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New Efficient and Accurate Method of Nonlinear Analysis of
Offshore Tubular Frames (the Idealized Structural Unit

Method) (Report I) '

— Development of Static Theory and Method —

Yukio UEDA#*, Sherif M. H. RASHED** and Keiji NAKACHO#***

Abstract

The ldedlized Structural Unit Method” ? is gpplied to the andlysis of nonlinear behavior of three-
dimensional offshore tubular frames. For this purpose a “tubular structural unit” is developed and used
to andlyze the entire behavior of the frame until findl collapse. In this method, large deflections, insta-
bility, plasticity and the effect of residual stresses and initial out-of-straightness are considered. Model-
ing of astructure is very simple since large structural units are regarded as elements. The required com-
puter effort is very small although achieving a high degreeof accuracyandreliability. In this report, the
theory and method are developedfor static problems.

KEY WORDS : (Offshore Structure) (Tubular Frame) (Ultimate Strength) (Nonlinear Behavior) (Plasticity)
(Buckling) (Idealized Structural Unit) (Super Finite Element)

1. Introduction

Despite the vast development in the area of nonlinear
structural analysis, there is still an urgent needof accurate,
reliable and efficient tools for the analysis of nonlinear be-
havior of steel tubular offshore structures until collapse. In
the analysis, geometric and material nonlinearities of the
structure must be incorporated. Inevitable loss of stiffness
of structural components before and after the state of ulti-
mate strength have been reached must be taken into ac-
count.

An elastic analysis, linear or nonlinear, is insufficient
to consider post ultimate strength behavior of structural
members.

The finite element method can analyze the behavior of
tubular frames to the required degree of accuracy with ocon-
sideration of geometric and material nonlinearities. This
method, however, could be very expensive when analyzing
a large-sized structure. '

To overcome this difficulty many brace models have
been proposed. Zayas, et al.” have classified these models
into two groups. The first is the “physical theory brace

models” presented by Higginbotham?, Nilforoushan® and
Singh®. They used a pin-ended model with equivalent ef-
fective length and a plastic hinge at the center. The
analytical formulations are based on assuming an axial
force-moment interaction curve and an elastic-perfect plas-
tic moment-curvature relationship at the center hinge. The
second group is the “phenomenological brace models”. The
basis of these models is to pre-define the shape of the axial
force-axial displacement response of a truss element repre-
senting the brace by employing either mathematical or

“empirical results. Models of this type have been developed

by Higginbotham?, Nilforoushan®, Singh®, Marshall®,

Roeder®, Jain” and Maison®. In these models, however,

only the axial force acting on the member is considered

End moments and/or lateral load are not taken into account.
These, in many cases, have a large effect on buckling and
post-buckling behavior of braces.

Ueda and Rashed ' have suggested the idealized struc-
tural unit method (ISUM) for the analysis of nonlinear be-
havior of large sized redundant structures. The method has
been successfully applied to ship structures” '® 'V 12 In
this method the structure is divided into the biggest possi-
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Idealized Structural Unit Method in Statics

ble “structural units” (equivalent to an element in the con-

ventional finite element method), such as a part of a girder

between two vertical web stiffeners or a stiffened panel

boundedby 4 primary supporting members. Geometric and
material nonlinear behavior of the components of a struc-

tural unit, such as buckling of plate elements, collapse of

flanges or stiffeners, etc. are idealized and described in con-

cise forms related to forces and displacements of a limited

number of nodal points at the boundaries of the structural

unit. These concise forms are a set of failure interaction

surfaces and a set of stiffness matrices expressing the be-

havior of the unit before and after these failures. The load is
applied incrementally and the response of the structure is

analyzed. The required computer effort is very small. The

accuracy and reliability of the method are maintained in

comparison with the finite element method.

