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Degree of Mapping of Manifolds Based on That of
Euclidean Open Sels

By Mitio NaGuMo

In this paper we shall establish a theory of the degree of mapping
of manifolds (locally Euclidean spaces) based on the notion of the
degree of mapping of Euclidean open sets. In fact, since it is yet an
Jsunsolved problem whether a topological manifold is a polyhedron, we
can not directly apply the theory of simplicial mappings.

In §1 we shall state the fundamental properties of the degree of
mapping of Euclidean open sets, the definition of manifolds and allied
matters. In §2 a-mappings (mappings with a certain restriction) of
open sets of a manifold into another manifold will be treated as a
preparation of the following paragraph. In §3 the definition of the
degree of mapping of a general kind will be given. In §4 will be
proved fundamental properties of the degree of mapping defined in § 3.

In this paper we shall use the notation E™ for m-dimensional
Euclidean space, K™ (or K) for m-dimensional open disc:

E=f{a| 3 «3<1}.

The closure of a set M will be denoted by M. {} means the empty
set. Mapping means always continuous mapping.

§ 1. Preliminary Notions
1. 1. First we shall recall fundamental properties of the degree of
mapping of the closure of Euclidean open sets. Let D be a bounded
open ‘set in E™ and f be a mapping of D into E™. Let a be a point
not on f(D—D), then there will be defined an integer A (a, D, f), called
degree of mapping of D at a by f, with the following properties *’:
() If f is the identical mapping of D and a€ D, then

1) Cf. Nagumo: A theory of degree of mapping based on infinitesimal
analysis, which will appear in Amer. Journ. of Math. and will be denoted by [NJ.



106 Degree of Mapping
Ale,D,fi=1.

(i) If a¢f(D), then Aa,D,f)=0.

(i) I f D= \/:=1 D, D> \/::1 D, where D, are open sets and
a ¢ f(D;—D,), then '

Ala,D,f)=3 Ala,D,f)

(iv) If f(x) and at)(€E™ are continuous for 0<t<1,z€eD
and a(t)¢f(D—D) for 0<t<1, then A(a(t),D,f,) is constant for
0<t<1. | |

) If f(D)D'» where D' is also a bounded open set in E™ and
' is @ mapping of D' into E™ such that a ¢ f'(D'—D")\J f'f(D—D), then

Ala,D,f/f)=3\Aa H,f)(b, D, 1), .

where H, are components of D'—f(D—D) and .ach b, is any point in
H,®,
Theorem 1. 1. If D, is an open set such that f-(a) C D, C D, then

Aa, Dl,fj:A (a, D, f).

Proof. Put D—D,=D, and apply (ii) and (iii).

A mapping f of D(C E™) into E™ is said to be positive (negative)
when A (p,D,f]1 >0 (< 0) hold for any point pe€ f(D). From (v) we
can obtain: Let D and D' be open sets in E™. If f is a posotive 1-1
mapping of D onto D' such that D'=f(D), then the inverse mapping f-*
is also positive *. ‘

1.2, Now let us go to the definition of manifold. An m-dimen-
sional manifold is a topological space IN with a covering system {U,}
as follows: ' '

(i) M is covered by at most a countable number of open sets U,.

(i) Each U, is homeomorphically mapped onto an m-dimensional
closed disc K so that U, corresponds to K. The homeomorphic mapping
o, of U; onto K such that K=q¢,U, will be called the local coordinate
of U,.

(iii) The covering is locally finite, i. e. any compact set in I meets
only a finite number of U,.

2) In (NJ it was f(D)C D/, but an easy artifice will aford us this form.

3) Since f ~¥(a) is compact and e € f(H:) only for a finite number of H;,
then there are at most a finite number of ¢ such that A (a, H:, f/J-1-0.

4) Cf. Theorem 1. 2. :
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(iv) M is connected.
As manifolds are metrisable we assume that I is metric. In this
paper we shall use the notation IR for an m-dimensional manifold.

