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重 回帰分析における多重共線性 とRidge回 帰について

1序

重回帰分析は,主 成分分析,因 子分析等と並んで多変量解析各種手法のうちで も最 も基本

的な もののひとつである。多変量解析の成書の多 くは,早 い章で この手法を取 り上げ多変量

解析の導入 としているし,そ こにきかれるページ数 も多い(Harris1975,Mardia1979,

Press1972)。

周知のごとく,重 回帰分析法は複数個の独立変量か ら従属変量を予測せん とするものであ

り,コ ンピュータとソフ トウエアが目覚ましく普及した今 日,あ らゆる科学の領域で適用 さ

れ成果をあげている。独立変量の数が大 となるにつれ,計 算量は加速度的に増大するが,現

在では特殊な場合を除いて計算量自身はさほ どに問題 となることはない。

問題はむしろ逆に,容 易に計算結果が得 られるだけに,安 易に適用され,事 前のデータに

対する吟味が十分になきれないままに,し ばしば,"と りあえず計算してみ る"式 のデータ

処理が行われている,と い うことではなかろ うか。計算をすれば何がしかの結果は得 られ る

わけであるか ら,方 法論的吟味が棚上げされにまま,すこだ計算機に対するインプットとアウ

トプッ トのみに関心が 払われるとすれば,そ れは問題 と言わざるをえない。 計算に先立っ

て,変 数や観測値のチェックは言 うに及ばず,そ もそ も実験や調査のデザイン,数 量化の是

非,処 理法の評価など,本 来の計算以外に もこうした方法論に関する考察を欠かすことはで

きないのは勿論のことである。

しかしなが ら,多 くの現象は多数の要因が複雑に絡みあってお り,過 度の吟味や人為的な

条件統制がかえって現象を歪めることもまた否めない。多変量解析は,む しろそうしだ人為

的条件統制を排除し,あ るがままに得 られたデータか ら,要 因相互の関連や構造を吟味し,

現象を単純化する方法 として発展して きたとも言える。

分散分析のごとく,要 因毎の変動をデータ処理によって分離するとか,主 成分分析のごと

く,座 標軸を回転することによって,デ ータに潜在する独立な軸(要 因)を 抽出する,等 の

作業が可能であるが,か つての心理学実験に見 られ忙ごとき,細 かい,厳 密な条件統制 とい

うよりも,そ れらを緩 くtノてむしろ多変量解析の手法を援用し,事 後のデータ処理か ら要因

を分離することも不可能ではない。

ともあれ,両 者のバランスこそがまさに重要であるが,本 稿では重回帰分析を例にとり,

手法に限定してのことであるが,同 法を適用する際に陥 り易い問題のひとつとして,多 重共
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線 性 を取 り上げ,そ の内容 と対策 について検討 してみ ることとす る。

以下本稿を進め るに際 し,次 のご と く記号 を定め ることとす る。

η 個の観測値 よ りな るP変 量 の独立変量 をX@× ρ),従 属変量 を 〃@×1)と し,回 帰

係数 ベ ク トルを β とす る時,重 回帰式 は

〃=濁 β+衡(1)

で あ るが,こ こでは一般性を失 な うことな く独立変量,従 属変量 ともに,変 量毎 に標準 化 き

れてい るもの とす る。また残 差ベ ク トル 麗 に関して

膨～N(0,σ2∬)(2)

を も仮定 してお く。

行列X'Xが 相 関行列 とな るよう標準 化 きれてい るので,独 立変量相互間 の相関行列 をR,

従 属変量 との相 関ベ ク トルをrと すれ ば

E=x'x

(3)
r=.x'〃

ま た,重 相 関係数 ㌦ は

7呪=へ/疏 「=〒(4)

と して求め られ る。

いま,行 列X'Xを 固 有値分解 しナこと き,固 有値 を る(1、≧Z,≧ … …ら≧0),対 応 す る固

有 ベ ク トル をgブ(p×1),き らに これ らを行列表示 した ものをL,σ とす ると

L=diag(1ブ)ブ=1,… …,P

(5)
0=(9、,92,… …,9P)

