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Abstract
Let 7(N) be the subgroup of the mapping class group of a nonorientalrface
N (possibly with punctures and/or boundary components) rgée@ by twists about
two-sided circles. We obtain a simple generating setZfN). As an application we
compute the first homology group (abelianization)7ofN).

1. Introduction

Let Ng be a smooth, nonorientable, compact surface of ggnwith s boundary
components and punctures. Ifs and/orn is zero then we omit it from the notation.
If we do not want to emphasise the numberss, n, we simply write N for a surface
Ngys. Recall thatNg is a connected sum af projective planes andi\lcjS is obtained
from Ny by removings open disks and specifying the sEt= {z, ..., z,} of n dis-
tinguished points in the interior oRg.

Let Diff(N) be the group of all diffeomorphismls: N — N such thath is the
identity on each boundary component ém@) = . By M(N) we denote the quotient
group of Diff(N) by the subgroup consisting of maps isotopic to the identitlyere we
assume that isotopies fiXx and are the identity on each boundary compongwti(N)
is called themapping class groupf N. The mapping class group of an orientable
surface is defined analogously, but we consider only oriemtgoreserving maps.

If we assume that maps and isotopies fix theXSgdointwise then we obtain the so-
called pure mapping class grouP M(Ng ). If we also require that maps preserve the
local orientation around each of the punctures then we okt groupPM*(Ng’S).

It is an easy observation th®M(Ng) is the subgroup of index! in M(Ng,) and
PM*(Ng,) is of index 2 in PM(Ng ).

Define also7 (N) to be thetwist subgroupof M(N), that is the subgroup gener-

ated by Dehn twists about two-sided circles. The main godhefpaper is to establish
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718 M. STuKow

basic algebraic properties of the grotigN). Namely, we find a simple generating set
for this group and compute its abelianization.

By abuse of notation we will use the same letter for a map amdsdtopy class
and we will use the functional notation for the compositidnddfeomorphisms.

1.1. Background. The study of algebraic properties of mapping class groups of
an orientable surface goes back to the work of Dehn [3] andsblie[14, 15, 16]. Prob-
ably the best modern exposition of this reach theory is aeguarticle by Ivanov [6].
On the other hand, the nonorientable case has not beendtudieh. The first signif-
icant result is due to Lickorish [11], who proved that the siwsubgroupZ (Ng) is a
subgroup of index 2 in the mapping class graip(Ng). Moreover, M(Ngy) is gener-
ated by Dehn twists and a so-called “crosscap slide” (or &adMieomorphism”). Later
Chillingworth [2] found a finite generating set for the greup(Ng) and M(Ng), and
Birman and Chillingworth [1] showed how these generatints s&n be derived from
the known properties of the mapping class group of the afdatdouble cover of,.

These studies were continued much later by Korkmaz [10], felbad finite gen-
erating sets for the group$1(Ng) and PAM(Ng). Korkmaz [9, 10] also computed the
first integral homology group of\{(Ng), and under additional assumptign> 7, of
PM(Ng). He also showed [10] thal (Ng) is of index 2*Inl in M(Ng), provided
g=>7.

Recently [17], we extended some of the above results torarpitmapping class
groupsM(Ng ) and PM(Ng), providedg > 3. In particular we obtained simple gen-
erating sets for these groups and we computed their alwdidonms.

Finally, let us mention that recently Wahl [20] proved sont&bgity theorems for
the homology of mapping class groups of nonorientable sasfeand using the ideas
of Madsen and Weiss [13] she managed to identify the stabienedtcohomology of
M(N).

Another very promising project is the work of Szepietowsk®] who showed a
method to obtain a presentation for the gra(Ng ;). Using this technique he man-
aged [18] to derive a presentation of the gratyp(Ny,).

1.2. Main results. The present paper is a natural continuation of the results
mentioned above, especially it should be thought as a agation of [17]. Namely,
we study basic algebraic properties of the twist subgroughefmapping class group
of a nonorientable surface of gengs> 3. The crucial observation which makes such
a study possible is thaf (Ng ) is a subgroup of index 2 im>M+(NgYS) (hence of in-
dex 2*Inl in M(Ng )—see Corollaries 6.3 and 6.4). Using this observation, htain
surprisingly simple generating set for the twist subgrogge-Theorem 6.2. Moreover,
we compute the first integral homology group (abelianizgtiof this subgroup—see
Theorem 8.1.

