𝑠𝑡 , and the 𝑗 -th 185 

multiplier denoted as 𝑥𝑗,𝑝𝑜𝑠𝑡  in the posterior distribution. If we define 𝑓(𝒙) = (𝑥𝑖 −186 

𝔼(𝑥𝑖,𝑝𝑜𝑠𝑡)) (𝑥𝑗 − 𝔼(𝑥𝑗,𝑝𝑜𝑠𝑡)) , the expected value of 𝑓(𝒙)  for 𝒙  which follows the 187 

posterior distribution is the covariance between 𝑥𝑖,𝑝𝑜𝑠𝑡  and 𝑥𝑗,𝑝𝑜𝑠𝑡 . From Eq. (12), the 188 

covariance is expressed as 189 

𝑐𝑜𝑣(𝑥𝑖,𝑝𝑜𝑠𝑡, 𝑥𝑗,𝑝𝑜𝑠𝑡) = 𝔼ℙ(𝒙|𝑵, 𝒌) ((𝑥𝑖 − 𝔼(𝑥𝑖,𝑝𝑜𝑠𝑡)) (𝑥𝑗 − 𝔼(𝑥𝑗,𝑝𝑜𝑠𝑡))) 

≈
∑ (𝑥𝑚,𝑖 − 𝔼(𝑥𝑖,𝑝𝑜𝑠𝑡)) (𝑥𝑚,𝑗 − 𝔼(𝑥𝑗,𝑝𝑜𝑠𝑡)) ℙ(𝑵, 𝒌|𝒙𝑚)𝑀

𝑚=1

∑ ℙ(𝑵, 𝒌|𝒙𝑚)𝑀
𝑚=1

. 

(14) 

The likelihood ℙ(𝑵, 𝒌|𝒙𝑚) appearing in Eqs. (13) and (14) can be obtained by Eq. (5). In 190 

BMC computation, the expected value and standard deviation of the posterior 191 

distribution can be obtained from Eqs. (13) and (14), using the sample values and their 192 

likelihoods derived from standard Monte Carlo computations. As shown above, using 193 

BMC allows us to compute higher-order moments of the posterior distribution. In Sec. 4, 194 

as the feasibility study of BMC, we mainly discuss the mean and variance, which can be 195 

computed from Eqs. (13) and (14).  196 

A significant difference between BMC and MCMC is the sampling of multipliers in 197 

Monte Carlo calculations. MCMC performs sampling of the posterior distribution by 198 

utilizing the acceptance probabilities. Therefore, MCMC cannot determine the posterior 199 

distribution solely based on random numbers following the prior distribution and their 200 
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outcomes. On the other hand, BMC only requires the use of random numbers following 201 

the prior distribution and their outcomes. Therefore, BMC allows the computation of 202 

expected values and covariation in the posterior distribution without requiring any 203 

modifications to the PRA code that utilizes random numbers following the prior 204 

distribution. While BMC provides moments such as mean and variance, MCMC provides 205 

the distribution shape and percentiles of the posterior distribution. 206 

 207 

2.3 Assumptions for introduction of Bayesian Inference Based on Monte Carlo 208 

Techniques 209 

As mentioned in the introduction, the innovative aspect of the methodology 210 

proposed in this manuscript is its direct application of HRA methods to conduct data 211 

assimilation for multipliers. Consequently, the methodologies shown in Sections 2.1 and 212 

2.2 are predicated on the ability of the HRA method to accurately represent HEPs and 213 

necessitate assuming the prior distributions for the multipliers. These assumptions are 214 

detailed in this section since they are crucial for the reliability of the proposed method. 215 

 216 

2.3.1 HRA method 217 

It is known that HEP obtained by HRA method is highly uncertain. The reasons for 218 

this large uncertainty include the lack of data to support the evaluation of HEP, the 219 

limitations of considering human cognition, and the dependence of HEP on the HRA 220 

analyst [53]. The data used in the analysis, consideration of human cognition, and analyst-221 

dependence vary depending on HRA method [53, 54]. Therefore, ideally, data assimilation 222 
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should account for all uncertainties, including uncertainties arising from data, human 223 

cognition, and analyst-dependence. In this paper, we focus on the uncertainty from the 224 

multiplier and summarize the results using a single HRA method. It is very important to 225 

consider uncertainties other than the multiplier, and this should be studied in the future. 226 

