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Abstract

Shinji Miura gave certain multivariable polynomials thapexss an Affine curve
for a given algebraic function fiel& and its degree one plac®, if F contains such
an O. Suppose the equations contairf> 2) variables, and that the pole orders at
O areay,...,a > 1, whereGCD{ay, ...,a} =1 If

a; a1 Q1
S e L N+...+27IN, d =GCDfay,...,a
di € di—l di—l I EH ' a}

for eachi = 2,...,t, by arranginga, . . ., &, then we say that the ordess, . .., &
are telescopic. On the other hand, the numibgr> t — 1) of the equations in the
Miura canonical form is determined bs,...,a. If t' =t — 1, then we say that
a,...,a are complete intersection. It is known that the telescopind@ion implies
the complete intersection condition. However, the corevavas open thus far. This
paper solves the conjecture in the affirmative by giving itsofx

1. Introduction

Let F/K be a function field with degree one plac®, and a,...,& >1
(GCD{ay, . . .,a} = 1) generators of the monoifvn(f) > 0| f € F} (the non-
negative pole orders &), i.e.

ayN+. .. +aN={-vp(f)>0]| f € F}.

Shinji Miura [1, 2] gave generators of the ideal expressingAdfine curve with the
point O at infinity. For xq,...,% € F such thatg; = —vp(X;), the Miura canonical
form (MCF) is the set of equations in the form

(]_) Xi‘/ll C.. )(tMt +a|_xl‘1 e )(,[LI + Z ain\ll C. XtN‘ =0

with M = (My,...,My) e NtandL = (Ly,...,L{) e N', wherea,an € K, o, #0, and

t t t
d_aM =) ali>) aN
i=1 i=1 i=1

for N=(Ng,...,Ny) e N, N #L, M.
2000 Mathematics Subject Classification. Primary 14Q05pSeary 13A15.
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We consider two conditions omy, ..., a: telescopic and complete intersection
conditions. If

i a1
— €€ —N+...+—=N, d =GCD{ay,...,a
di di—l di—l i D{l ai}

for eachi = 2,...,t, by replacingay, . . ., a with a,(), ..., a8, for some permutation
o in {1,...,t}, then we say that the ordess, ..., a are telescopic. Notice that the
numbert’ (>t — 1) of equations contained in the MCF only dependsagn . ., a. If

t' =t —1, then we say thad,...,a are complete intersection. Miura himself proved
that the telescopic condition implies the complete intetisa condition. However, the
converse was open:

Conjecture 1. The complete intersection condition implies the telescopi
condition

In general, the set of polynomials in the form of (1) with ary ag, ..., &
(GCDfay, . ..,&} =1) anda,,an € K does not always express a curve. It is required
to be a Grobner basis, which is not easy to recognize by catipnt On the other
hand, Miura derived that the telescopic condition is sufficior a MCF to express a
curve [1, 2].

This paper solves Conjecture 1 in the affirmative, which rsetirat a complete
intersection MCF expresses a curve:

Theorem 1. The complete intersection condition implies the telescapindition

Section 2 explains basic materials on one-variable algebtmction fields and
states the main theorem in Miura theory. Section 3 relates afibeory in terms of
Grobner base. Section 4 gives a proof of the conjecture.

Throughout the papef, Z., N, and K = denote the integers, the positive inte-
gers, the nonnegative integers, the finite field witlelements, respectively.

2. One-variable algebraic function field

If F is a finite algebraic extension &f(x) for somex € F which is transcendental
over a fieldK, F/K is said to be an algebraic function field of one variable oker
A ring O such that
1. KcOcCF, O#K,F
2. zeQorzteOforanyzeF
is said to be a valuation ring of /K (1.1.4 [5]). EachO is a local ring, and the
maximal idealP = O\ O* is said to be a place, whel®@* = {z e O | z7% € O}.
Hereafter,Pr denotes the set of places F/K. Then, for eachP € Pg, Op i={z €
F | z7' ¢ P} is a valuation ring ofF /K. Furthermore,P is a principal ideal ofOp,
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and when we write each § ze€ F by z=1t"u (u € O}, n € Z) usingt € F such
that P =tOp, the value ofn (the discrete valuation af at P) does not depend on the
choice oft (I.1.6 [5]), and we write it byvp(z). Let co be the symbol not ir¥Z such
thatoo+oo =oco+n=n+oo0 =00 andoo > m for all m,n € Z, and letvp(0) = co
Then,vp: F — Z U {00} satisfies

vp(X) =00 <= x=0

vp(Xy) = vp(x) +vp(y), for anyx,y € F

vp(X +y) = minfvp(X), ve(y)}, for any x,y € F

there existz € F such thatvp(z) = 1

vp(a) =0, for any 0% a € K.