The reason for the assumptign> 3 is the exceptional (and non-trivial) nature of
the caseg =1 andg = 2. Most of our analysis make no sense in these cases, hence
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we leave them for future consideration.

2. Preliminaries

By a circle on N we mean an unoriented simple closed curveMoR X, which is
disjoint from the boundary oN. Usually we identify a circle with its image. More-
over, as in the case of diffeomorphisms, we will use the sastierlfor a circle and its
isotopy class. According to whether a regular neighbouthaba circle is an annulus
or a Mobius strip, we call the circlavo-sidedor one-sidedrespectively. We say that a
circle is genericif it bounds neither a disk with less than two punctures nor aiM$
strip disjoint from X.

Let a be a two-sided circle. By definition, a regular neighbourhad a is an an-
nulus, so if we fix one of its two possible orientations, we cifine theright Dehn
twist t; abouta in the usual way. We emphasise that since we are dealing with n
orientable surfaces, there is no canonical way to choosetieatation ofS,. There-
fore by a twist about we always mean one of two possible twists abauthe second
one is then its inverse). By boundary twistwe mean a twist about a circle isotopic
to a boundary component. It is known thataifis not generic then the Dehn twikt is
trivial. In particular a Dehn twist about the boundary of a Misbstrip is trivial—see
Theorem 3.4 of [4].

Other important examples of diffeomorphisms of a nonodbl# surface are the
crosscap slideand thepuncture slide They are defined as a slide of a crosscap and
of a puncture respectively, along a loop. The general cdiveris that one considers
only crosscap slides along one—sided simple loops (in sufdrma it was introduced
by Lickorish [11]; for precise definitions and propertiee 4&0]).

The following two propositions follow immediately from trebove definitions.

Proposition 2.1. Let N, be an oriented regular neighbourhood of a two-sided
circle a in a surface N and let f: N — N be any diffeomorphismThen ftf-! =
tt@, where the orientation of a regular neighbourhood ofaf is induced by the ori-
entation of f(Na).

Proposition 2.2. Let K be a subsurface of N which is a Klein bottle with one
boundary componerg, and let y be a crosscap slide on K such th&t=yt;. Then
for any diffeomorphism fN — N, fyf~!is a crosscap slide on (K) such that

(fyf™1)? =ty(e),

where the orientation of a regular neighbourhood of¢)¥ is induced via f by the ori-
entation of a regular neighbourhood &t

One of our main tools in studying properties of mapping clgssups is the so-
called lantern relation The proof can be found in Section 4 of [7].
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a

a,

(i)
Fig. 1. Circles of the lantern and torus with a hole relations

Proposition 2.3. Let S be a sphere with four holes embedded in a surfag&N
and let &, a3, ay, ag be the boundary circles of .SDefine also a», a3, a3 as in
Fig. 1 (i) and assume that the orientations of regular neighbourhoodthese seven
circles are induced from the orientation of $hen

tagtay taytag = tay Hlay stay -

Finally, recall thetorus with a hole relation-see Lemma 3 of [12]. It can be also
thought as an instance of the so-calkgdr relation [5].

Proposition 2.4. Let S be a torus with one boundary component ¢ embedded in
a surface N\ £ and let 4 and & be two two-sided circles as iRig. 1 (ii). If the

orientations of regular neighbourhoods of,a, and c are induced from the orientation
of S then

(ta,ta,)® = te.

3. Two models for a nonorientable surface

Let g=2r +1 for g odd andg = 2r +2 for g even. Represent the surfabe= NSYS
as a connected sum of an orientable surface of genasd one or two projective
planes (one forg odd and two forg even). Figs. 2 and 3 show this model Nf—in
these figures the big shaded disks represent crosscaps tieic interiors are to be
removed and then the antipodal points on each boundary awenpare to be identi-
fied. The smaller shaded disks represent componenéNofwe will call them holes.

It is well known thatN = Ng ¢ can be also represented as a sphere withunc-
tures, s holes andg crosscaps—cf. Fig. 4. In order to distinguish this modehfrthe
previous one (provided by Figs. 2 and 3), let us denote itNay The goal of this
section is to construct an explicit homeomorphigm N — N.