In this study the method is extended to analyze the non-
linear behavior of three-dimensional offshore tubular struc-
tures. For this purpose a “tubular structural unit” is devel-
oped and applied to offshore steel tubular structures. In this
report, the theory and method are developed for the static
problem where the load is applied to the structure stati-
cally.

2. The Tubular Structural Unit

Offshore tubular space frames are usually constructed
of several tubular chords (legs) braced by a large number of
tubular bracing members. A member running between two
joints is usually a prismatic circular tube. The thickness of
the members is increased locally at the joints to increase
their strength. In the analysis, the structure may be mod-
eled as a group of prismatic members connected at the
joints. Each member is referredto as the “tubular structural
unit.”

The tubular structural unit is represented in Fig.1. It
is a prismatic circular tube with each end connected to a
joint. The equilibrium and compatibility conditions at each
end are expressed with respect to a nodal point that is
located on the central line of the tube.

: !
/ P2j ”zat /
L /A Pyiruys
/
Mzjs82 /”yj"’yi
i J
Pxi Ui 4 Prjolnj  x
S P et - - - e P . e
My i0xi T / 7 ; f- Z ; ad ij.exj
Py1-“y1/qi / }
P2isuzi '
q
MyisByj Mzi:074 J

Fig. 1 The tubular structural unit
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Six degrees of freedom are considered at each nodal
point as shown in Fig.1. Nodal displacement and nodal
force vectors U and R may be expressed, respectively, as
follows:

o-fof mefi

T
uzi Ok eyi 6Zi}

T
Uj={uxj Uyj U By By ezj}

ey

T
Ri={Pa Py Pi M My My}
T
Ri={Pg By By My My Myl

{ }T : transposed matrix of { }

In this method, the effect of laterally distributed loads
acting on the member is fully consideredin the solution of
the equilibrium differential equation in order to detect their
local phenomena as describedin the following sections.

A tubular structural unit is dealt as a beam column.
Highly nonlinear behavior of beam columns has been stud-
ied by many researchers. D. R. Sherman, et al., have stud-
ied the behavior of tubular members subjected to bending'®
and combined bending and axial load'?. W. F. Chen and D.
A. Ross"™ have studied the behavior of fabricated tubular
members with consideration of residual stresses and out-
of-straightness. D. J. Han and W. F. Chen'® have investi-
gated post-buckling and cyclic behavior of tubular mem-
bers. Many other works may be found in the literature.
Based on these studies, an outline of the behavior of the
tubular structural unit is describedas basic information for
idealization.

When the unit is subjected to an increasing load, vari-
ous types of failures may take place depending on the di-
mensions and material of the unit, its boundary conditions
and the ratio of the load components. I the diameter-
thickness ratio of a tube is larger than about 70'”, local
buckling of the tube shell may take place where high com-
pressive stresses exist. For highly compressed members
this ratio is usually much lower than 70. This failure mode
is then not consideredin this study.

When tubes of lower diameter-thickness ratios and high
or medium slenderness ratios are subjected to a load com-
bination with a dominating axial compression, they show
overall elastic or elastic-plastic buckling followed by plas-
tic collapse. Plastic collapse occurs when plastic hinges
are formed at the regions of maximum bending moment
(mid-span and fixed or restrained ends) so that a collapse
mechanism is foormed When the bending moments and'or
the distributed lateral loads are pronounced, the tube tends



to deflect laterally until plastic collapse takes place as be-
fore. Tubes subjected to load combinations having axial
tensile loads do not buckle, and only plastic collapse is
expected.

Tubes with very low slendemess ratios do not buckle
and they show only plastic collapse, irrespective of the
ratio of the load components.

After the formation of the first plastic hinge at the re-
gion of maximum bending moment, the internal forces
cannot be increased any more at the plastic zone. However,
the tube may continue to deform. The ratio of the internal
force components acting at the plastic zone may also
change depending on the nature of the overall structure and
the external loads acting on it. Other plastic hinges may be
formed at other regions of the tube, if the intemal force
components at these regions become sufficient.