Many Bayesian data assimilation studies have used SPAR-H [9, 27, 55-57], and this paper 227 

also summarizes the results using SPAR-H. In other words, in Sec. 3, the assumption is 228 

made that HEP is obtained by SPAR-H. 229 

SPAR-H was developed as an improved version of the first-generation HRA 230 

method [30] and has been widely used for risk assessment in nuclear power plants. This 231 

method divides human errors into diagnosis task failures and action task failures and 232 

quantifies the failure probability for each task individually. The result of the case study 233 

using the failure of the action task is shown in Sec. 3, so here the calculation for the action 234 

task is summarized. SPAR-H utilizes eight PSFs and their multipliers, as shown in Table 1. 235 

The multiplier corresponding to the PSF level is basically multiplied by the nominal HEP. 236 

If the positive number of negative PSFs is less than 3, the HEP is calculated by  237 

𝑔(𝒙) = 𝑁𝐻𝐸𝑃 ∏ 𝑥𝑖

⬚

𝑖

, (15) 

here, 𝑥𝑖  is the 𝑖-th multiplier and 𝑁𝐻𝐸𝑃 is the nominal HEP. The nominal HEP is 0.001 for 238 

the action task in SPAR-H. To avoid HEP becoming greater than 1, HEP for the case when 239 

the number of negative PSFs is three or more is calculated by 240 

𝑔(𝒙) =
𝑁𝐻𝐸𝑃 ∏ 𝑥𝑖

⬚
𝑖

𝑁𝐻𝐸𝑃(∏ 𝑥𝑖 − 1⬚
𝑖 ) + 1

. (16) 

 241 
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2.3.2 Prior distribution of multiplier 242 

In Bayesian inference, in general, the prior distribution does not need to be 243 

precisely defined, but it is desirable to use a valid prior distribution. In relation to the 244 

validity of the multiplier, some multipliers have been discussed in comparison with 245 

experimental results. For example, when comparing the PSF effect estimated from the 246 

experiment with the multiplier of SPAR-H, the ratio of the multipliers of Stressor between 247 

high level and extreme level is comparable to the experimental result [34]. On the other 248 

hand, a large difference was confirmed for the multiplier of Available time [34]. These 249 

results suggest that the uncertainty of the multipliers varies greatly depending on the 250 

type of PSF. The authors believe that there is not enough research to quantify the 251 

uncertainty of the prior distribution of all levels of multipliers for each PSF. 252 

In this paper, a simple prior distribution is employed to represent the prior 253 

distribution of multipliers using a log-normal distribution, taking into consideration that 254 

multipliers should not take negative values. The expectation of this log-normal 255 

distribution is equal to the SPAR-H Multiplier. Except when the multiplier is 1, the 256 

standard deviation is fixed at 50% of the expectation to model the uncertainty of 257 

multipliers. A case that the multiplier is 1 indicates that the PSF has no impact, so the 258 

standard deviation of the multiplier is set to 0 in this case. Although the simple prior 259 

distribution is used in the present study for the discussion on the applicability of the 260 

Bayesian data assimilation method, it is desirable to discuss and use a more appropriate 261 

prior distribution for the estimation of more valid multipliers. 262 

 263 
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3. Numerical result 264 

This section summarizes the numerical results of the data assimilation. As shown 265 

in Sec. 2, MCMC method requires the hyperparameters in the data assimilation. Since the 266 

hyperparameter has a significant impact on the convergence. in Sec. 3.1, the proper 267 

hyperparameter is discussed by using a single assimilated multiplier obtained from a 268 

single scenario. In Sec. 3.2, the verification is conducted to ensure that the posterior 269 

distribution obtained by Monte Carlo techniques coincides with the reference solution, 270 

under the assumption of having results from some scenarios. In Sec. 3.3, as a case study, 271 

data assimilation is performed using the results of Halden simulator experiments [58], 272 

and the results are discussed. 273 

 274 

3.1 Dependency of hyperparameter on convergence in MCMC 275 

The standard deviation of the proposal distribution used in MCMC is a 276 

hyperparameter. Generally, if the standard deviation of the proposal distribution is small, 277 

the update of the multiplier becomes infrequent, leading to increased autocorrelation 278 

and poor convergence. Conversely, when the standard deviation of the proposal 279 

distribution is large, the probability that the random multiplier is negative becomes high, 280 

resulting in a higher rejection rate since the negative multiplier is not accepted in the 281 

present study. For instance, in the initial iteration, if the standard deviation of the 282 

proposal distribution is equal to the initial value of the multiplier (in this paper, the 283 

expectation of the prior distribution of the multiplier), the probability that one of the 284 

multiplier candidates is negative is about 16%. Therefore, if Bayesian updating is 285 
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performed for 8 multipliers, the probability that all multipliers are positive is only (1 - 286 