で あ り,こ の とき

ー'』【=OLGI'(6)

」乙=6F'(-'x)σ(7)

で あ る。

(1)式 に お ける β の最小2乗 解(最 尤解 と も一致)を β とすれば,こ れはX'Xが 正

則 の とき,通 常 の最小2乗 法 で解 くことがで き(OLSlordlnaryIeast阿uare)

β=(X'X)一1X'〃=1己 一1r(8)

で あ り,そ の期待値,分 散 は

E(β)=β(9)

V(β)=σ2(X'X)一1(10)

で あ る。 これはま忙先 の固有値分解 を用いて

β=(θL6:')一1.x'〃

=(Σ1ゴ9ブ9'ゴ)一1X'〃
∫
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=(Σ9y9'」/'ブ)X'y(11)ゴ
V(β)二 σ2Σ9ゴ9'」/lj(12)

と も書 けるし,β と β の距離をL、 とすれば,β の平均2乗 誤差(MSE:Meansquare

error)も 同様 に

E(L、)=MSE(β 〉

バ バ

==E{(β 一 β)'(β 一 β)}

=σ2tr(X'X)一1

;:::σ2Σ1/1e'(13)

ゴ

となる。

き らに,Gを 用い てXを 変換 した ものをW,そ の際の回帰係数 をaと す る と

〃一濁θ+配

=1日夢7:a十u(14)

で あ る。 ただ し,

曜=XG

a==G'β(15)

で あ る。

皿 多重共線性

-'Xが 正 則で ない と き,(8)式 の β の解 は:不安定 とな り求め る事がで きない。現 実 のデ

ー タの場合 に精確 にi-'馴=0と な ることは
,む しろ稀であろ うが,0に 近 い,小 きい値

となる ことは十分起 こりうる。 た とえば,p個 の説明変量 の うち極 めて相互 に相 関の高い変

量が含 まれ ていた り,あ るいはあ る変量 が他 の変量群 と因果関係に あ り,そ のために近似 的

に一次式 で表現 で きた りす るよ うな場合で ある。す なわち,す べ てが0で ない定 数 の に ょ

って説 明変量 紛 の間 に

σ、κ、十・・.・..十σpκp=0(16)

な る関係が生起 してい る時,一 次従属 となる忙め,X'琴 の ラン ク落 ちが起 こり,β が不定

ない しは不安定 とな る。

こうした状 況は多重共線 性(multicollinearity)と 呼 ばれ(Cramer1985),デ ー タ処理 時

には注意すべ き点のひ とつで ある。Goldberger(1968)は,多 重共線性 を 「説 明変量 の うち

のい くつかが,相 互 に関連 してお り,そ のために単独 の影響 を分離 した り,効 果 を評価 した

りす るこ とが,不 可能 では ないに して も,困 難 な状態」,と 定義 してい る。

心理学 にお ける数量 化は,そ れ 自身必ず し も常 に確 固た る基盤 の上 に構成 きれてい るとは
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限 らず,測 定の不安定性が 見られる分だけ信頼性を高める方法 として反復測定が試みられ

る。たとえば,あ る属性の測定に際して多数の下位項目の測定が行われ,そ れ らの加算(必

要に応じて重みつき加算)が 行われるが,こ のとき下位項目に要請されることは一次元性で

あ り,相 互に相関の高い同一次元上の属性の測定がなされなければならない。そして,反 復

測定により,信 頼性を向上 させる仕組みである。

心理学における調査ないしは実験において 独立変量のなかに,信 頼性向上のために同一

(類似)の 現象が取 り扱われるのは,発 想 としては極めて自然である。多変量解析を変量聞

相互の絡みを残して同時に処理す る方法(Morrisoロ1976)と して理解す るとき,こ れはむ

しろ日常的である。しかし,重 回帰分析の場合の説明変量 としてはむしろ避けなければなら

ない性質の ものである。

多重共線性 を発見す る方法 を,Mansfield(1982)は 次 の5つ に整理 してい る。

(1)説 明 変量 の対 の うち極端 に高 い値 を もつ もの。

171…=騨(孤 ・)(17)