- The behavior of the structural unit, before and after
failure, may be expressed by the relationship of the nodal
forces R to the nodal displacements U . Since the behav-
ior is nonlinear, the incremental method is appliedin this
study.

3. Failure-Free Stiffness Matrix

Before buckling or yiélding takes place, the behavior of
the structural unit considered as a beam column may be
expressed by the following differential equation:

4 2
d Wy o, d wy o1

+k =—
dx* dx? EI y

dw, ,d%w, 1 @
Z+k Z

dx* dx? )

where
wy and W = lateral deflectionsin the Xy and zX

planes

k :‘/ /E1 is a common variable in the two equa-
tions

P =internal axial force

E =Young’s modulus

I = cross-sectional moment of inertia

qy and ¢z = components of the lateral load q in

y and z directions. For a linearly distributed load
qm=qmi{1+ (o~ I)X/L}
a=qmj/qmi, mM=Y,z
These two equations may be solved independently.
When the interpal axial force P is compressive (positive),

the general solution of the first of equations (2) may be
written as

Wy =acoskx + bsinkx + cx +d +f(qy) )
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f(qy) is dependent on the distribution of the lateral load
qy. The constants of integration a,b,c and'd are de-

termined from the following boundary conditions (see
Fig.2):

x =0
X =L

Wy =Uyj, dwy/dx=0

The bending moment M, may be expressed as

M, = ~E1d%w, [dx> @

Using equation (4), M i and M;j may be expressed in

terms of nodal displacements as in Appendix I Applying
the equilibrium condition, nodal force components Py;

and Pyj may be found and expressed as in Appendix L
Similarly Myj, Myj, P;j and P;j may be derivedfrom
the second of equations (2).

The relationship between the nodal axial forces Pxj
and Pyj, and the nodal axial displacements Uxj and ux;j

may be expressed as
Pxi =—Pxj=EA (uxj— uyj _ub)/L

where
up = axial shortening due to bending of the struc-
tural unit, which is obtained by the following equation :

uy =fé‘(ds— dx)

©)
_ % fé’{(dwy 1dx)? +(dw, /dx)z}dx

®)

Introducing the expressions for wy and W into
equation (6) and performing the integration, Up may be
obtained and expressedas in Appendix L

The relationship between the twisting moments My;
and ij, and the rotations Oy; and ij may be express-

ed with the usual one for a beam.
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Fig. 2 Projection of the structural unit on the XYV plane
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Neglecting small terms of higher order, as increment of
the nodal force AR may be expressed as follows :

AR+AQ=KAU @
where

K =tangential stiffness matrix

AQ = load vector associated with the distributed
load applied on the unit.

K and AQ are givenin Appendix L.
When the intemal axial force is tensile (negative), the
same K and AQ areobtainedin which

a1 = (sinhk"L k*L)/{ K*(1 —coshk*L)}
ay =2 +(k Lsinhk L) /(1 - coshk'L)

kK = TPITEI

It should be noticed that the effect of the lateral load
appears not only in the vector AQ but also in the tangen-
tial stiffness matrix K.

4. Ultimate Strength of Tubular Members

The nodal force-displacement relationship, equation (7)
bolds until the structural unit buckles or yieldng starts.
After yielding has started even locally, the stiffness of the
structural unit decreases, however, equation (7) is assumed
to hold in the analysis until the unit buckles or one or
more full plastic cross sections are developed.

In the following, the conditions of the buckling
strength and the full plastic strength of a cross section are
represented and the ultimate strength condition is con-
structed as the combination of these.

.Pp

\\;K/F———— BUCKLING STRENGTH
~

FULL PLASTIC STRENGTH

M M =\/M§+ M§

//‘
v
PE/ |
M, \

Fig. 3 Ultimate strength interaction relationship
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4.1 Buckling strength

Chen and Atsuta'® reported a summary of extensive
studies done in Lehigh University'®. Three columns curves
have been producedfor different cross sections, methods of
manufacturing and steel grades. These curves are adoptedin
this study. Short columns do not buckle and they may at-
tain their full plastic axial compressive strength. In this
case the magnitude of Pp reaches that of Pp.