0.16)8 ≈ 0.25, meaning the probability that at least one multiplier is negative is about 75%. 287 

Since the standard deviation of the proposal distribution should depend on the 288 

magnitude of the multipliers, the standard deviation 𝜎𝑡𝑎𝑟𝑔𝑒𝑡 of the proposal distribution 289 

is defined as a constant 𝑠𝑖𝑔𝑚𝑎 𝑟𝑎𝑡𝑖𝑜  multiplied by the multiplier 𝑥𝐻𝑅𝐴  used in HRA 290 

method: 291 

𝜎𝑡𝑎𝑟𝑔𝑒𝑡 = (𝑠𝑖𝑔𝑚𝑎 𝑟𝑎𝑡𝑖𝑜)𝑥𝐻𝑅𝐴. (17) 

In this paper, 𝑥𝐻𝑅𝐴 represents the multiplier used in SPAR-H. The convergence of 292 

the expected value and standard deviation in the posterior distribution is investigated by 293 

changing 𝑠𝑖𝑔𝑚𝑎 𝑟𝑎𝑡𝑖𝑜 from 0.01 to 0.75. 294 

To confirm the convergence, the result of MCMC is compared with the reference 295 

solution. The posterior distribution is obtained from the prior distribution and the 296 

likelihood by the Bayesian theory, and it is easily obtained by numerical analysis by 297 

discretization if there is only one parameter with uncertainty. Here, the prior distribution 298 

of the 𝑖-th multiplier 𝑥𝑖  is 299 

ℙ(𝑥𝑖) ∝ 𝑒𝑥𝑝 (−
(𝑙𝑛(𝑥𝑖) − 𝜇𝑖)

2

2𝜎𝑖
), (18) 

here, 𝜇  and 𝜎  respectively represent the mean and standard deviation of the normal 300 

distribution obtained by taking the logarithm of the prior distribution. Under the 301 

condition that 𝑥𝑖  is given, in 𝑁 trials, the probability of obtaining experimental results 302 

with 𝑘 failures can be expressed as 303 

ℙ(𝑁, 𝑘|𝑥𝑖) =
𝑁!

𝑘! (𝑁 − 𝑘)!
𝑝ℎ𝑒𝑝(𝑥𝑖)

𝑘 (1 − 𝑝ℎ𝑒𝑝(𝑥𝑖))
𝑁−𝑘

, (19) 
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here, 𝑝ℎ𝑒𝑝(𝑥𝑖) represents HEP evaluated by using 𝑥𝑖 . Based on Bayesian theory, when 304 

experimental results with 𝑘  failures are observed in 𝑁  trials, and the posterior 305 

distribution of 𝑥𝑖can be expressed as  306 

ℙ(𝑥𝑖|𝑁, 𝑘) ∝ ℙ(𝑥𝑖)ℙ(𝑁, 𝑘|𝑥𝑖) 

∝ 𝑒𝑥𝑝 (−
(𝑙𝑛(𝑥𝑖) − 𝜇𝑖)

2

2𝜎𝑖
)

𝑁!

𝑘! (𝑁 − 𝑘)!
𝑝ℎ𝑒𝑝(𝑥𝑖)

𝑘 (1 − 𝑝ℎ𝑒𝑝(𝑥𝑖))
𝑁−𝑘

 

=
𝑒𝑥𝑝 (−

(𝑙𝑛(𝑥𝑖) − 𝜇𝑖)
2

2𝜎𝑖
)

𝑁!
𝑘! (𝑁 − 𝑘)!

𝑝ℎ𝑒𝑝(𝑥𝑖)
𝑘 (1 − 𝑝ℎ𝑒𝑝(𝑥𝑖))

𝑁−𝑘

∫ 𝑒𝑥𝑝 (−
(𝑙𝑛(𝑥𝑖) − 𝜇𝑖)2

2𝜎𝑖
)

𝑁!
𝑘! (𝑁 − 𝑘)!

𝑝ℎ𝑒𝑝(𝑥𝑖)𝑘 (1 − 𝑝ℎ𝑒𝑝(𝑥𝑖))
𝑁−𝑘

𝑑𝑥𝑖

. 