Let {®,} and {@,’} be two systems of local coordinates of the same
M. ¢, and @,/ are said to have the same orientation (opposite orien-
tations) if ¢/p;! is positive (negative) on ¢,(U, N\U/). M is called
orientable if there exists a covering system {U;} with local coordinates
{@;} such that @, and ¢; have the same orientation if U, N\ U, {}.
If M is orientable we take {o;} so that all , have the same orien-
tation. We can prefer a covering system {U,} of Yt and local coor-
dinates {g,} such that any pair of local coordinates ¢, ; have the same
or opposite orientations if U; N\ U;=={}.
1. 3. Concerning the 1-1 mapping of Euclidean open sets we have :

Theorem 1.2. Let D be a bounded open set in E™ and f o 1-1

mapping of D into E™, then f(D) is also an open set in E™, and for
any point b=f(a), a € D we have

A(b, D, f)=ALa, f(D), ==L

Proof. As f is an 1-1 mapping it holds b¢f(D—D). Let G be a
bounded open set containing f(D)\/D. f-! is continuous on f(D). Let
us extend the mapping f-! to the mapping ¢ of G into E™ such that

g(@)=f"Y(x) for x ¢ f(D), g(¢)=x for x€ G—G.
Then a (G- \J (D—-Dy=9(G—&\J gf(D—D).
Thus by (v) in 1. 1.
A L(L, D, gf]= Zt A [a', Ht’ g\}'A Ebi’ D, f]:

where H, are components of G—f(D—D) and each b, is any point of
H, Butsince gf()=« for €D and acD we get by (i) A(a,D,gf]
=]1. Therefore there exists an ¢ such that

AL'a': Hi:gj'A Ebt; D, ,f]‘; 0.

Then H,Cf(D) by (ii) in 1.1 as b, is any point of H, and ac g(H,).
Hence g(x)=f-'(x) for x € H, and a € f~'(H).

Thus b=f(a) € H, (open set)  f(D).

As b is any point of f(D), f(D) is an open set.
Since there is only one H, which contains b,
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A(a,H, g)-A(b;,D,f1=0 for j==i,
Hence 1=A(a,H,f)-A(b,D,f).
Thus, since degree of mapping must be integér,
Ab,D,fl1=Ale H,f]==x1.
As f(a)€ H, C f(D) we get by Theorem 1.1
| A(a, Hy, f1)=Aa, f(D), ).
Consequently Ab,D,fl=A (e, f(D),f)==%1.

§2. «a-mappings of Manifords. »
2.1. Throughout this paper we denote by I and M’ m-=dimensional
manifolds and by {U,} and {V,} covering systems of M and M’ with
local coordinates {o,} and {y,} respectively. An open set D in I is
said to be bounded if D is compact. ‘
f is called an a-mapping of D if f is a mapping of D such that
fY(») "\ D is at most a countable set for any p € f(D).

Theorem 2.1. Let f be a mapping of D into ' where D is a
bounded open set in WM. Then for any given &>0 there exists an
a-mapping f* of D such that

dist (f(x), f(®))< & for €D,  f¥@)=f(@) for x€ D—D. (0)
Proof. At first we assume that D is so small that
D U,e iUy, D) Vie(Vy. (1)

Let o zknd yr lge the local coordinates of U, and V, respect. Put
yfp~1=f, then f mapps (D) (C K CE™) into K. The open set o(D)
in E™ can be regarded as formed from an Euclidean complex C con-
sisting of a countable m-simplexes o, and thier sides such that

lim diam (¢,)=0,  diam (f(,))<_ 8/2,

nyoo

where 8 is a number such that diam (4)<_ & holds for any set A (CV,)
with diam (y(4))< 8. Let a, be the vertices of the complex C, and
a point a,/(€ K) correSponds to @, so that

dist (o, f(6)) < 8/2,  limdist (ay, f(a))=0,

and the points a,,,, ... , @,m, Which correspond to the vertices of any o,
span a non-degenerated simplex «,’ in E™. - Let f* be the mapping of
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<p(D) (CK) 1nto K such that f*(a )——aL , f*(cr,,):a ' (affine in each o).

Put fk=q- 1f*q> then f* is an a-mapping of D into M’ such that the
relations (0) hold.

Now we remove the assumption (1). Let A be the Lebesgue’s
number of the covering of D by {U,} and A\’ be that of f(D) by {V.}.
Then there exists a v >0 such that 0< vy <\ and

diam (f(4)) <)/, if A C D and diam (4) < 1.