Letag,...,ay anduy, ..., us be two-sided circles oiN as in Figs. 2 and 3
are the boundary circles). Define alsg ..., vn+s to be the arcs as in Fig. 5 (i) and
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Fig. 5. Circlese and arcsy;.
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Fig. 7. CuttingN and N for (g, s, n) = (4, 0, 1).

observe that if we culN along the circlesa, ..., ay and arcsv, .. ., vn+s We obtain
a polygonA with sides

a, ..., 3891, dg,dg-1, ..., &1, V1, V1, ..., Un, Un,

Un+1, ull Un+ly - - -y Untss uS! Un+s, a-ly L] agfll agy agfll L] a2

where the labels indicate from which circle/arc the edgeedmm. Identical polygon
can be obtained by cutting the surfaﬁealong the circlesy,...,ay and arcsvy, ..., vpss
indicated in Fig. 4. Moreover, it is not difficult to see thaetidentification patterns
required to reconstrudd and N form A are identical (cf. Figs. 6 and 7). This implies
that there exists a homeomorphista N — N which maps circlesy,...,ag, Ug,...,Us
and arcsvy, ..., vn+s in Figs. 2, 3, 5 (ii) to the circles/arcs with the same labels i
Fig. 4.

The above geometric description df is very convenient because it provides a
simple method for transferring circles between two moddisNo In fact, if c is a
circle on N then c becomes a collection of arcs ih. Moreover, up to isotopy we
can assume that does not pass through any of the verticesAof Since A is simply
connected each of this arcs is uniquely determined by thiigoof its endpoints. To
obtain the imaged(c) it is enough to reconstruct the surfabefrom A keeping track
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Fig. 8. Circles¢ and A.

of the collection of arcs composing In practise this can be easily done using pictures
like Figs. 6 and 7. Moreover, it is not difficult to see that wan ¢eansfer not only the
circles but also the orientations of their neighbourhodést (exists)}—small plus and
minus signs in Figs. 6 and 7 indicate our choice of the ort@raof A. Of course
the above procedure works as well in the other direction.

Keeping in mind the above description, from now on we willnsger circles form
N to N and vice versa without further comments.

4. Generators for the group PM+(N8,S)

Let

C:{aZ!"'lagfllbly"'lbr!Cll"'!Cr!ell"'!a']+Sfllula"'luS}

for g odd, and

C:{aZI"'!ag—lvbla"'abl’+11C11"'ycl’yela"'yel1+5—11uly"'!uS}

for g even, where the circles;, by, ¢, u; are as in Figs. 2 and 3 ang are as in
Fig. 5 (ii). Moreover, these figures indicate the orientadiaf local neighbourhoods of
circles inC. We did it by indicating the direction of twists about thesecles. There-
fore by a twist about one of the circles thwe will always mean the twist determined
by this particular choice of orientation (the general ridethat we consideright Dehn
twists that is if we approach the circle of twisting we turn to thghti Define alsoy
to be a crosscap slide supported on a Klein bottle cut of bycttee & indicated in
Fig. 8. To be more precise, in terms of the modll let C4_; and Cy be crosscaps as
in Fig. 9. The same figure shows the ciréle-it cuts off these two crosscaps. Hence
we can definey to be a slide of the crosscapy along the pathu indicated in that
figure. In particulary? =t;.

Now we are ready to state the main theorem of this sectionctwls a simplifi-
cation of the known generating set for the grdBW*(Né‘YS).
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Fig. 9. Circle&.

Fig. 10. Circlesf; and h;.

Theorem 4.1. Let g> 3. Then the mapping class grod?.)M*(Ng’S) is generated
by {ti, y |l €C}.

Proof. By Theorem 5.2 of [17] and by Propositions 2.1 and 2% group
PM*(Ng,) is generated by
e ({t,y|leC}if gis odd,
o {t, (ta, o ta, ) Y (tay ota, ). 15ty | 1 € C} if g is even,
where is as in Fig. 8 (i) and

=CU{fq, ..., fhas)

for fi,..., faes @s in Fig. 10 (i) (Fig. 10 (i) defines; for g even; forg odd just forget
the second crosscap).