(20) 

To obtain the posterior distribution exactly, the denominator integral of Eq. (20) must be 307 

evaluated over the range of -∞ to ∞. However, since the log-normal distribution is used 308 

and the multiplier does not become a very large value in this study, the reference solution 309 

is obtained by approximating the integral range to be from 0 to 1000 and discretization. 310 

In this section, the posterior distribution is shown assuming that an experimental 311 

result with 1 failure out of 100 trials is obtained. The scenario for this experiment assumes 312 

that PSF level is nominal excluding Stressor and that only Stressor is at the extreme level. 313 

Under these conditions, HEP obtained by SPAR-H is 0.005 from Eq. (15). On the other 314 

hand, since the failure probability is 0.01 (= 1/100) from the experiment, HEP obtained by 315 

the experimental result is twice as high as the HEP obtained by SPAR-H. In this case, the 316 

multiplier for extreme level of Stressor will be updated based on Bayesian theory to make 317 

the multiplier larger. The number of iterations of MCMC is 2,000,000 in the analysis. 318 

The convergence of the computed mean and standard deviation obtained through 319 

MCMC is presented in Figs. 2 and 3, respectively. In these figures, the reference solution 320 
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is shown as dashed lines, and the reference solution for the mean is 5.46 and the standard 321 

deviation is 2.53. From Fig. 2, it can be confirmed that the mean does not stabilize even 322 

after 1,000,000 iterations when 𝑠𝑖𝑔𝑚𝑎 𝑟𝑎𝑡𝑖𝑜 = 0.01. This could be because that the 323 

Markov chain takes very small steps, which prevent it from moving around the parameter 324 

space effectively. Also, when 𝑠𝑖𝑔𝑚𝑎 𝑟𝑎𝑡𝑖𝑜 = 0.75, it can be confirmed that the mean 325 

deviates from the reference solution compared to other conditions even after 1,000,000 326 

iterations. This could be because there's a higher probability of at least one multiplier in 327 

the candidate �̃� being negative, which increases the probability of this candidate being 328 

rejected, as shown in Eq. (6). As shown in Figs. 2 and 3, the results are well converged 329 

when 𝑠𝑖𝑔𝑚𝑎 𝑟𝑎𝑡𝑖𝑜 = 0.1, 0.25, or 0.5. Therefore, in the following sections, the calculation 330 

of MCMC is performed with 𝑠𝑖𝑔𝑚𝑎 𝑟𝑎𝑡𝑖𝑜 = 0.25. 331 

 332 

3.2 Data assimilation using a few simple experiments 333 

This section confirms the agreement of the MCMC and BMC results with the 334 

reference solution when experimental results for some scenarios are obtained. In Sec. 3.1, 335 

a single scenario is assumed, and the likelihood is obtained using Eq. (4). On the other 336 

hand, this section considers some scenarios, so the likelihood is obtained using the 337 

multiplication shown in Eq. (5). 338 

Scenarios A to C and their experimental results used in this section are presented 339 

in Table 2. For all scenarios, it is assumed that an experimental result with 1 failure out of 340 

100 trials is obtained. Scenario A uses the same assumptions as Sec. 3.1. Scenario B 341 

assumes that PSF level is nominal for all PSFs except for Complexity, and that Complexity 342 
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level is moderate. In Scenario C, only Experience level is assumed to be Low. HEP 343 

calculated by SPAR-H is 0.005 for Scenario A, 0.002 for Scenario B, and 0.003 for Scenario 344 

C. Among Scenarios A to C, except for the nominal level, there are no common PSF levels. 345 

Therefore, the reference solution for the multiplier of extreme level of Stressor is the 346 

same as in Sec. 3.1 since the multiplier depends solely on the results from Scenario A. 347 

Similarly, for Scenarios B and C, the reference solutions are obtained by applying Eq. (20) 348 

using the results from their respective scenarios. The number of iterations for MCMC is 349 

the same as in Sec. 3.1. The number of iterations of BNC is 200,000. 350 

The convergence of the mean for Scenarios A to C is shown in Fig. 4, and the 351 

convergence of the standard deviation is shown in Fig. 5. In these figures, the iteration of 352 