For example,Op = {ze€ F | vp(2) >0}, Op ={ze F |vp(2) =0}, P={ze F |
vp(2) > 0} (1.1.12 [5]). LetFp := Op/P and degP := [Fp : K].

aorwbdE

Assumption 1. There exists R Pg such thatdegP = 1.
Under Assumption 1, the constant fiekd coincides with
={ze F | z is algebraic ovelK}

(we sayK to be the full constant field of). In fact, sinceK is embedded intd=p
via the residue class mapp — Fp (1.1.5 [5]), so deg? = 1 means

K=FpDKDK.
Hereafter, we arbitrarily fix suct® € Pr with degP = 1. We define

L(ooP):={z€ F g 20, Qe Pe \ {PU(0}= [ Oq
QePe\{P}

and Mp(R) = {—vp(X) | X € R\ {0}} for integral R such thatk ¢ R <€ L(coP),

K # R. Since an arbitrary monoid ii¥ is finitely generated, we write the generators
of Mp(R) by aj,ay,...,a € Z+, t € Z+ and expressh; = (a1, ..., &) € Z., where
the order ofa, ay, ..., & is fixed. If we fix X1, X, ..., % € R\ K so that—vp(X) =

g, = 1,2,...,t, then we haveR = KJ[xg, Xy, ...,X]. Furthermore, letK[X] :=
K[X1, Xz, ..., X{] be the the polynomial ring oveK of t-variables Xy, Xo, ..., X,
and let®: K[X] — R be the canonical surjective homomorphism fra@iX] to R
such that forf (Xg, Xa,..., X;) € K[X], O(f(Xg, Xz,..., X)) := f(Xg, %2,. .., %) € R.
Then, ker® makes an ideal irK[X] and from the homomorphism theorem, we have
K[X]/ker® ~ R.

Lemma 1. The following three are equivalent
1. F is a fraction field of R
2. N\ Mp(R) is a finite set
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3. GCDA}=1.

(See Miura [1] for proof.)

We chooseR so thatF is a fraction field ofR. Therefore, we have GQ3} = 1.
Moreover, since the transcendental dimensior-¢gK is 1, ker® is an ideal expressing
a curve.

We define the mapl: N' — (A;) by ¥((n,...,ny)) = > ; an;, and define the

order < in N' so thatM < M’ for M = (mg, my,...,m) and M’ = (m}, m, ..., m;) if
1. ¥(M) < w(M)

2. (M) =y¢(M)andmg = mp,mp =m,...,m_y =m_,;, m > m for somei
d=ix<t).

Let M(a) be the minimum element with respect to the ordem N' satisfying¥ (M) =
ac (A). We defineB(A;) € Nt and V(A;) € N'\ B(A;) by

B(A) :={M(a) | a € (A}
and

V(A) ={LeN\BA)IL=M+N, MeN\B(A), NeN
— N=(0,0,...,0),

respectively. Also, let
T(A) :=B(A)N{(h, Nz, ...,n) e N' | ny =0}

Then, we have

Lemma 2 (Miura [1]).

V(A)+N' =N\ B(A)

and

Lemma 3 (Miura [1]).

#T(A) = a1

(See Appendix for proofs.)

Hereafter, forA c K[X], SpafA} and (A) denote the linear space ové&r gen-
erated by A and the ideal inK[X] generated byA, respectively. Also, XM, M =
(Mg, My, ..., m) € Nt, denotesXx™ = X" X772 ... X{™ for simplicity.

Theorem 2 (Miura [1]). There exists a set of generatpfgy | M € V(A;)}, of
ker® C K[X] satisfying
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C1 For each Me V(A),
Fv — XM
e Spar{ X" | N € B(A), ¥(N) < w(M)}\ Sparf X" | N € B(A), ¥(N) < ¥ (M)},

and
C2 SpaXN | N € B(A)} N ({Fm | M € V(A)}) = {0}

C1 is precisely expressed by

2) Fu = XM+ o XE + > anXN, 0#ap, an €K,
{NeB(A) W (N)<W¥ (M)}

where W(M) = W(L).

Theorem 3 (Miura [1]). Suppose we fix &€ Z., A, = (ag,a,...,&) € Z,
gcd{A} = 1. If {Fy | M € V(A)} € K[X] satisfiesC1 and C2 in Theorem 1,
then | := ({Fy | M € V(A)}) makes a prime ideal in KX]. Moreovey the fraction
field of the integral domain KX]/I is a one-variable algebraic function field over.K

3. Grobner base

For f =Y ayXN e K[X], ay € K, N € N!, we define

—00 f=0

multideg(f) = {max{N eN'|ay 70}, f#0’

where “max” is the maximum in the sense of the orderthat has been already de-
fined. We set

_ [0, f=0
SCRE SV
where T := multideg(f). If a finite subsetG = {Gg,..., Gy} of ideal | satisfies

({LT(E) | F e 1) =({LT(Ga), ..., LT(Gm)},

G is said to make a Grdbner basis of ideéalith respect<. It is known that for any
ideal (# {0}) and any order, there exists a Grobner basis [4].
For ideall in K[X], we define theA-set of | by

A() =N\ | J {multideg(f) +N'}.
fel\{0}
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Proposition 1 (Miura [1]). Assuming(2),
1. C2is equivalent to thafFy | M € V(A)} € K[X] is a Grobner basis of{Fy |
M e V(Ay)}) <€ K[X] with respect to the ordekx
2. A(l) = B(AY).