Therefore to complete the proof it is enough to show tha i (), y || € C) then
tepeens o € G andt, € G for g even.

Let hl ..... hn+s be circles as in Fig. 10 (ii) (as before, fgrodd forget the second
crosscap). We claim that
o fi=t7M; %y Mo (i) if g is odd,
o fizy ittt e t2 th (h) if g is even.
In fact, using the procedure of transferring circles betwego modelsN and N de-
scribed in Section 3, it is not difficult to check that Fig. Tl shows the circlet, (h;)
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Fig. 11. Circlesty, (h;) and y~t, (h;) for g odd.

on N and Fig. 11 (i) shows/~1(t,, (hi)). Then transferring this circle back td easily
leads to the first of the above relations. The second one cagrdwed analogously.

By Lemma 3.3 of [17],t,, € G for i =1,...,n+s. Hence by Proposition 2.1,
ty, € G providedt, € G. But this follows from the relation

A =1y, Y(ag-2)- O

5. The action of M(Ngs) on Hi(Ngs, R)

It is known that H(N, R) has a basis in which every linear mdp: H;(N, R) —
Hi1(N, R), induced by a diffeomorphisnf: N — N, has a matrix with integral co-
efficients. Therefore we can define tdeterminant homomorphism:IPM*(N) — Z,
as follows: D(f) = det(f,) (we use the multiplicative notation for the grodp).

Lemma 5.1. Let c be a two-sided nonseparating circle on When Ot;) = 1.

Proof. It is an easy topological fact, thatdf andc, are two-sided, nonseparating
circles in N such that bothN \ ¢; and N \ ¢, are either both orientable or both non-
orientable, thenf(c;) = ¢, for some diffeomorphism oN. Let us stress the fact that
f may not be the identity 08N, hence we can not assume thainduces an element
of the group M(N), however this is of no importance to what follows. In pautar,
(te,)+ and €,). are conjugate in Aut({N, R)), henceD(t,) = D(t;,). Moreover, ifg
is odd then there is no nonseparating two-sided cicclen N such thatN \ c is ori-
entable. Therefore, to prove the lemma it is enough to shaw Gtt,,) = 1 and that
D(ty.,) =1 if g is even. This can be easily done—we skip the computations. []

Lemma 5.2. Let ¢ be a two-sided separating circle on Nhen(t.).: Hi(N,R) —
Hi(N, R) is the identity map

Proof. Sincec is two-sided, we can fix an orientation of a regular neighhood
of c. Therefore, for any circlea transverse tcc, we can define the algebraic inter-
section numbelt (c, a) in a usual way (we do not claim tha{c, a) has any particular
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properties—it just counts the pointsN a with appropriate signs). By the definition of
a twist, it is obvious that

[te(2)] = [a] £ I (c, &)[c]

where K] denotes the homology class vf Moreover, it is clear that it is separating
then | (c, a) = 0 for any circlea. Therefore

[te(@)] = [a]
and the lemma follows by the fact that homology classes alesrspan (N, R). [
By Lemmas 5.1 and 5.2 we obtain
Proposition 5.3. Let ¢ be a two-sided circle on NThen Ot.) = 1.

The explicit definition ofy made in the previous section easily leads to the fol-
lowing

Proposition 5.4. Let D: PM*(N) — Z, as above Then Q) = —1.

6. Generators for the twist subgroup

The main goal of this section is to find a simple generatingf@ethe twist sub-
group 7 (N). Our main tool will be the following well known fact from cdwnatorial
group theory—see for example Chapter 9 of [8].

Proposition 6.1. Let X be a generating set for a group G and let U be a left
transversal for a subgroup HThen H is generated by the set

{uxaxt:ueU, xe X, ux¢ U},
where{g} =gHNU for g € G.
Let 7(N) denote the kernel of the homomorphism
D: PM*(N) — Z
defined in Section 5. The reason for our choice of notation mdkcome apparent af-

ter Corollary 6.3 below, where we will prove that in fa@i(N) = 7(N) is the twist
subgroup.
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(ii)
Fig. 12. Circleyr for g odd and even.