4.2 Effective length for buckling
The effective length Lejj of a structural unit ij =i-

gidly connectedat nodal points 1 and j to other structural
units in the plane of buckling (in case of plane frames) is
given in reference®. Lejj is estimated by comparing
bending stiffnesses of member 1j and restraining mem-
bers.

In a space frame, however, restraining members do not
generally lie in the plane of rotation due to buckling. A
restraining member normal to that plane contributes with
its torsional rigidity. The restraining stiffness of any
member depends on its relative orientation. The structural
unit ij may then buckle in the manner which has mini-
mum total restraint at the ends 1 and j. Buckling is gen-
erally accompanied with some twist of the structural unit,
since the planes of minimum restraint at i and j are gen-
erally different.

The determination of the planes of minimum restraint
and the buckling configuration is a complicated and time-
consuming process. However, the restraining stiffness at
nodal points 1 and j about y and z axes may be ob-
tained from the global tangential stiffness matrix and the
restraining stiffnesses at 1 and j may be determined.

4.3 Full plastic strength

In this analysis, the effect of shearing stresses on plas-
tic strength is assumed to be negligible. Then the internal
shearing forces Py and P,, and the intemnal twisting mo-
ment My do not affect the full plastic strength interaction
relationship.

Integrating the full plastic axial stress over the cross
sectional area, expressions for the axial force Py and bend-
ing moments My and M, may be obtained These ex-

pressions may be combined to obtain the full plastic
strength function

2 2
NMY"'MZ nl Pl
—— _cos

M, 2P,

Tp = =0 ®)

where
M, and Pp, = magnitudes of the full plastic bend-

ing moment and the full plastic axial force of the cross



section
Equation (8) may be represented as shown in Fig 3.

4.4 Ultimate strength interaction relationship

Depending on the properties of the structural unit and
the nature of the increasing load vector applied on it, it
reaches the buckling strength, or the plastic strength. The
assembly of these conditions represents the ultimate
strength interaction relationship of the tubular structural
unit as shown in Fig.3.

5. Ultimate Strength Stiffness Matrix

As the load increases, the ultimate strength condition,
may be satisfied at nodal point i, nodal point j and/or the
location of maximum bending moment along the unit.
The internal force vector at such alocation cannot further
increase. However, the unit may continue to deform while
redistribution of the internal forces takes place, and the ra-
tio of the components of the internal force vector may
change. In the following, the stiffness matrix of such a
structural unit is derived:

(a) First, let a structural unit in which equation (8) is satis-
fied at nodal point 1 and /or j be considered A plastic
node?” is inserted at the nodal point(s) where equation (8)
is satisfied Equation (8) is regarded as a plastic potential
and plastic flow theory is applied. An increment of nodal
displacement vector, AU, is composed to the elastic

component. AU® and the plastic component AUP; that
is,

AU=AU®+ATP ©)
Based on the plastic flow theory, AUP is expressed as
follows:

p . .
T =[A, 0 {(arp/aR),}=M
A UJP 0 Aj||(aTp/0R);
10) -
where '

Aj and Aj = positive scalars.

In the process of analysis, if the sign of Aj or/and Aj

is detected negative, unloading occurs at the plastic node
and the node should de dealtas an elastic one.

The incremental stiffness equation may be written as
follows:

AR+ AQ=KAU®*=K(AU-AUP) (1

AR satisfies the condition of plasticity that AT, should
be equal to zero.