(2)相 関行列 の行列式が非 常に小 さい。

1-'Xl≒0(18)

(3)固 有 値 に非常 に小 きい ものが あ る。 もし精確に1ゴ ー0と なれば,完 全 な一 次従

属性が あ る。

(4)大 きい分散拡大要因(後 述)VIF(j)の 値 。

VIF(j)=(.忍'-)ガ ーエ(19)

(5)大 きい 肩 の値(1に 近 い)。

R3=1-1/VIF(j)(20)

多重 共 線性を具体例で示 そ う。偏 回帰係数 β の分散 は(10)式 の通 りであ るが,今P=2

の場 合について書 けば

バ
V(β)=σ2(X'X)一1

=σ2/n(1-r、9)(21)

と な り,x、,κ 、の相関が高い と き,す なわちr、2→1の とき,値 は不安定 となる。 ま た,

X'Xの 固 有値の中に0に 近い ものが あると き,(12)式 で は分母 に1ゴ を含むので,β の分

散は不安 定であ ることがわか る。

こうした多重共 線性を発 見す るために,計 算フ。ログラムの中に そのため のルーチンを組込

む ことが 必要 である。 上 述 の(1)～(5)を す べ て試 み ることは 必ず し も必要では ない
ム

が,(1)は 相 関行列 の要素 をチ ェックすれ ばよい し,(2)は β のみ を求 め るのではな く,
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計 算の過 程で(X'X)な り,IX'Xlの 値 を見 ればよい。 多 くの ソフ トない しはプ ログラム

・ライブラ リーでは1X'Xl<δ で0の 判定がな されてい るが ,δ の とり方如何 では,計 算

が続 行 きれ βが もとめ られてしま う。(4),(5)は(-'x)の 逆 行列 の要素 か ら容易に検

討す ることがで きる。

どの変量 間に多重共線性が見 られ るか を発見す るためには,更 に手 の こんだ計 算 を必要 と

す る。2変 量間 の相 関はRの 要素 をみれば よいが,3変 量 間ないしはそれ以上 にわた る線

型 性の判定は厄介 であ る。

第1の 方法 は,p個 の説 明変量 それぞれ を目的変量 として,そ れ をそれ以外 の説 明変量 か

ら予 測すべ く重 回帰分析 を反復 す ることであ る。非常に高い重相 関係 数が得 られた とき,変

量 間の1次 従属性が示 唆 され る。今,変 量 筋 を目的変量 とした ときの重相関係数 をRyと

すれ ば,

VIF=(1-R多)一1(22)

で 求 め られ る値が ひ とつの目安 であ り,通 常VIF>10の と き,多 重共線 性が見 られ るとさ

れ る(Chatterjee1977)。 このVIFは 分 散拡大要 因(Varianceinflat三 〇皿factor)と 呼 ば

バ

れ,こ の値は相関行列の逆行列の第 ブ成分,す なわちrガ(一1)と 同じである。また β の分

散を σ2で割っfも の とも等しいので,β の値のみならずその分散 も同時に求めておけば多

重共線性の有無を検討することがで きる。Gramer(1985)は 標準偏回帰係数(標 準化きれ

たXに 用いる)は 経験的に 一1～+1で あるのでそれより大 きい値,特 に121を 越えるも

のは疑わしいと述べている。

第2の 方法は,p個 の説明変量に主成分分析(PCA)を 施すことである。相関行列を用

いてPCAを 行い,固 有値の中に0に 近いものがあるか どうかを見る。 もし第 々固有値が

0に 近いとすれば,そ の意味する所は,第k主 成分の分散が0,す なわち定数であ り,線

型関係を示唆するものである。

何れの方法 とも,本 来の回帰分析以外に余分の計算を強いるものであるが,重 回帰分析を

正 しく活用す るためには不可避であろ う。そして多重共線性が発見 きれた時,そ れをとり除

く作業が次いで必要となるが,そ の最 も簡単な方法は相関する変数群の中から1つ を残 し,

他を冗長なものとして除 くことである。 そ うすることにより,X'xの ランクが落ち正則な

行列を得 ることができる。しかし,単 に計算結果の数字上の理由だけではな く,変 量の内容

からの検討が必要なことは論を挨たない。

しかしなが ら,単 に予測ということのみに興味があるときはそれでもよいが,予 測 と同時

にそれに貢献す る変量の検討にも関心があるとき,ナこだ数量的に従属であるというだけの理

由で,落 とすことはで きない変量 もあるであろう。そうしたとき,次 節で述べるRidge回
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帰を適用すればこうした難点を克服することがで きる。