MCMC is on the first horizontal axis and that of BMC is on the second horizontal axis. As 353 

shown in these figures, MCMC results show good agreement with the reference solution 354 

even when some scenarios are used by the likelihood of Eq. (5), and BMC also converges 355 

to the reference solution. In Figs. 4 and 5, it can be confirmed that BMC converges faster 356 

than MCMC. For example, in Figs. 4 and 5, the estimates at the 50,000th iteration of BMC 357 

are closer to the reference solution than the estimates at the 500,000th iteration of 358 

MCMC. Even with the present small adjustment in expected value and standard deviation, 359 

MCMC requires about 1,000,000 iterations for convergence. This indicates MCMC might 360 

need even more iterations to converge when the difference between prior and posterior 361 

distributions is larger. 362 

Figure 6 shows the prior distributions and posterior distributions of the multipliers 363 

used in Scenarios A to C. BMC cannot obtain the posterior distribution directly, so the 364 
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results of BMC are not shown in the figure. Figure 6 shows that the posterior distribution 365 

obtained by MCMC is in good agreement with the reference solution. Table 3 illustrates 366 

a comparison of the mean, 95th percentile, 5th percentile, and standard deviation. The 367 

95th percentile and 5th percentile of BMC are not shown in Table 3 since BMC cannot 368 

directly obtain these percentiles. Table 3 shows that the maximum error from the 369 

reference solution is 1.1% for MCMC and 0.5% for BMC. The results of this section show 370 

that MCMC can accurately obtain the posterior distribution, and BMC can accurately 371 

obtain the moments of the posterior distribution in a relatively small number of iterations. 372 

 373 

3.3 Data assimilation using results of Halden simulator experiments 374 

As the case study, this section discusses the results of data assimilation using the 375 

results of Scenarios 1A, 1C, and 3 of Halden simulator experiments [58]. These results 376 

have been used in a study of data assimilation for HEP [27]. This previous data assimilation 377 

additionally uses Scenario 2 for data assimilation. In Scenario 2, PFS level of Available time 378 

is inadequate and HEP at this level is 1 regardless of other PSFs in SPAR-H. Since the 379 

contribution of each PSF cannot be quantified for Scenario 2, this scenario is excluded 380 

from the present study. 381 

Let us briefly describe each scenario. Scenario 1 involves a total loss of feedwater 382 

followed by the Steam Generator (SG) tube rupture. For this scenario, it is assumed that 383 

the plant is operating at full power, and the main feedwater pumps will trip within 2 384 

minutes. In Scenario 1A, the success criterion is to achieve the establishment of feedback 385 

and breeding within 45 minutes by the manual reactor trip.  Scenario 1C defines the 386 
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success as the isolation of the ruptured SG and the control of the pressure below the SG 387 

Power-Operated Relief Valves (PORV) setpoint in the present paper. In the experiment, 388 

this action is expected to be completed within 40 minutes after the SG tube rupture. 389 

Scenario 3 is a standard SG tube rupture scenario. The success criterion for Scenario 3 is 390 

the isolation of the ruptured SG and the control of the pressure below SG PORV setpoint 391 

before SG PORV opening. 392 

The PSF levels and experimental results are shown in Table 4. Using the 393 

experimental results of Scenarios 1A, 1C, and 3, the data assimilation of the multiplier is 394 

performed for both BMC and MCMC. HEPs of Scenarios 1A and 3 are evaluated by Eq. 395 

(15), and HEP of Scenario 1C is evaluated by Eq. (16). As in the previous section, we set 396 

the sample size for BMC as 200,000 and for MCMC as 2,000,000. 397 

Table 5 presents the mean and standard deviation of the multipliers after data 398 

assimilation. As shown in Table 5, the differences between the MCMC and BMC are below 399 

0.5%, which shows a good agreement. For Scenario 1C, the experimental results showed 400 

1 failure out of 4 trials and the failure probability is higher than HEP estimated by SPAR-H 401 

(0.167). Thus, the multiplier used in Scenario 1C is adjusted to a higher value. On the other 402 

hand, for both Scenario 1A and Scenario 3, there are no failures in the experiment, and 403 

HEP obtained from SPAR-H is only 0.0001. Since the likelihood of the experimental results 404 

of Scenarios 1A and 3 is high, the adjustment of the multiplier used only in Scenarios 1A 405 

and 1C is negligible. Among the multipliers used in the case study, the multiplier of 406 

Available time at of extra level is used only in Scenarios 1A and 1C, thus this multiplier is 407 

not adjusted significantly. 408 
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The HEP obtained from the multiplier after data assimilation is shown in Table 6. 409 