Let {W,} be a countable system of open sets such that \/ZIWtzD,
diam (W,)< v and {W,} is a locally finite covering of D. Step by step
we can find by the first part of the proof, a sequence of mappings
f*(i=1.2,...) of D into I’ such that f,*=f, fi*@)=f*.(x) for xe D—W,,
dist (f,*(@), fx,(x)) < 2-%¢ for x €W, and f;* affords an «-mapping of
\/ W, into . Thus in the limit i »«~ we get a desired a-mapping
f*(-’v)—- llm f@).

2.2, Now let f b2 an a-mapping of a bounded open set D in M into

M’ such that a ¢ {(D—D) where € M'.

Definition A. Let G, (v=1, ..,n) be a finite number of disjoint
open sets such that '

G U, \D, G Vi /.. G DY 0) (1)
where Uy, € {U;} and Vi, €{V,}. Then we define A(a,G,, ] by

A(a, G f]:%A[‘!’(a'): P(G), ¥fp ') if a€Vy,,
B 0 Zf a’ﬁvj(v)

where Y=+, pP=@i,y, ond Ala,D,f), “the degree of mapping of D
at a by f’ (a-mapping), by

Ale,D,f}=3 Ala,G,f),

if M is orientable. If I is non-orientable we take this by mod 2.

Lemma 2.1. Let X be a compact countable set in W& Then for
any given & >0 there exist a finite number of disjoint open sets G,
such that diam (G,) <&, \/._ G, D X.

Proof. There exists a p such that 0<p<¢&, p==dist (xy, x,) for
any pair x,,%,€X. Let Wy(x,) be the p-neighborhood of x, and put
'Gy=W(x,)—\/" | Wy(x,). Then a finite number of 'G, will form the
desired system {G,}.

To legitimate Definition A we have the following :
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Theorem 2.2. A la,D,f] is independent of the choice of G,, cover-
ing systems of WM and M' and their local coordinates, provided that
they have the same orientation.

To prove this we use the following :

Lemma 2.2. Let G and H be bounded open sets in E™ and f be a
mapping of G into E™ such that f(G)C H. Let ¢ be a positive 1-1
mapping of G onto G'(G'=¢(G)) and +r be a positive 1-1 mapping of
H onto H'(H'=v(H)). Then, if a ¢ f(G—@),

A (¥(@), G, yfp ' 1=A(a, G, ). (0)»

Proof. Put y(a)=a’ and yf=f’, then o' ¢ f'(G—G).
At first let us prove that

Ald,G, flptJ=A(d,G,[]. (1)
Let G; b2 the components of G, then ¢(G,)=G,’ are the components of
of G'—p(G—G)=G'. Hence by (v) in §1
Ald,G,f)=2Ald,G/,f'p ' 1:Ala, G, p),

where a, is'any poinf of G/. As ¢ is 1-1 and positive and ¢, EQ)(G),
then A (a,, G, »)=1 by Theorem 1. 2.
Hence

Ald, G f)=2Ald, G/, f'p '] (2)

There are at most a finite number of G,/, 1<i<l, such that o’ € '~ Y(G,").
Then by (ii), (iii) in §1 and Theorem 1.1 we get

SLA LG, G e =1 ALd, G/, flp )= A(a, G, fp ).

Hence by (2) we obtain (1).
Now let us prove
A(d, G, fl=A (e, G, ] (3)

Let H, b2 the components of H—f(G—G) and a, any point of H,, then
by (v) in §1

A [G:’, G, '\l"sz Zt A Ea',: Hu ‘I/']'A [ai’ G, f\J"

Let it be a€ H,. Since v is a 1-1 mapping of H and a' € y(H,), then
Ala,H,y)=0 for i==l. As + is 1-1 and positive we have

5) By Theorem 1.2. G’ and H’ are open sets.
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A e, Hy,y)=1. Hence we get (3). From (1) and (3) follows (0).

Proof of Theorem 2.2. We assume that I is orientable, if other-
wise the proof goes also similarly. Let {U,/} and {V,} be other
covering systems of 9 and M’ with local coordinates {g,’} and {+r,}
respectively. If G U, N\U;, and f(G,)V,N\ V., then by Lemma
2.2

A [‘P’J(a')’ q)i(Gv)’ ‘I/’Jfg’t—l]:A [\l":/ (a)’ ¢;/ (G), \[/‘_/Vf¢;/_l]s

if we take ;' for ¥, @, @' for o and V,fe;' for f, namely
Alea, G, f] is independent of the covering systems of 9 and I’ or of
their local coordinates.