Therefore, the verification of C2 is not easy except for dpecases.

Lemma 4. Ifabasis G={Gy,...,Gn} of ideal | satisfied CM(LT(G;),LT(G;))=
LT(G))LT(G;j), i #j, then G makes a Grobner basis of |

(See [4] for proof.)

Noting the following lemma, we defin8V(A;) € V(A;) € N\ B(A;) by SUA,) =
(Nj | 2<i <t}, whereN;, 2<i <t is the uniqueN; such that{N;} = {0} "* x N x
{01 NV(A).

Lemma 5 (Miura [1]). For each2 <i <'t, the set{0}~! x N x {0}'~' NV (A)
has one element

If V(A) = SVA), i.e. elements of {Fuy|M € V(A)}) are generated by exactly
t — 1 elements inK[X] (A; is said to be complete intersection), théRy | M €
V(Ay)} € K[X] makes a Grobner basis, so that we do not have to verify C2adh f
applying LCMLT(Fu), LT(Fy)) = XMXN = LT(Fw)LT(Fyn), M € {0}~ x N x {0},
N e{0l1xNx{0-}, 2<i <j<ttoLemma 4, we obtain the claim.

Even if we replace C2 by the complete intersection condjtioe do not know
how to constructA; such thatV(A;) = SMA;). However, we can construct sonfg
such thatV (A¢) = SM(A;) as follows.

DEFINITION 1 (Kirfel-Pellikan [3]). If A;=(ay,..., &) € Z! satisfies

aj < a a_1

— —...,—), d=GCD@y,...,q), 1<i<t, d=1,
diG 4. di—1> ; @ g), 1<i=<t do

then A; is said to be strictly telescopic. Moreoved; is said to be telescopic ify
becomes strictly telescopic by changing the order of elesnanA;.

Whether A; is strictly telescopic depends on the order of elementéiras well as el-
ements inA;. If t =2, thenay,/ GCD{ay,a,} € ((1)) and A; is automatically telescopic.

REMARK 1. If 2g—1¢ (A), whereg := #(N\ (A)), A; is said to be symmetric.
The following implication [6] is known:

t =2= A: telescopic—=- A;: symmetric.
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Proposition 2 (Miura [1]). If A; is telescopicthen

SV(At):V(At):{(0,...,0,%,0,...,0) ‘2§i ft}.

Hence, ift = 2 (Cap), or if A is telescopic, thenA; is complete intersection,
so that we do not have to verify C2. However, the converse leEh lopen, i.e. if
A: being complete intersection implie&; being telescopic. If this is solved in the
affirmative, arbitrary complete intersectiof, will be obtained constructively. If we
pull back the ideall = ({F,, ..., F}) in K[X] to the projective space, only* 2
({F;,..., F}) holds in general. Besides, not all algebraic curves areesspd by
complete intersectiod,. However, if we obtain all the expressions with 1 equations
relatingt variables in MCFs via telescopié, it will be pleasing to engineers who are
engaged in algebraic coding theory and algebraic curvetagyaphy.

Conjecture 2 (Miura [1]). If A; is complete intersectigrthen A is telescopic
In other words

A : telescopic— A;: complete intersection
4. Proof of Miura conjecture
Since we assum¥ (A;) = SM(A;), we may write
V(A) = {M@ MO . MmOy
with
MO =(,...,M,0,...,0), M >1,i=23,....,t,

and L® = (LY, ..., L) for L corresponding tav = M® in (2).