As the information on the posterior distribution, in practice, it is considered that the 410 

moments of the distribution such as the mean and variance will be stored. Therefore, in 411 

Table 6, HEP is calculated based on the mean and variance. By a Taylor expansion for the 412 

mean of HEP up to the 1st order [41], the expectation of HEP is approximately calculated 413 

by 414 

𝔼(𝑃𝐻𝐸𝑃) ≈ 𝑔(𝔼(𝒙)), (21) 

here, 𝔼(𝒙) represents the mean of the multipliers shown in Table 5. By a Taylor expansion 415 

for the infinitesimal difference of HEP up to the 1st order [41], the variance of HEP can be 416 

approximately expressed as 417 

𝜎𝐻𝐸𝑃
2 ≈ ∑(𝑆𝐶𝑖𝜎𝑖)

2

𝑖

+ 2 ∑ ∑ 𝑆𝐶𝑖𝑆𝐶𝑗𝜎𝑖,𝑗

𝑗,𝑗≠𝑖𝑖

, (22) 

here, 𝑆𝐶𝑖 represents the sensitivity coefficient for the 𝑖-th multiplier with respect to HEP 418 

[41],  𝜎𝑖  is the standard deviation of 𝑖-th multiplier, and 𝜎𝑖,𝑗 is the covariance between 𝑖-419 

th and 𝑗-th multipliers. As shown in Table 6, HEP of Scenario 1A increase by 13.1% and 420 

that of Scenario 1C increase by 22.6% by the data assimilation, while there is no significant 421 

change in Scenario 3. The Multiplier used in Scenario 1C increase after data assimilation. 422 

Also, Scenarios 1A and 1C share the multiplier of Complexity at moderate level and that 423 

of Procedures at available but poor level. Therefore, HEP of Scenario 1A increases due to 424 

the effect of data assimilation using the experimental result of Scenario 1C. This outcome 425 

demonstrates that data assimilation using a particular scenario can significantly adjust 426 

HEP for other scenarios that utilize the same multiplier. 427 
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The comparison of correlation coefficients after data assimilation is shown in Fig. 428 

7. Generally, by the data assimilation, the negative correlation is obtained between 429 

parameters with the same sign of sensitivity coefficients and with significant adjustments 430 

by the data assimilation [40]. Excluding the multiplier of Available time at extra level, the 431 

mean of the multipliers shown in Table 5 increased by over 6%. Consequently, negative 432 

correlations are observed for these multipliers. The increase in the mean of these 433 

multipliers is less than 10%, and since the magnitude of the negative correlation conferred 434 

depends on the size of this adjustment [40], the magnitude of the negative correlation 435 

coefficients shown in Fig. 7 is below 0.1. There is no significant difference in the 436 

correlation coefficients after data assimilation between MCMC and BMC. The breakdown 437 

of the variance in HEP obtained by Eq. (24) is shown in Table 7. Since the adjustment of 438 

the multiplier used in Scenario 3 is negligible, the variance of HEP is not adjusted by the 439 

data assimilation in the scenario. As shown in Table 7, in Scenarios 1A and 1C, the variance 440 

of HEP decreases due to the contribution of covariance. This shows that the uncertainty 441 

of HEP is reduced by utilizing the covariance information of the multipliers obtained by 442 

data assimilation. 443 

 444 

4 Conclusions 445 

The study investigated the data assimilation method based on Monte Carlo 446 

techniques for multipliers used in HRA method, utilizing the results of simulator 447 

experiments and HEP obtained by HRA method. The random walk Metropolis-Hastings 448 
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algorithm, which is a basic implementation of MCMC, and BMC which is widely used for 449 

data assimilation in nuclear data are used as data assimilation methods. 450 

In MCMC, the standard deviation of the proposal distribution is a hyperparameter, 451 

and by setting its value based on parameter surveys, the multiplier successfully converges 452 

to the reference solution. Under the condition that that experimental results of some 453 

scenarios are given, MCMC and BMC provide results which agree with the reference 454 

results well. Also, data assimilation was performed using the simulator experiment of 455 

Halden reactor. For Scenario 1C, the experimentally obtained failure probability is higher 456 

than HEP calculated by SPAR-H. Consequently, the multiplier used in Scenario 1C is 457 

adjusted to be larger. Since Scenarios 1A and 1C share some multipliers, HEP of Scenario 458 