Now let {G.} and {G,’} be two systems of disjoint open sets sa-
tisfying (1) in Definition A and put G. "\ G,/=Guv, then from the defi-
nition of A (a, G,f) we get easily

2!1 A I:CI:, GH’ fj= EPZV A [a” GW’ sz zv A Ea” Gv,, f]:
by applying Therem 1.1. Thus the proof is done.
We can easily prove the following :
Theorem 2.3. (i) If [ is the identical mapping of D(C M) and
a€ D, then A (e, D, f]=1.
(i) If a¢f(D), then A (a,D,f]=0. '
(iii) Let D,D, .y, ..., be bounded open sets in MM such that

D= \/f=1 D, D > \/::1 D,, D, N\D={} us;
and f be an a-mapping of D into M’ such that a¢ f(D,—D,) (ac M)
then A(a,D,f1=3"_Ala,D,f).

Theorem 2. 4. Let D be a bounded open set in M, f be an a-map-
ping of D into W', and ¢ and o' be two points in a same component of
WM —f(D—D), then

A(ae,D,f]=A(a', D,f].

Proof. We can prove this easily if o' is sufficiently near to a.
Now & and o' can be joined by a curve C on ' without touching
f(D—D). For each point p of C there is a neighborhood U(p) of p

where A [, D, f](x € U(p)) remains constant. Then by the compactness
of C we obtain the desired relation.

§3. Degree of General Mappings.

3.1. Symbols M, M, {U.}, {V,}, », and 4, have the same meanings
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as in §2. Let D be a bounded open set in .

It will be not difficult to prove the followmg

Lemma 3. 1. For any & >0 there exists a covering system {U,} of
M such that diam (U,) < &.

Lemma 3.2. Let f, and f, be two a-mappings of D into M', and
A be an open set in M such that

ACDNU,, U,ciUy, agfy(D—D), acW,

fo@)=fi(x) for xeD—A (1)
and ATV etV oo ‘
Then Ale, D, fyJ=A(e, D, f,] (*)

Proof. At first we assume that ¢ € f,(A—A) ooy
Then A(a,D,f,J=A(e,D—A,f,J+A[a, A, 1] (2)
But by (1) A(a, D—A, fy)=A[a, D—A, f,]. (3)
And by Definition A
A (a, A, f,J=A (@), p(A), ¥fp~1], (4)

where (U, )=K and «;r(V )—K Put f,p" —fv, then f mapps @(A)
(C K) into K(E"', and fo(x) fl(x) for x € p(A—A).
If we put f,(a:) 1-— t)fo(x)+tf1(w), then

‘P(a)¢f5(9°(A‘A))=fo(A*A) for 0<t<1.
Thus by (iv) in §1 A [y(a), 9(A),f,] is constant for 0<t<1.

Hence A E‘l"(a’)r ¢’(A)’ "Ab'f0§0— 1]=A E"l"(a‘)’ 90(A): ’l’fl¢_1]'
Thus by (2), (3) and (4) we obtain (¥).

Now we shall remove the condition a ¢ f,(A—A) (.01 For this
it suffices to prove the existence of an open set A’ such that

ACA,’ K,<Uk[\D: agfv(Z’_A/)’ fV(K,)<Vl (v=0,51)*

Put f;'(¢)=X, then X, are compact countable sets. For any point
peX,N\(A—A) there exists a neighborhood W(p) of p such that
W) U N\D, f(W(p))CV, and the boundary of W(p) does not meet
X,. The set (X,\JX,) \(A—A) can be covered by a finite number
of such W), i.e. by W®,)-1,....,s, Then A\J\/,_ W(p)=A’ has
the above mentioned property.

3.2. Now we proceed to the definition of the degree of mapping of
the general kind. - Let. D be a bounded open set in Mt and f be a map-
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ping of D into M’ such that a ¢ f(D—D), (@ € M).
Definition B. Let \ be the Lebesgue’s number of the finite covering
of f(D).by {V;}, where {V,} is a covering system of W' such that

diam (V) < dist (a, f(D— D)) ®.
Then we define A [a,D,f], “the degree of mapping of D at a by f,”
by Ale, D, fl=A(a, D, f*],
where f* is an a-mapping of D into M’ such that
dist (f*(x), f(x)) <»  for x € D.