71

Trans. JWRI, Vol. 28,(1999), No. 1

AT, =¢" AR=0 12)

Equations (11) and (12) give the relationship between A

and AU . Substituting this relation into equation (11),

equation (11) may be written as
AR+ AQP =KP AU

where

(13)

AQP = elastic-plastic incremental force vector of
the distributed load

KP = elastic-plastic stiffness matrix

(b) If equation (8) is satisfied at point a, the position of

maximum bending moment along the length of the umit,

the unit is divided at this position into two beam-column

elements ia and aj. A plastic nodeis inserted at point a

on either element ia or element aj. Considering the con-

dition of nodal points 1 and j, elastic or elastic-plastic

stiffness matrices and distributed load vectors are evaluated
for the two elements. Then the extra nodal displacements at
point a areeliminated in the normal way.

(c) If the magnitude of the axial compressive force reaches
that of buckling, the structural unit buckles andis allowed
to deflect until equation (8) is satisfied at any point along
its length, where a plastic node is then inserted as in (b).

In (b) and (c), the position of maximum bending mo-
ment is usually very close to the mid-length of the unit. In
the analysis it may be reasonably assumed at the mid
length.

6. Idealization of Behavior and Assessment of
Its Accuracy

When a tubular structural unit is subjected to an in-
creasing load, the internal force vectors at the nodes and the
mid-length of the structural unit may take any of the paths
expressedin Fig.4. These may be idealized as shown in
the same figure.

In the analysis, the nonlinear behavior of the unit is
idealized so that the unit deforms elastically, as expressed
by the stiffness equation, equation (7), until the ultimate
strength condition is satisfied at node 1, node j or/and the
midlength. The behavior of the unit is then expressed by
the ultimate strength stiffness matrix derived in the previ-
ous section.

Figure 5 presents examples of comparison among
test results of 18 tubular members subjected to axial com-
pression and end bending moments®?, those of elastic plas-
tic large deformation finite element analyses and those ob-
tained using the tubular structural unit. In the finite ele-
ment analyses a member is divided into 8 beam-column
elements with large deflection and plastic capabilities.
Each element has 40 integration points along the circum-
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ference of the member at the middle of the element. It may
be seen that the unit is capable of accuraterepresentation of
the behavior of tubular members. Of particular practical
interest, loss of stiffness prior to ultimate strength and
post-buckling loss of strength are accurately predicated.

In this method the elastic stiffness matrix is derived
based on equation (2) in which the differentiation is with
respect to the distance X along the original axis. This
causes an error in calculating the axial force when the elas-
tic deflection becomes very large. However this error is
very small (about 1.5 percent for a central deflection of
0.11 of the length between points of zero bending mo-
ment). Such large deflections are not expected before buck-
ling of the member. After buckling, the member is divided
into two elements whose coordinates are updated at each
load step. No sensible erroris expectedfor tubes practically
used in offshore structures for the whole post-buckling
range. It is to be noted however, that local buckling of the
tube wall is not taken into account. Tubes with high D/t
ratio may needan investigation of their rotation capacity
if the analysis is to be performed very far beyond buckling
of the tubes. Cracking due to lack of -ductility is also not
taken into account. .
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Fig. 4 Idealization of tubular structural units
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Fig. 5 Comparisons of load-shortening curves of tubular
members

7. Procedure of Analysis and Numerical
Example

When a structure consisting of a group of tubular
members is subjected to an increasing load, the internal
forces in the members increase until one member or more
show local failure. However, redistribution of internal
forces may take place in the structural members and further
load may be supported. The structure reaches its ultimate
strength when successful redistribution of internal forces
cannot be achieved and equilibrium can not be attained
without reduction of load. The structure may continue to
deform while the external load decreases, and/or increases
again depending on the nature of the structure and the ap-
plied load.
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Fig. 6 A jacket structure and applied collision load

For the analysis, a structure is divided into the above
developed tubular structural units and the incremental load
method is used First, the loadfree structure is considered.
The incremental stiffness matrix of each structural unit is
constructed and transformed into the global coordinates.
The global incremental stiffness matrix of the whole struc-
ture is then assembled. After the boundary conditions are
introduced the first load increment is applied The deforma-
tion of the structure is obtained and the internal forces in
each structural unit are evaluated. Each structural unit is
then checkedfor bucking and/or plasticization.