皿Ridge回 帰

正則 でない行 列X'■ に対 す るひ とっの解 決法 として,1Jッ ジ 回帰(ridgeregression)

な る ものが紹介 きれ てい る(Hoerl1962,Hoerl&Kennardl970,1975,1976,Williams

1968)。 これ は ■'Xの 対 角要素 に一定 の定 数 ん を加 えて

β*=(X'X十 ん1)一1X'y(23)

と してXtxを 正 則化 し回帰 問題 を解 く方法で あ る。 たゼ し,標 準化 されてい ないXの 場

合 には 好 の代 わ りに

K=diag(ん ゴ)ブ=1,… …,p(24)

を 用 い ることとなる。

こうして求め られナこβ*はridge推 定 量 と呼 ばれ,後 述 の(29)式 の ごと く不偏推定量

で はないが,変 量 を除去す ることな く回帰問題 を解 き,予 測に貢献す る変量等の検討に用い

ることが で きる。

(23)式 は次 の ごと く求め られ る。今,β の任意 の推 定量 をbと す ると,残 差平方和は

1～(b)=(y-Xb)'(y-Xb)

=(y-xp)'(y-x9)+(b一 β)'x'x(b一 β)

=Rmin十 φ(b)(25)

と な り,右 辺 の第1項 は最小2乗 推 定量 β を用 いに ときの残差平方和,第2項 はそれ以外

の推定量 を用いた場 合の残差平方和の増分で ある。今,b'b・ ・1の あ る一定 の条件下で この

φ(b)を 最 小 にす ることを考 える と,Lagrangeの 乗 数 を1盈 とすれば,

φ(b)一(b-R)'x'X(b-R)・ 去(b'b一 ・)一m・ ・(26)

と し て,こ れ を 解 け ば よ い 。 こ の と き,先 の(23)式 が え られ る 。 さ ら に

Z・一(∬+ん(Xtx)一1)一1

=( .X'X十k∬)一1X,X(27)

と お け ば,式 の 変 形 に よ り

ム
β*=(x'x+kl)一'-'y

=Z(X'X)『ix'y

=Zβ(28)

バ バ

となるので,β*は β の線型変換 として得 られることもわかる。その平均,分 散は

E(β*)=Zβ(29)
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V(β*)=ZV(β)Z'

バ
=σ2■(-tX)一iZ

バ
=σ2(X'X+kl)"'x'X(X'X+h∬)一1

で あ る 。 ま た,β*と β の 距 離 を 五,と す れ ば

ム

L,=β*一 β

で β*の 平 均2乗 誤 差 は

E(L,)=MSE(β*)

=E{(β*一 β)'(β*一 β)}

==E{(β 一β)'Z'Z(β 一β)}十(Zβ 一 β)'(Zβ 一β)

一σ2tr(x'-)一'Z'z+β'(z-1)'(z-1)β

一 σ2Σ1ブ/(1ブ+k)2+le2β'(X'X+lel)一2β

ゴ

=γ 、(ん)+γ,(た)=γ

(30)

(31)
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で あ る。第1項 は β*の 分散 の和 であ り,第2項 は β よ りも β*を 用 い7waの 偏 りの平方

和 と考 え られ るので,こ れ らを比較す る ことに より最良 の たを選ぶ ことがで きる。γ、(ん)は

々 の減少関数,γ 、㈲ はkの 増加 関数 であ るので,平 均2乗 誤差 を最小 にす るleを0<

々<1の 範 囲で探せ ばよい。 きらに,第2項 はX'xを 正 準形式に変換す ると,計 算 はよ り

容易 になる。今,X'xの 固有値 を(5)式 の ごと く定 めれ ば,-'Xは(6)式 のC"と く分解

きれ,(15)式 を用いて

バ
a*=(W'W十lel)一1Wty

=(L+ん1)一'LG'β ム
=(L十kl)一1La(32)