Theorem 6.2. Let g> 3. Then the groupZ (N) is generated by
o {t|leCU{fy,..., frs_1,&}}ifg=3,
o {ti|leCcuUfy, &)} ifg=>5odd
o {t|leCuUf{r v,&}} if geven
where is the two-sided circle indicated iRig. 12, fy,..., fnes—1 are as inFig. 10 (i),
A is as inFig. 8 (ii) and ¢ is as inFig. 8.

Proof. By Proposition 5.4D is onto, hence
[PM*(N): T(N)] =2

and as a transversal faF(N) we can takeU = {1, y}. By Theorem 4.1 and Proposi-
tions 6.1, 5.3, 5.4 7(N) is generated by

{t, yty ™ y2 1 e C).

Clearly the circles
e Up,...,Usif g=3,
° az,...,ag,g,bl,...,b,,l,Cl,...,cr,l,el,...,ems,l,u1,...,us if gZSOdd,
e &,...,a33by,...,b,C,..., G 8., Beso1, UL, ..., Us if g even,
are disjoint from the support of (cf. Figs. 2, 3 and 8). Sincgty ! :tyi(l) andy? =t;,
T(N) is generated by
o {ti |l eCU{y(a), y(by), y(cr), (&), - .., Y(enss-1), &1} if g =3,
e {ti |l eCuU{y(ag-2), Y(ag-1), y(r), y(&), £}} if g >5 odd,
o {tlleCU{y(ag-2), ¥(@g-1), y(br+1), £1} if g even.
We definedy using N, so it is convenient to transfer circles to that model. Once
this is done, it is not difficult to check that we have relasion
o Yy(@)=ap, y(c1)=by, y () =1,..., Y Hens 1) = Tnes 1 if g =3, wherez is
as in Fig. 13,
e Y(@g2)=V, y(@g-1) =ag-1, y(&)=br if g>5 odd,
o Y(@g2) =ty -(A), y(@g-1) = ag-1, y*(br+1) = v if g even.
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Fig. 13. Circlesty, ..., Th+s 1 for g = 3.

To complete the proof it is enough to show that the twigts..,t can be replaced

Tn+s—1
by twiststy,, ..., ts,., in caseg = 3. In order to prove this, lep; =t *t;*(z). Then
it is straightforward to check that

T =t, Bt (f) for i=2,...,n+s—1.
Therefore, using the relatiomy = f;, we can inductively replace each by ty,. ]

Corollary 6.3. Let g > 3. Then the kernel of the Qeterminant homomorphism
D: PM*(N) — Zj is the twist subgroup ofM(N), that is 7(N) = 7(N).

Proof. ClearlyZ (N) < PM*(N) and by Proposition 5.3,
T(N) < kerD = T(N).
On the other hand, by Theorem 6.?,(N) < 7T(N). ]

Corollary 6.4. Let g > 3. Then the twist subgrou@ (N) has index2"*!n! in
M(Ngs).

Proof. By the previous corollary7 (N) = ker D, so the conclusion follows from
the obvious equality

[M(N) : ker D]

=[M(N) : PM(N)] - [PM(N) : PM*(N)] - [PM*(N) : kerD]=n! . 2".2, []

In the case of a closed surfadg, the above corollary was first proved by Lickorish

[11]. Later Korkmaz [10] proved it for a punctured surfab under additional as-
sumptiong > 7.

7. Homological results for the twist subgroup

Recall that for a groups, the first homology groupH:(G, Z) coincides with the
abelianizationG/[G, G]. For the rest of the paper, for anfy € 7(N) let [f] denotes
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"
G, Ce
: br+l
(1 (ii)

Fig. 14. Circlebs; and crosscap slidg;, Lemma 7.3.

the homology class of in Hi(Z7(N), Z). Moreover, we will use the additive notation
in Hi(7T(N), Z).

7.1. Homology classes of non-peripheral twists.

Lemma 7.1. Leta and b be two two-sided circles on N such th&, b) =1 and
the orientations of regular neighbourhoods of a and b areuretl from the orientation
of aUb. Then { and t, are conjugate in7 (N). In particular [ty] = [tp] in H1(7 (N)).

Proof. The lemma follows form the braid relation
th = (tatn)ta(tatn) " O

Lemma 7.2. Assume that g¢- 3 and let a and b be two nonseparating two-sided
circles on N such that N a and N\ b are nonorientable Then § is conjugate in
T(N) either to t or to t; ™.