This definition will be legitimated by the following :
Theorem 3. 1. Let f,D and A have the same meanings as in Defi-
nition B. Let f, and f, be two a-mappings of D into M’ such that

dist (f,(x), f(@)) <X oo
Then Ale,D,f,]J=A(e,D,f,] (0)

Proof. Let p be any point of D, then there exists a neighborhood
A(p) of p such that

dist (.fi(x), flx") < x  for x, o E A(p) (1=1,2)° (1)

Let A/(p) be another neighborhood of p such that A’(p) C A(p). Then
there exists a finite number of points »,€D (,_,, ...,., Such that

D\/_ A(p). Weshall construct a-mappings f,* of D into M’ such
that

fot=fi, fr=fa, FX@)=F\(x) for x€ D—A(p,)
and  f(A())\J FA®W) T Vi, €4V, for all v quverenn.
For this we define f,* step by step as follows:
We put fu@)=f:.(x) for xc D—A(p,),
and (@)= (Cp(@)+p'(@) ) [p'@Nf¥-1(@) + p(@)yrf5(2)]) for x € Alp,),

where p(x)=dist (x, D—A(p,)), p'(x)=dist (z, A'(p,)) and Y is the local
coordinate of V), (Y(V;u,)=K).

Then FuA@D\S FA®DR) C Vi,
and f(@)=fyx) for xeA'(p,)\J {|fr (@)=F(2)}.

6) Cf. Lemma 3.1.
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Because, from (1) fi{(A(®y)) -1, and f(A(p,)) belong to a common V,,
and then by induction we get that f,*(A(p,)) and f(A(p.)) belong to the
same V, We put A *={x|fi_ (@)= (@)==f(r)}. Then A is an open
subset of A,. By Theorem 2.1 there exists an a-mapping f.5 0of A
into M’ such that
f?“'}‘(a?):f'v(m) for 2 ¢ K./* - Av* and ffV)(K\,*) < VKV)'

Now we put

fr@)=fx () for x € A, fx@)=f"(x) for D—AY,
Then f*(@)=fi_,(z) for x€ D—A(p,), fA@)=F,) for we\/,  Allpy),

hence f,* are desired mappings. ‘

For any pe D there exists a A(p,) such that p € A(py), hence fv*(p)
and f(p) belong to the same V,,, Thus we get a¢f,*D—D), since
diam (V,) < dist (a, f(D—D)). Therefore

Ale, D, f,*J=ALae, D, f31], (2)

if A(p,) C D by Lemma 3.2. But if not A(p,) C D, then
VJ(V) [\f(ﬁ—-D)?‘i{ }’ hence « ¢ V.J(v;’

therefore A [(a, A(®,), f.*]=0, consequently (2) holds also. Since f,*=f,
and f.*=f, we obtain (0) from (2).

§4. Fundamental Properties of the Degree of Mapping.

4.1, Let f,D and A have the same meanings as in Definition B.

Theorem 4. 1. Theorem 2.3 (i), (ii), (iii) and Theorem 2.4 (which
will be denoted by (iv)) remain valid also when f is a general mapping
of D into M.

Proof. (i) is evident.

To prove (ii) we have to take an a-mapping f* of D such that

dist (f*(%), f(x)) < Min {x, dist (@, f(D))} for € D

and apply Theorem 2.3 (ii).
To prove (iii) take an «a-mapping f* of D such that

dist (f*(2), f(2)) < Min {dist (a, f(D,— D)) |1<i<F}

and apply Theorem 2.3 (iii).
To prove (iv) we have to choice an «a-mapping f* of D such that
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dist (f*(x), f(x)) < dist (C, f(D—D)) for x€ D,

where C is a curve joining ¢ and «’ on M’ not touching f(D—D) and
apply Theorem 2. 4.

Corollary 4. 1. If I is closed (compact) and f is « mapping of M
into W', then A [p, M, ] does not depend on p(€ M’). (Then we write
Ap, M, f1=A (W, M, ).