で,σ ない しは β の線型変換で求 める ことが で きる。 この と き,

γ,㈲ 漏ん2Σα多/(1ノ十た)2(33)
ゴ

で ある。

きらに,一 般 的にX'Xが 相 関行 列ではな く,す なわ ちdiag(■'X)=1と な っていな

い と きに は(24)式 の ご とくKを 定め る ことになる。 この とき

a*(羽 「'W十K)『1W'y(34)

で,α*の 第 ∫要素 は

α*=(lj/(ら 十島))α ブ(35)
ブ

で,ま た
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バ
γ1(k)=σ2Σ1ゴ/(lj十 んプ)2(36)ブ
γ2㈹;Σ(α 為/(」 ゴ十 ブ々)2)(37)

ゴ

バ バ ム ム

で ある。β*な いしは α*の 分散 は当然 β,α のそれ よ りは小 さい筈で あ り,計 算 の過程 で

チ ェックしてお くことが望ま しい。

以上 の外 に も,々 の推 定方法は色 々と報告 ざれてお り,一 覧 すれば,た とえば次 の通 りで

あ る(7こ だし,⑥,⑦ についてはYoshioka(1986)に よ る)。

①OLS

② γ=mm

ム バ 　

③le=Pσ2/β'β

④k=Pσ2/Σ α;・l」

ム バ 　

⑤ ん(の=:Pσ2/β(の β(の

⑥ Σ あ(⊥+⊥ん 」
ブ)→一〃

⑦ Σ £3(ユ.+⊥ん 」
ブ)㌔ ・♪(。 旱,)

ム ム

⑧ 島σ)=σ2/α*3(の

(Hoer1,Kennard1970)

(Hoerl,Kennard1975)

(Lawless,Wang1976)

(Hoerl,Kennard1976)

(De皿psterユ977)

(Scolve1973)

(Hemmerle1975)

③,④ は代数 的に解 くことがで きるので容易で あるが,⑤,⑧ は反復法 に より解 くことに

なる。(の を第 ゴ番 目の反復 とす れば,1ん σ)一 んσ+1)1<ε で ん の収束 を見れば よい。

Hoerlは ③ に加 えて これを反復 法で解 く方法⑤ を紹介 してい る。 ⑧ は一定 の値 ん を求め る

のではな く,α を用いて ん を求 める ものであ る。⑥,⑦ は んを動か し,最 も右辺 の値 に近

づ くところを探 せばよい。0～1の 範囲か らス ター トし,次 々 とその範 囲を狭め,桁 を落 と

し,必 要 な精度 の桁数 を求 め る ことがで きる。

いず れの方法が優 れてい るかについての結 論は得 られてい ないが,次 節 では,数 値例 につ

いて上式 を適用 し,た の値 を求 めてみ る ことにす る。

Ridge回 帰 を巡 る諸問題は,Hoerlを 始 め として多 くの統計学者に よって取 り上 げ られ

ている(Banerjee&Carr1971,Marquadt&Snee1975,McDona正d&Galarneau1975,

Lawless1978,Wichern&Churchill1978,Gibsons1981,他)。 後藤(1976)は 研 究 の

系譜 を,(1)一 般 化行 列回帰,主 成分 回帰,(2)Ridge推 定 量 の性質,(3)最 適 推定量 の選択 の

3つ に分類 して整理 してい るが,今 後ますます研究 されてい くテー マの よ うに思 われ る。
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W数 値 例

これまでの と乙ろ を数値例 で検討 しよう。Morrison(1983)は 多 重共線 性の例 として ド

ルの対外 貨 レー トか ら金 の価格 を予測す る例 をあげてい る。 それに よると,目 的変量 夕 は

1オ ンスあた りの金 の価格,こ れ を予測す るすこめの外貨 レー トは,v、(米 ドル/ド イツマル

ク),x,(米 ドル/ス ィスフラン)で あ り,1973～1979年 の27四 半 期 のデー タが用 い られた。

相 関行列,ッ との相関 ベク トル は

x'x=〔1:黙1:::誌

r=(.8740,.8418)'