Proof. By Lemma 7.1, it is enough to prove that there exits queece of two-
sided circlespy,..., px such thatp; =a, pxk=bandl(p;, pi+1)=1fori=1,...,k—1. In
other words, using the terminology of [10], we have to provatta andb are dually
equivalent. For a nonorientable surface with punctures was proved in Theorem 3.1
of [10]. It is straightforward to check that the same prooplé&s to the case of a
surface with boundary. O

Lemma 7.3. Let g=2r +2> 4. Then §,,, is conjugate in7(N) to tvjl, where
¥ =y Y(br+1) is as in Theorem 6.2.

Proof. Fig. 14 (i) shows the circlb 11 as a circle onN. Using the notation from
this figure, lety; fori =1,...,g—1, be a slide of the crosscdp.; along the loop
ui as shown in Fig. 14 (ii). In particulayg_1 = y. It is straightforward to check that

Yo—2ta, ,Yo-3tag 5 - - - Yola, Y1 (br+1) = yg;ll(brﬂ) =



730 M. STuKow

Fig. 15. Circlesa, b, b’ andc, Lemma 7.4.

Moreover, yg ota, , - - - Yota, Y1, @S a product of twists and even number of crosscap
slides, is in the kernel of the determinant homomorphBmPM*(N) — Z, defined
in Section 5. Therefore, by Corollary 6.%;,, is conjugate in7 (N) to eithert, or
tl;l. Careful examination of the orientations of local neighthmods ofby.; and v

shows that in facty,,, is conjugate tdvjl. O
Lemma 7.4. Let g> 4. Then[t2] =0 in Hy(T(N)).

Proof. Fig. 15 (i) shows three two-sided nonseparatinglesra, b and ¢ such
that | (a, b) =1, I(b, c) =1 and the complement of each of these circleNiris non-
orientable. Hence by Lemma 7.1, all three twigtst, andt; are conjugate irZ (N).
Similarly, Fig. 15 (ii) shows that,, ty andt;! are conjugate. Hencg andt;! are
conjugate in7(N). By Lemma 7.2, the same is true fgy. O

REMARK 7.5. Observe that i andb are two-sided nonseparating circles hNn
such thatN \ a and N \ b are nonorientable, then Lemma 7.2 gives us no hirt, if
is conjugate tot, or to tgl. However, by Lemma 7.4, as long gs> 4 and we are
concern with homology classes, the above ambiguity is erdss.

Now let recall some results form [17].

Lemma 7.6 (Lemma 6.7 of [17]). Let g> 7. Then[t,] =0.

Lemma 7.7 (Lemma 6.6 of [17]). Assume g-2r +2> 6. Then[t,,,] = 0.

Lemma 7.8 (Lemma 6.12 of [17]). Assume g> 5. Then the homology classes
of the boundary twists,f, . . ., t,, are trivial in H1(7(N)).

Lemma 7.9 (Lemma 6.14 of [17]). Assume that g- 3 and letx be a two-sided
separating circle on N such that one of the components vk i a disk A containing
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Fig. 16. Lantern relation, Lemma 7.10.

the punctures z..., z, and the holes y..., us. Moreover assume that the orientation
of A agrees with the orientations of neighbourhoods ef.u., us and . Then

[te] = [tu, - - tu ] = [tu, ] + - - - + [t ]-
Although each of the above lemmas was originally stated imgeof the group

PM*(NQYS), by Lemmas 7.1, 7.4 and by Remark 7.5, their proofs work as iwehe
case of the twist subgroup (N).

Lemma 7.10. Let g> 4 and let 8 be a separating circle on N such that one

component of N, 8 is Klein bottle with one hole and the second component is non-
orientable Then[tg] = 0. In particular

[y’]=[t] =0.

Proof. Fig. 16 shows that there is a lantern configuratiorhweite circleg and
all other twists either trivial or conjugate tg,. Hence

[ta,ta,] = [tsta, ta,]- O

Lemma 7.11. Let g> 4 and lety be a circle on N such that one of the com-
ponents of N\ y is a nonorientable surface of gendswith one hole Then[t,] = 0.

Proof. Fig. 17 shows that there is a lantern configuratiom wite circley and all
other circles either bounding Mdbius strips or satisfying 8ssumptions of Lemma 7.10.
O
7.2. Homology classes of boundary twists.