1A also increases. This result indicates that data assimilation for a scenario significantly 459 

affects HEP of the other scenarios which use the same multiplier. Additionally, in the 460 

present study, it was found that data assimilation gives negative correlation between 461 

multipliers, and this negative correlation contributes to the reduction of the uncertainty 462 

of HEP. 463 
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level in MCMC calculation 
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Fig. 7 Correlation coefficient obtained by data assimilation using Halen 
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Fig.1. Flowchart of MCMC algorithm 637 
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 639 

Fig.2. Convergence of mean of multiplier of Stressor at extreme level in MCMC 640 

calculation 641 
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 643 

Fig.3. Convergence of standard deviation of multiplier of Stressor at extreme level in 644 

MCMC calculation 645 
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 647 
(a) Multiplier of Stressor at extreme level 648 

 649 
(b) Multiplier of Complexity at moderate level 650 

 651 
(c) Multiplier of Experience at low level 652 

Fig.4. Convergence of mean of multiplier obtained by outcomes of scenarios A to C 653 
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 655 
(a) Multiplier of Stressor at extreme level 656 

 657 
(b) Multiplier of Complexity at moderate level 658 

 659 
(c) Multiplier of Experience at low level 660 

Fig.5. Convergence of standard deviation of multiplier obtained by outcomes of 661 

scenarios A to C 662 
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 664 

(a) Multiplier of Stressor at extreme level 665 

 666 

(b) Multiplier of at Complexity at moderate level 667 

 668 

(c) Multiplier of Experience at low level 669 

Fig.6. Comparison of probability density of multiplier 670 
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 672 

Fig. 7. Correlation coefficient obtained by data assimilation using Halen simulator 673 

experiments 674 
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Table Caption List 677 

 678 

Table 1 PSFs of SPAR-H and multipliers. 

Table 2 PSF of SPAR-H and outcomes of scenarios A to C. 

Table 3 Comparison of multiplier obtained by outcomes of scenarios A to C. 

Table 4 PSF of SPAR-H and outcomes of Halden simulator experiments. 

Table 5 Comparison of multiplier obtained by Halden simulator experiments. 

Table 6 Comparison of HEP for scenarios of Halden simulator experiments. 

Table 7 Breakdown of variance of HEP. 
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Table 1 PSFs of SPAR-H and multipliers. 680 

PSF Level 
Multiplier  
(Action task) 

Available time 

Inadequate HEP=1.0 

Barely adequate 10 

Nominal 1 

Extra 0.1 

Expansive 0.01 

Stressor 

Extreme 5 

High 2 

Nominal 1 

Complexity 

Highly complex 5 

Moderately complex 2 

Nominal 1 

Experience/Training 

Low 3 

Nominal 1 

High 0.5 

Procedures 

Not available 50 

Incomplete 20 

Available, but poor 5 

Nominal 1 

Ergonomics/HMI 

Missing/Misleading 50 

Poor 10 

Nominal 1 

Good 0.5 

Fitness for duty 

Unfit HEP= 1.0 

Degraded Fitness 5 

Nominal 1 

Work Processes 

Poor 5 

Nominal 1 

Good 0.5 
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Table 2 PSF of SPAR-H and outcomes of scenarios A to C. 682 

Scen. Avail. time Stressors Complex. Exper. Procedure
s 

HMI Fitness WorkProc Number of 
failures 

A Nominal Extreme Nominal Nominal Nominal Nominal Nominal Nominal 1 in 100 times 
B Nominal Nominal Moderate Nominal Nominal Nominal Nominal Nominal 1 in 100 times 
C Nominal Nominal Nominal Low Nominal Nominal Nominal Nominal 1 in 100 times 
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 684 

Table 3 Comparison of multiplier obtained by outcomes of scenarios A to C. 685 

Multiplier Item Reference 
value 

MCMC BMC 
Value Diff. from ref. (%) Value Diff. from ref. (%) 

Stressor at 
extreme 

level 

Mean 5.46 5.47 0.2 5.47 0.2 
95 percentile 10.25 10.34 0.8 N/A N/A 
5 percentile 2.36 2.34 -0.7 N/A N/A 

SD 2.53 2.56 1.1 2.54 0.5 

Complexity 
at moderate 

level 

Mean 2.36 2.36 0.1 2.36 -0.1 
95 percentile 4.51 4.54 0.6 N/A N/A 
5 percentile 0.99 0.99 0.0 N/A N/A 