バ

で あ り,こ れ らよ りOLSに よ る解 として β=(0.7876,0.0906)',r.・=O.6744を うる。単

独にyを 予測せん としtcと きの予測の精度はrm,=O.7638,rm、=0.7086で あ り,い ず れ

の変数 も高い精度 で予測が可能 であ ることが示 きれてい る。 しか し,そ れ に も拘 らず,同 時

バ へ

に κ、と κ,を 用いた場 合には,塩 は下が り,さ らに β,は β、に比 し極端 に小 さい値 で あ

バ ム

り,不 合理 な解 となってい る。 しか も β、と β2の 相関がr=一 〇.9538と な ってお り,高 い

負 の相 関であ る。 これはκ、と κ、の高い相関に起因 してお り,多 重共線性 の一つ の例 であ る。

ちなみに,IX'X[=0.0903で あ り,VIFは 共 に11.08で あ っすこ。

さらに,他 の例 を示 そ う。 表1はChatterjee&Price(1977)に 引 用 きれてい る例 であ

表1EconomicDataofFrance

Year

1949

50

51

52

53

54

55

56

57

58

59

Mean

SD

夕 劣1 距2 劣3

15.9

16.4

19.0

19.1

18.8

20.4

22.7

26.5

28.1

27.6

26.3

149.3

161.2

171.5

175.5

180.8

190.7

202.1

212,4

226.1

231.9

239.0

2

1

1

1

1

2

1

6

0

1

7

4

4

3

3

1

2

2

5

5

5

0

108.1

114,8

123。2

126.9

132.1

137.7

146.0

154.1

162.3

164.3

167.6

21.891194.5913.30139.736

4.33228.6031.57219.674
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るが,フ ランスの経済デ ーで あ り,κ 、(国 民総生 産),κ,(株 式 出来高),κ3(国 民 消費量)

の 年次推移か ら,y(輸 入 額)を 予測せん とす る もので ある。 デー タを標準 化し,X'X,X'〃

を求め る と

画i黙iiiilllil
2r〃=r=(0.96530.25070.9719)'

を得 る。κ、と κ、の相関が高 く多重共線性 を暗示 してい る。 ちなみに,ix'X1=0.00529で

あ っテこ。 これ は事実上0と みな して も差 し支 えない よ うな値 で ある。逆行列 は

蝋 灘iliii;
で あ る の で,分 散 拡 大 要 因 は

VIF二(188.81,1.02,

で,VIF>10の 条 件 は は る か に 越 え て い る 。

帰 係 数(OLS)は

β=(一 〇.3503,0.2128,

わ二(一10.137(う 。),

で,

一188 .363

-1 .8847

188.921

188.92)'

重回帰式を機械的に解いて得 られる通常の回

1.3137)'

一〇.0531,0.5864,0.2893)'

この とき重相 関数は 堀=0.9924,場 、=0.9848を うる。 一応 は高い精度 の予測 であ る

が,解 は不安定 であ る。第 ユに,κ 、の回帰係 数が 夕との相関7G、=0,9653で あ るに もかかわ

らず,マ イナスになるのは解釈 を苦 し・くす る。第2に,κ 、の回帰 係数 が1を こえ,Cramer

(1985)に よれ ば,こ れはむ しろ高 い値 であ る。

固有値,固 有 ベ ク トルは

ε=(1.9992,0.99816,

0.7063-0.0357

θ=0.04350.9990

0.7066-0.0258

で あ り,こ れ ら を 用 い る と正 準 形 式 の 回 帰 係 数 は

α*=(0.6901,0.1912,

0.002651)'

一 〇.70701

-0 .0070

0.7072

1.1752)'

となる。β よ り 〃 を求 め誤差分 散 の推定値 を算 出す ると,

σ2=0.013049

を得 た。
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きて次 にridge推 定 量 を求め る作 業であ るが,② では γを最小 にす れば よいか ら,γ=γi