Lemma 7.12. Let g=4. Then

[tul] + [tuz] +..-+ [tus] =0.
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Fig. 17. Lantern relation, Lemma 7.11.
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Fig. 18. Lantern relation, Lemma 7.12.
Proof. By Lemma 7.9,

[tul] + [tuz] +oe-t [tus] = [tK]!

wherek is a circle onN bounding all the punctures and boundary circles. On therothe
hand, Fig. 18 shows that there is a lantern configuration with circley and all other
circles either bounding Mébius strips or satisfying the agstions of Lemmas 7.10
or 7.11. L]

Lemma 7.13. Let g=> 3. Then2[ty]=[t7]=0for j=1,...,s.

Proof. Consider the lantern relation indicated in Fig. 1%ind Lemma 7.1, it is
easy to prove that all four twists about nonseparating esr@h this figure are conjugate
to ty,, hence we have

[ty ta s, T = [ty ty e, ]-

Therefore it is enough to show thdt, 1= t,;l for some f € T(N).

The circlen; divides the surfaceN into a projective planeN’ with two holes and
a nonorientable surfachl”. Let h: N — N be a diffeomorphism obtained as follows.
On each ofN” and N”, h is a slide ofn; along the core of a crosscap such thais
—id on n;. Clearlyh € PM*(NS]S) and ht,, h-1= tn—jl. By Proposition 5.4,D(y) = -1
where D: PM*(N) — Z, is the determinant homomorphism. Moreowdy, yl= t),
hence by Corollary 6.3, eithef =h or f =hy is the required diffeomorphism. []
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Fig. 20. Relation tf,t5,)® = t,.

7.3. Homology classes of twists fog = 3.

Lemma 7.14. Assume that g 3. Then
12[ta,] = [te] = [tu, ]+ [tu,] + - - + [t,]-
In particular 12[t,,] = [t] =0 if s=0.
Proof. Applying Lemma 2.4 to the configuration shown in Fi@, 2ve obtain
(tayta)° = o
Hence by Lemmas 7.1 and 7.2,
(7.1) 124, ] = [ta]-

Using Lemma 7.1, one can check that all twists about nonagpgressential circles
indicated in Fig. 21 are conjugate tg. Therefore we have a lantern relation

[taltalt/c] = [taltalta]a
wherek is as in Lemma 7.9. Together with (7.1) this yields

(7.2) 128, ] = [tc].
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Fig. 21. Relation f,ta t,] = [ta, ta, te]-
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Fig. 22. Relation fts, t;1] = [tet; s, ]-

ole)

K

Fig. 23. Lantern relation, = tete,tz,.
On the other hand, by the lantern relation provided by Fig.\28 have
[teta,t '] = [tety; o).
By (7.2), this gives 12}] = [t,] = [t:]. Moreover, by Lemma 7.9,
[te] = [tu ] + [te, ] + - - - + [t ].
Lemma 7.15. Assume that g 3. Then24[t,] = 0.

Proof. Fig. 23 shows that there is a lantern relation

te = tety Uy,
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wherex is as in Lemma 7.14. Moreover by the proof of that lemmia] § [ts] =
[t,] = [tc]. Hence

[te] = 3[t].

Using once again Lemma 7.14, we havet23f 2[t] = 0. O
7.4. Some special cases.

Proposition 7.16. Let N = Ng be a nonorientable surface of genus g with s
holes and n puncturesThen

([ta]) = Z12 for (g, s, n)=(3,0,0),
Hi(7(N), Z) = § {([ta,]) = Z2a for (g,s,n)=(3,1,0),
<[t31]1 [tb2]> = ZZ x Z for (91 S, n) = (41 0! 0)

Proof. By Theorem 3 of [1], the group1(N3) has a presentation
M(N3) = (tal, taZ! y | taltaztal = taztaltagv ytaly_l = ta_lli
Yoy T =0 ¥ =1, ()’ = 1),

Using U = {1, y} as a transversal for the subgroGgNs), it is straightforward to ob-
tain that

T(Ng) = (ta,, ta, | tayta,te, = tatatay, (tayta,)® = 1).
This implies that
Hi(T(N3)) = (ts, | 122 = 1).