Corollary 4.2. Let Yt be a closed orientable manifold, M' a non-
orientable manifold and f be a mapping of M into M/,

Then A, am, £1=0. (0)
Proof. On M’ there exists a simple closed curve C such that;
starting from a definite point a of C one can take the local coor-
dinates along C so that every two consecutive local coordinates have
the same orientation except that the last has the opposite orientation
as the first. Therefore A [a, M, f1=—A (a, I, f], hence we get (0).
Theorem 4.2. Let f be a mapping of D into M’ and a €M’ be a
point such that a¢f(D—D). Let \ be the Lebesgue’s number of the

covering of f(D) by {V,} where {V,} is a covering system of M’ such
that

diam (V,) < dist (a, f(D—D)). (1)
If f, is & mapping of D into IN' such that
dist (f,(®), f(@)) <A, (2)
then Ale,D,f,]=A(a,D,f].

Proof. From (1) and (2) we get a¢f,(D—D). Then by Lemma
3.1 there exists another covering system §{V,} of M’ such that

diam (V") < dist (a, f,(D—D)).

Let ' ba the Lebesgue’s number of the covering of f,(D) by {V,i.

By Theorem 2.1 there exists an a-mapping f* of D into MM’ such
that

dist (f*(x), f1(2)) <. Min [\, A —Max {dist (f,(x), f(*)) |x-€ D} .
Then  dist (F(x), f(x)) <A,  dist (F@), fr(x)) <\ for x€D.
Hence by Definition B
A(e,D,f]=A(a,D, f¥J=A(a, D, f,].

Theorem 4.3. Let f, be a mapping of D into ' such that f,(x)
and a(t) (€ M) are continuous for 0<t<1, x€ D and a(f)¢ f«(D--D) for
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0<t<1. Then A[a(t),D,f,] is constant for 0<¢<1.
Proof. Apply Theorem 4.1 (iv) and Theorem 4. 2.

4.2. Now let us go to extend (v) in §1 to the case of manifolds.
Lemma 4. 1. Any open set in M consists of at most countadble open

components.

Proof. For M is separable and locally connected. _

Lemma 4.2. Let D' be an open set in IM' and f(D)CD’, then
A(p,D,f] (e D' —f(D—D)) is constant in a component of D'—f(D—D).

Let H be a component of D'—f(D—D), then we can write

A(p,D,fJ=A[H,D,f] if peH.

Proof. Cf. Theorem 4.1 (iv).

Theorem 4. 4. Let M, M’ and M” be m-dimensional manifolds, D
and D' be bounded open sets in M and M' resp., [ be a mapping of D
into M such that f(D) D' and f' that of D into MM’ such that
a ¢ f'f(D—D)\J f(D'—D") where acM". Then

Ala,D,f'f1=>,Ale,H,fJ-ACH,D,f], (0)
where H, are the components of D'—f(D—D).

For the proof of this theorem we use the following two lemmas.

Lemma 4.3. Theorem 4.4 holds if f and f' are a-mappings and
D and D' are so small that

DCUelUy, D' CVieiVy, [DNCW, €W,

where {W,} is a covering system of M.
Proof. Let o, and X be the local coordmates of U,V, and W,

resp. Then by Deﬁmtlon A, putting f——«,lrf;o—l f’——Xf’«p 1
A(a, D, f'fI=A [X(a), p(D), '),
A Ea" H, f’]‘:A [X(a)’ "P‘(HJ’ f/:"
A[H, D, f3=A[y(H), p(D), 1.

But by (v) in §1 (for mappings in E™) we get

A [X(a), p(D), f'1= 3, A [X(a), Y(H)), it A [y(H), p(D), 7.
Hence the theorem holds for this case.
Lemma 4.4, Let f be an «a-mapping of D into IN' such that
a ¢ f(D—D)(ac M), and & be any positive number. Then there ewxists
a neighborhood W(a) of a such that f-(W(a)) consists of at most coun-
table open components G, such that diam (G,)< &.
Proof. By Lemma 2.1 there are a finite number of disjoint open
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sets ‘G, C D such that diam ('G,)< & and \/,'G; D f e)(=X). Then

dist (a, f(D—\/; 'G;))=8 >0,  since a ¢ f(D—\/,'G)).
Hence the neighborhood of @¢ with radius § has the above mentioned
property.