+γ 、=minと な るよ うなkを さが せば よい。 凡 その 見 当 として0か ら1ま で のfeに っ い

て,ま ず0.1の 幅 で(こ れ を0(0.1)1と 略 記す る(McDonald&Galarneau1975))γ 、,

γ,を 求 めた ところ,0～0.1の 間 に あることがわか った。以 後,0(0.01)0.1,0(0.001)0.01,

0.009(0.0001)0.010と 計 算 を反復 しkの 幅 を狭 めていけば,最 終 的に 々=0.0094あ た り

で,γ==1.097の 最 小値が得 られ た。 γ、,γ,は 何 れ も んの単 調関数で あるので,こ れ以外に

極値 は存在 しない。

③,④ に よる推定量は代数的に解 けばよいか ら容易に求め られ る。それぞれ,le・O.02065,

0.03941で あ る。 ⑤で は9回 の反復 でle=0.08305を 得 た。 収束 の判定 にはleの み を用い

たが,β も同様 の速度で収束 して いる ようであっナこ。⑥,⑦ は② と同様 の方法 で求めれば よ

い。解 は それぞれ,ん=0.07205,k-O.09978で あ る。 聞題 は⑧であ るが,α の値 が反復 の

4～5回 目あた りか ら0.01以 下 に な り,従 ってk>1と な ります ます発散 して,本 デー タに

関 しては求め る ことがで きなか った。

以上,各 々の場 合にっいてkを 推 定 しr三dge回 帰 を行 った結果 を一覧 にすれば,表2の

通 りであ る。 同表ではkの 値 の小 きい順 にな らべ たが,興 味 あ る事実 として,OLSか ら

遠 ぎか るにつれ,重 相関係数は減少,残 差平方和(誤 差分散推定値)は 増大 し,そ の意味で

ム

はOLSが 最小2乗 推定であることを裏づけている。 また,OLSで は β、<0で あったが

ridge推 定量ではそれが見事に克服きれ,い ずれも正で,か つ0～1の 範囲であっアこ。そし

て予測の貢献度 としては 酵,硝 が良 く,酵 が悪いことがわか るが,こ れは独立変量と従

属変量の相関か らも頷けるところである。

表2ResultsofRidgeRegressions

ん

編

喘

く♂

・避

γ

り4

γ

①

OLS

②

γ=mm

③

Hoer1

④ ⑥ ⑤

LawlessDempsterHoer1

⑦

Scolve

0

.9923

.9847

.01305

一
.3503

.2128

1.3137

4.9420

4.9420

0

.00945

.9841

.9684

.01632

.2963

.2174

.6624

1.1465

。3197

.8269

.02065

.9780

.9564

.01744

.3812

.2160

.5722

1.1754

.1105

1.0649

.03941

.9684

.9379

.01841

.4190

.2127

.5257

1.2441

.0535

1.1905

.07205

.9525

.9073

.02013

.4345

.2069

.4954

1.2985

.0365

1.2621

.08305

.9473

.8974

.02082

,4359

.2049

.4892

1.3091

.0349

1.2742

.09978

.9395

.8827

.02201

.4365

.2021

.4814

1.3217

.0338

1.2879
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何れの方法の んを選択するかについては議論が分かれるが,こ れは数値例か らだけでは決