SD 1.14 1.15 0.6 1.14 -0.3 

Experience 
at low level 

Mean 3.44 3.45 0.2 3.45 0.1 
95 percentile 6.54 6.61 1.0 N/A N/A 
5 percentile 1.46 1.47 0.5 N/A N/A 

SD 1.64 1.63 -0.5 1.64 0.4 
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 687 

Table 4 PSF of SPAR-H and outcomes of Halden simulator experiments. 688 

Scen. Avail. time Stressor Complex. Exper. Procedures HMI Fitness WorkProc Number of 
Failure 

1A Extra Nominal Moderate Nominal Avail. But poor Nominal Nominal Nominal 0 in 4 times 
1C Barely adeq. High Moderate Nominal Avail. But poor Nominal Nominal Nominal 1 in 4 times 
3 Extra Nominal Nominal Nominal Nominal Nominal Nominal Nominal 0 in 4 times 
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Table 5 Comparison of multiplier obtained by Halden simulator experiments. 690 

PSF and level Item (A) 
Original 

data 

MCMC BMC Diff. between 
MCMC and BMC 
((B)-(C))/(C) (%) 

(B) Value 
Adjustment amount 

((B)-(A))/(A) (%) 
(C) Value 

Adjustment amount 
((C)-(A))/(A) (%) 

Avail. time at  
extra level 

Mean 0.10 0.10 0.0 0.10 0.0 0.0 
SD 0.05 0.05 0.0 0.05 0.0 0.0 

Avail. time at  
barely adeq. level 

Mean 10.00 10.61 6.1 10.66 6.6 -0.5 
SD 5.00 5.07 1.4 5.07 1.4 0.0 

Stressor at  
high level 

Mean 2.00 2.13 6.5 2.13 6.5 0.0 
SD 1.00 1.01 1.0 1.01 1.0 0.0 

Compexity at  
moderate level 

Mean 2.00 2.13 6.5 2.13 6.5 0.0 
SD 1.00 1.02 2.0 1.02 2.0 0.0 

Procedures at  
avail., but poor 

level 

Mean 5.00 5.31 6.2 5.31 6.2 0.0 

SD 2.50 2.52 0.8 2.53 1.2 -0.4 
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Table 6 Comparison of HEP for scenarios of Halden simulator experiments. 692 

Scen. Item (A) 
Original 

data 

MCMC BMC Diff. between 
MCMC and BMC 
((B)-(C))/(C) (%) 

(B) Value 
Adjustment amount 

((B)-(A))/(A) (%) 
(C) Value 

Adjustment amount 
((C)-(A))/(A) (%) 

1A 
Mean 1.00×10-3 1.13×10-3 13.1  1.13×10-3 13.1  0.0  

SD 8.66×10-4 8.45×10-4 -2.5  8.49×10-4 -2.0  -0.5  

1C 
Mean 1.67×10-1 2.04×10-1 22.1  2.04×10-1 22.6  -0.4  

SD 1.37×10-1 1.21×10-1 -12.3  1.21×10-1 -12.2  -0.1  

3 
Mean 1.00×10-4 1.00×10-4 0.0  1.00×10-4 0.0  0.0  

SD 5.00×10-5 5.00×10-5 0.0  5.00×10-5 0.0  0.0  
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Table 7 Breakdown of variance of HEP.  694 

Scenario Method 

Contribution from 
variance of multipliers 

(∑(𝑆𝐶𝑖𝜎𝑖)2

𝑖

) 

Contribution from 
covariance of multipliers 

(2 ∑ ∑ 𝑆𝐶𝑖𝑆𝐶𝑗𝜎𝑖,𝑗

𝑗,𝑗≠𝑖𝑖

) 

Total variance 
of HEP 

(𝜎𝐻𝐸𝑃
2) 

1A 
Original Data 7.50×10-7 0 7.50×10-7 
MCMC 7.59×10-7 -4.58×10-8 7.13×10-7 
BMC 7.61×10-7 -4.09×10-8 7.20×10-7 

1C 
Original Data 1.89×10-2 0 1.89×10-2 
MCMC 1.94×10-2 -4.84×10-3 1.45×10-2 
BMC 1.94×10-2 -4.66×10-3 1.47×10-2 

3 
Original Data 2.50×10-9 0 2.50×10-9 
MCMC 2.50×10-9 0 2.50×10-9 
BMC 2.50×10-9 0 2.50×10-9 

 695 