Poof of Theorem 4.4. At first we assume that f and f' are
a-mappings.  (f’f)"%a) and f'-}(a) are compact countable sets and
f"Ya) N\ (f(D—D)\J(D'—D")=4{}. We take covering systems {V,} of
M and {W,} of M’ in such a way that

diam (V,) < dist (@), /(D—D)\J D'—D7), )
diam (W,) < dist (o, /1D—D)\J fD'—D0).  § P

Let A be the Lebasgue’s number of the covering of D by {U.}, )\ be
that of D’ by {V,} and A\ that of f/(D’) by {W,}. Then by Lemma
4.4 there exists a neighborhood W(a) of a such that diam (W(a)) < A",
diam (G,") <\ for any component G, of f'~}(W(a)) and diam (G,) < 1
for any comgponent G, of (f'f)"*W(a). Then

G, Uy, efUd, GV, €4Vs, W@ WoeiW,i.  (2)
f(G,) (connected) is contained in a G,', namely f(G,)C Guv. Then
f(@L— G,) C Guvy—Gyvy. (If it was not so, then there would be a
peG,—@G, such that f(») € ( Gucvy hence f'f(p) e W(a) and p e G,, which is
absurd). Thus Gy.,—f(G,—G,) has the only one component Gy
Hence by (2) and Lemma 4.3
A (e, Gy, f'f1=A[a, Gy, '] A [Guewy, G, f1.
Then by Definition A
A[a“D’f,f]:ZvA[a" Gv’f,f]
=2W2 e Ale, G, f'I-A LG, G, f], (3)»

where (Wu={v|w()=p}. Let [u] be the set of x such that
A e, G/, f')-=0, then there is a point by € f'~Y(a) N\ G’ for pe[u].

Hence A[(GY, G, f1=A[by, G, f1 for welpl. (4)
Since f1(by) C /Gy, C D, we get by Theorem 1.1
2w A [by, Gy, f1=A by, D, f]. (3

By (2) we have by €f'"Y(a) "\ Viu,» Thus by (1) by € Vyu, C Hyuy, where

7) There are only a finite number of # such that A (a, Gy, f )50 and a finite
number of v € (v¥)u such that A (Gy’/, G, f)34-0. Cf. also the footnote 3.
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H,., is a component of D'—f(D—D). Hence
AEb!l:D:f}'—"A EHt(El)thfj (6)

Since f"’(a)/\HiC\/<u)tGy’<Hi where (u)i={u|i(x)=i}, then by
Theorem 1.1

Z(P\t A E(I:, G;.l,’ f’j:A Ea', Hi’ f,] (7 )
Consequently by (3), (4), (5), (6) and (7)
A Ea’s D, f,f]':‘ 29 A Ea’ GM” f,:l'A EHi(!‘)’ D, f]
=2V Ala, st fJ-A[H, D, fl.

Now we have to consider the general mappings f and f'. By
Theorme 2.1 there exists an a-mapping f* of D’ into R” such that

dist (f"*(x), f'(x)) <A  for we D/,

where )/ is the Lebesgue’s number of the covering of f/(D") by {W,}
such that

diam (W,) < dist (a, f'f(B;D) \J f'(D'—D").
There exists an a-mapping f* of D into M’ such that
dist (f*f*(x), f'f(x)) <N  for xe D,
fH(x)=f(x) for xe D—D, dist (f*(2), fx)) <\ for z€D,

where ) is the Lebesgue’s number of the covering of f(D) by {V,} such
that

diam (V) < dist (f'~%(a), f(D—D)).
Hence we have by Definition B
A (e, D, f'f1=A(a, D, f*f*], (8)
and Ale,H,f1=A(a,H, f'*], (9)

since H,—H, C f(D—D)\J(D'—D"). If A[a, H,, {10, then there is a
point b,€ H, "\ f'""}(a). Thus by Definition B

A(H,D,f=A[(b,D,f=A[b, D, f*]=A[H, D, f+], 10)
since f*(D— D)=f(D— D).
Therefore A [a, D, f/f1= 3\ Ala, H,, f'1-A (H, D, f]

by (8),(9) and (10), because this hols already for f* and f'* instead of
f and f’ respectively.
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