Py Py
7500 10004
(xN) F 3
6000 BOOCL

4500 6000

3000 400G 10

1500 20

1
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Since the stiffness matrix of the tubular structural unit
is dependent on deformation and intemnal forces, a new
stiffness matrix is constructed and transformed into global
coordinates for each structural unit after each load incre-
ment. The global stiffness matrix is reassembled and the
next increment of loads is applied.

When buckling and/'or plasticization of one structural
unit or more are detected within a loading step, the load
increment is scaled down to that just necessary to cause
such failure. This prevents the internal force vectors from
shooting out of the ultimate strength interaction surfaces.

The ultimate strength of the structure is detected by
consideration of plastic deformation.

Following the procedure outlined in the foregoing, a
computer program, NOAMAS, has been completed and
used to analyze several structures. Figure 6 presents one
of these structures. It is a jacket being 117.6 m in height
standing in a 114.0 m depth of water.

The jacket supports a total deckload of 16,000 tons. A
collision situation is simulated by applying a horizontal
load at level -4.600 m as shown in the figure. The relation
between the collision load and the displacement of the
point of colliding is presented in Fig.7. The area under
the curves represents the absorbed energy. The numbers in
the figure show the sequence and locations of plasticiza-
tions. The analysis was terminated when the energy of the
colliding ship has been absorbed by the structure. Eight
members have shown local failures during the course of
collision, however the global structure did not collapse.

The model has 303 nodal points and 771 structural
units. Deck load has been applied in one step and the colli-
sion load in 30 steps. Intermediateiterations are carried out
to ensure proper plastic deformation. The analysis con-
sumed 135 s on a CRAY-1 computer.

t t t t 1 1
0 100 200 300 400 500
u (mm)

(a) Load-displacement relationship at point of collision

600

(b) Sequence and locations of plasticizations

Fig. 7 Results of ultimate strength analysis of a jacket
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8. Summary and Conclusions

In this paper the idealized structural unit method
(ISUM) is applied to the analysis of nonlinear behavior of
offshore tubular space frames until final collapse. For this
purpose the tubular structural unit is developed The be-
havior of tubular members described by the tubular struc-
tural unit is compared with the results of experiments and
those of a refined analysis by the finite element method.
Very good agreement has been observed, especially with
respect to loss of stiffness before the ultimate strength has
been reached, as well as the ultimate strength and the sub-
sequent loss of strength.

A computer program, NOAMAS, has been completed
and an example of analysis of a jacket structure is pre-
sented.

In this analysis, modeling of a structure is very simple
and the required computer effort is very small, although
giving high accuracy and reliability. With these advantages,
this method is proven to be an efficient and accurate meth-
od of analysis of nonlinear behavior of large-sized offshore
tubular space frames, with several applications to nonlin-
ear design problems. For example, the vltimate limit state
of a tubular frame in different loading situations, the ener-
gy absorbed by sub-global and global deformation in a ma-
jor collision situation, may be accurately and economically
evaluated.
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APPENDIX 1

Expressions for Nodal Moments, Shearing Forces and
Shortening due to Bending

1. Nodal Moments

P a +L a;
M + Mggi = —(uyi — uyj)+ P———0, -P—6;;
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2. Nodal Shearing Forces
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3. Shortening due to Bending
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4. Tangential Stiffness Matrix and Distributed Load
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Idealized Structural Unit Method in Statics
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APPENDIX 1II

Explicit Forms of the Elastic-Plastic Stiffness Matrix and Incremental Distributed Load Vector

(a) End i Plastic and End j Elastic
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(b) End i Elastic and End j Plastic
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(c) Both Sides Plastic
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