Lemma 6. There is nofiy, iz, ..., ik} €{2,3,...,t} (1 <k <t—1) such that
3) L > 1,19 =1, L0 21100 >0

Proof. Suppose there exists a sequence of lekgtatisfying (3). LetN :=
(Ng, ..., N¢) e Nt be such that

o 1, |€{i1,...,ik}
N "{o, I ¢ {ig,..., 0

Then, forM := Y¥_, M@ — N and L := Y, L) — N, we haveM, L € N'.
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In general, forH, H € N' such that¥(H) = w(H’) and H > H’, and arbitrary
H” e N, we have

UH+H")=W(H +H"), H+H">H +H",
and if H — H”, H' — H” e N!, then
W(H - H")=W(H —H"), H-H">H —H"

Since MO ¢ B(A) and LO e B(A,), we haveM® > L® j =23, .. t, so that
(M) = ¥(L) and M > L. Hence,M € N'\ B(A;). On the other hand, sinckl =
YHAMOD —N¢ MO+N, i =23, t, we haveM ¢ V(A) +N'. These contradict
to Lemma 2. O

We define a partial ordek in C ={2,...,t} as follows:
1. for eachi € C: i =i '
2. for each of two different, j € C such thatLi(’) >1:i<j;and
3. for each of three different, j,k € C such thati < j andj <k: i <k.
Also, we fix a total order inC that is consistent with the partial order (such an
order exists from Lemma 6), and write the total order byalso. Without loss of
generality, we may assume23 < - - - < t by changing the indices iM;,a; ,{Li(”}itzl,
j=2,3,...,t. From Lemma 6, we have

-1
4) Mjaj =Y LVa.
i=1

Lemma 7. For each j=2,...,t, the ratio d_;/d; divides M.

Proof. The right of (4) can be divided by both andd;_;, and therefore can be
divided by a;dj_1/GCD(@g;, dj_1) = a;d;_1/d;. Hence,d;_,/d; divides M;. O

Lemma 8. MoMs--- My =g

Proof. From Lemma 2, we have

B(A) ={(1,12,.. ., 1) [11eN, 0<1; <M; —1,j=2,3,...,t}
T(A)={(O,lz,...,1)10=<l; =M; —1,j=2,3,...,t}.

Also, from Lemma 3, we havéM,Ms - - - M; = ;. [l

Theorem 4. A is telescopic if and only if Ais complete intersection
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Proof. From]_[tjzz(dj,l/dj) =g and Lemmas 7 and 8, we obtaM; = d;_1/d;.
Hence, (4) is written as

j-1

a; ]
5 i L(J)— ]
(5) a "2 as

Appendix: Proofs of Lemmas 2 and 3

The following proofs of Lemma 2 ang T(A;) = a; appeared in Miura [1]. We
give them here for self-containedness.

Proof of Lemma 2. First, we show
(6) (N"\ B(A)) +N' =N"\ B(A).

(N'\ B(Ay)) +N!' D N\ B(A) is apparent. On the other hand,

M ¢ B(A), NeN

— 3M e B(A) st M>M, ¥(M)=¥(M), NeN
= M+N>M+N, ¥(M+N)=¥y(M +N)

— M+N ¢ B(A).

Therefore, (6) holds.
Secondly, FromV (A;) € N'\ B(A;) and (6), we have

) V(A)+N C N\ B(A).
We derive contradiction, assuming that the inclusion inig7hot C but c. Notice

IM; st Mpe N\ B(A), Mi¢V(A)+N

— 3IN;, My sit. My=Ma+N;, Mye N\ B(A), (0,0,...,0)%N;eN
— IM, s.t. MyeN'\ B(A), Mz¢ V(A)+N

— 3N, M3 sit. Ma=M3+ Ny, MzeN\B(A), (0,0,...,0)#N, e N
— 3IM3 s.t. MzeN'\ B(A), Msg¢V(A)+N

e
However, this implies an infinite sequendé, My, . .., such that¥(M;) > ¥(My,) >

.-+, which is a contradiction. Thereford]; such thatM; e Nt\ B(A), M1 ¢ V(A) +
N! does not exist. Hence, the equality holds in (7). Ul
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Proof of Lemma 3. For each=0,1,...,a; — 1, we define
b :=min{b € (ap,a3,...,a&) | b=i moda}.

We show|T(A;)| =a; by deriving T(A;) = {M(b;) € B(A) |i =0,1,...,a —1}.

Sincea; > 0 and GCDRA} =1, for eachi =0,1,...,a0—1, {b € ((az,as,...,&)) |
b =i moda;} is not empty.

Let M, N € N!' be such thatv(M) > ¥(N) and ¥(M) — ¥(N) = na, for some
neZ,. We claimM ¢ T(A;). Let N’ :=(n,0,...,0)+N. Sincen > 0, N’ ¢ {0} x N1
and (M) = W(N'). If M ¢ {0} x N*"%, thenM ¢ T(A). If M € {0} x N*"2, then
W(M) =w(N) and M > N’, which meansM ¢ B(A;). In any caseM ¢ T(A).

We claim M(ly) € {0} x N'~1. To this end, we derive a contradiction, assuming
my; #0 in M(by) = (mg, My, ..., m). Sincew((0,my, ..., m))+ma =b and

Y((0,my,...,m))=b =i moday,
my # 0 implies W((0,my, ..., m)) < by, which contradicts the minimality of;. [
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