め られない。第②法ですでに,正 則の問題は解決されてお り,ん を0か ら僅かに動かすだけ
ム ム

で妥当な β*が 得 られている。 ②～⑦で β*の 値は 動いているので,独 立変量の貢献度を

何れで見るかは難しい。

そもそも正則でないデータに遭遇しナこ場合,考 えられる解決法としては,

(1)観 測値の吟味一 新しいサンプルを追加するとか,異 常値(outlier)を 除外する

等,ま たデータを下位グループに分 け,異 質のサンプルの分離を試みることが必要

となる場合 もあろう

(2)説 明変量の選択一 一次従属の関係にある変数(群)を 削除した り,ま た必要に

応じて新しい変数を追加す る

等が考 えられるが,本 稿で見て きたごとくridge回 帰を試みることにより,説 明変量を削

除することな く回帰の問題を解 くことがで きる。特に,単 なる予測だけが問題ではなく,説

明変量の吟味を も目的とするとき,こ の手法は不可避であろう。

そしてそのときには,さ らにAIC,MallowのCp基 準等を用いtc説 明変量の検討 も必

要であろうが,そ れらについては本稿の目的ではないので,こ こでは割愛する。

V要 約

重回帰分析に用い られる説明変量の中に相互に関連するものが組込まれているとき,相 関

行列が正則でなくなり,解 が求められなかった り,求 め られて も非常に不安定であっにりす

る場合がある。

これは統計学で多重共線性と呼ばれる現象であるが,こ のようなとき説明変量を削除した

り,追 加しナこりすることなくこれを解決する一つの方法として,ridge回 帰なる方法が提案

されている。す なわち,相 関行列の対角要素に定数(極 めて小さい)を 加えて解 く方法であ

るが,本 稿では,こ れら多重共線性と種々のridge推 定量を求める方法をあげ,数 値例を

用いて,そ れ らを検討しナこ。その結果,通 常の最小2乗 法 を僅かに修正するだけで,安 定し

た解が得 られることがわかった。

こうし'にridge回 帰の方法は,今 後ますます科学の領域で適用きれ,効 果を発揮す るもの

と思われる。
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MULTICOLLINEARITYANDRIDGEREGRESSION

INREGRESSIONANALYSIS

MitsuoYOSHIDA

Examinationofasetofdatafortheexistenceof"multicollinearity"shouldalways

beperformedasaninitialstepinanymultipleregressionanalysisforeveryresear-

cherwhotriestoemployregressionanalysis.ThetemlmultlcoUillearityisusedill

statisticsin.situat三 〇nwhereonevariableisnearlyalinearcombinationofother

variables.Itmightbeaninevitablepitfallforamechanicaluserofstatistical

computerprograms.Checkingthelatentrootsofthematrix,X'Xthecorrelation

matrixifstandardized,ortheVIFs(VarianceInflationFactors)iseffectivefor

detectingmu正ticollinearityamongtheregressorvar三ables.

AIIeasywaytoavoidmult玉collinearityistodeleteortotransformthevariables

sothattheyareuncorrelated.Itislessseriouswhenaimsofregressiona且alys玉sis

theonlypred三ct三 〇皿bythe三ndependentvariables,butitisveryseriouswhen

emphasisliesontheestimationofindividualparametersandcontributionofthe

variablesinthepredictionsystem.

Insuchacase,amethodofridgeregression,f三rstproposedbyHoer1,isausefuI

methodforovercomingmulticollinear三tywithoutdeletinganyvariables.Tocalculate

r量dgeregressi・n,thevariablesarefirstscaleds・tha亡thematrix,X'瓦isac・rrela-

tionmatrixwithunitdiagonalelements,.andthenasmallpositiveconstant,k,iS

addedtoeverydiagonalelement,whichmakesthematrixless 、singular.Afterthat,ハ
regressioncoefficients,β*=(Xノ.亙 「十 ん1)一1■'y,areobtainedbytheordinaryleast

squaremethod.

Ar三dgeestimate三snotunbiased,butmeansquareerrorissmalierthanthatof

leastsquareestimate:thebiasisconpensatedbyreductioninvariance.Thecenttal

questionofridgeregressionishowtochoosetheconstanttoachievesatisfactory

balancebetweenbiasandvariance.EightmethodsofHoer1'sandothers'toestimate

theconstantareintroducedinthispaper,andcomparedhowtheyimprovedshort-

co皿ingsoftheresultsoftheordinaryleastsquareregression・

Asfarasanumericalexampleisconcerned,themethodthatchoosethecollstant,

ん,atthepo三ntwheremeansquareerror(summationofvarianceandsquareofbias)

becomesminimumwasadesireableo且e.This(new)methodofridgeregressionis

expectedtobeapPliedincreasinglyineveryfieldofbehavioralsciences・