The reasoning for the surfac@ds 1 and N4 is similar, one has to use the known pre-
sentations for the groups1(Ns 1) and M(N4)—see Theorem 7.16 of [19] and Theo-
rem 2.1 of [18]. ]

8. Computing H1(Z(N), Z)

Theorem 8.1. Let N = Ng¢ be a nonorientable surface with n punctures and s
holes Then

Z12 if g=3 and s=0,
ZoaxZ5' if g=3 and s>1,
| Zy, x Z if g=4 and s=0,
Hi(T(N). 2) = Z5 < Z if g=4 and s>1,
Zo if g=5,6,
0 if g=>7.
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Proof. By Theorem 6.2, Corollary 6.3, Lemmas 7.2 and 7.37KIN)) is gener-
ated by
o [ta] [t], [to]. ... [to] if gis odd,
o [ta]: [to,], [t], [tu], ..., [to,] if gis even.
Moreover
[ty,] =0 if g>7 (Lemma 7.6),
[tp.,] =0 if g> 6 even (Lemma 7.7),
[ty,]=---=[t,]=0if g>5 (Lemma 7.8),
[t:]=0 if g >4 (Lemma 7.10),
[ty,]+ - +[t, ]=0if g=4 (Lemma 7.12),
[te] = [ty, ]+ - - - + [tu] = 12[t,] if g =3 (Lemma 7.14).
Hence H(7(N)) is generated by
i [ta1]1 [tU1]= e [tUS—1] if g = 31
i [tal]v [tbz]v [tul]v R [tUs—l] if g = 41
o [ty,]if g=5,6,
and H(Z(N)) =0 if g > 7. In particular this concludes the proof in the cage 7.
Therefore in what follows we assume that 6.
We also know that

(8.1) 2ty,]=0 if g>4 (Lemma 7.4),

(8.2) 2ty ]=---=2[t,_,]=0 if g>3 (Lemma 7.13),
(8.3) 12[t,]=0 if g=3 and s=0 (Lemma 7.14),
(8.4) 24[t,,]=0 if g=3 (Lemma 7.15).

Hence it is enough to prove that every relation in the abetjesup H(7 (N)) is a
consequence of the relations (8.1)—(8.4) above.
Let g =3 and suppose that

(85) a[tal] + El[tul] oot 85—1[tus—1] =0.

If s> 0 defineN’ to be a surface of genus 3 obtained frainby forgetting all the
punctures and gluing a disk to each boundary component beit sayus. If s=0
define N’ by forgetting about the punctures M. We have a homomorphism

®: T(N) — T(N').
Clearly ®(t,) =0 for 1<i <s—1, hence equation (8.5) yields
afta,] =0 in Hy(7(N").

By Proposition 7.16¢ must be a multiple of 24 i > 0 and a multiple of 12 is=0.
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Therefore by relations (8.3) and (8.4), equation (8.5) bexo
(8.6) ety ]+ - - - +es_a[ty,,] = 0.

This concludes the proof i6 < 1, hence assume that> 2. Now let N; for j =
1,...,s—1, be the surface obtained frofd by forgetting the punctures, gluing a
cylinder to the circlesu; and us and finally gluing a disk to each of the remaining
boundary components. Theh?lj is a closed nonorientable surface of genus 5. Let

T;: T(N) = M(N))

be the homomorphism induced by inclusion. Siftgt,) =0 fori 7 j andi #s,
equation (8.6) gives us

gilty,]=0 in Hi(M(N;)).

Sinceu; is a nonseparating two-sided circle oh, by Theorem 1.1 of [9]¢; is even.
By relation (8.2), equation (8.6) becomes 0 = 0, which coteslehe proof forg = 3.
The proof forg = 4 is analogous. If we assume that

C([tal] + ,B[tbz] + gl[tul] LR 85_1[tus—1] =0

the we can show that = 8 = 0 in the same manner as in the cage 3, namely by
mappingN into a closed surface of genus 4 and using Proposition 7.6ila8ly, we
can show that; =- .- =¢5_; =0 by mappingN into a closed surface of genus 6 and
using Theorem 1.1 of [9].

If g=5 org=6 the proof is even simpler, it is enough to mhbpinto a closed
surface and use Theorem 1.1 of [9], we skip the details. O
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