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Abstract
In this paper, we are going to estimate the lower bounds for the first eigenvalues of the buckling
problem and clamped plate problem by considering a positive lower bound for the weighted
Ricci curvature. Also, we extended the results for the p-biharmonic operator and we prove a
Lichnerowicz-Obata-Cheng type estimate for the biharmonic operators.

1. Introduction

Let (M, F,du) be an n-dimensional compact connected Finsler manifold with smooth
boundary dM. The clamped plate problem and buckling problem on this Finsler manifold
introduced in [8] as follows:

AV"Au =Tu in M,
(1.1)

ulaq = g (71, Vilaps = 0,
and

AV“Au = —AAu in M,,
(1.2)

ulaa = g (7, Vi)lap = 0,

here A and A"* are Laplacian and weighted Laplacian, 7 denotes the outer unit normal vec-
tor field of the boundary dM and g¢-; denotes the induced Riemannian structure on dM.
Finding the lower bound for the first eigenvalue of the biharmonic operator on Riemannian
manifolds had been studied for a long time. For instance, Zhang and Zhao in [17] ob-
tained the lower bounds of the first eigenvalues for the biharmonic operator (buckling and
clamped plate problems) with considering the lower positive bound for the Ricci curvature.
After a while, the Lichnerowicz-type estimate theorem investigated on both Riemannian
and Kihler manifolds with the boundary condition for the integral Ricci curvature [3]. Re-
cently, working on the first eigenvalue for different kinds of operator in Finsler geometry
attracts much attention, since it has broader applications and plays an important role in
Finsler geometry. For more study about the first eigenvalue of different operators we refer
[8, 11,12, 13, 14, 16].

For a domain Q with compact closure and nonempty boundary dQ of an n-dimensional
Finsler manifold (M, F,du), n > 2, the first eigenvalue of the Dirichlet problem for the
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Laplace operator defines as follows (see [10]):
Jo FOVf) du
2
Jo e
where F* is the dual Finsler metric on 7*M and L%,O(Q) is the completion of C7(€2) with

respect to the following norm:

lgllg, = f ¢rdu + f (F*(d¢))*dp.
Q Q

When M is a compact manifold without boundary, the first closed eigenvalue A;(M) of M is
defined as

Q) = inf{ L f e L @)\ {0}},

Ju FOV P dp
Sy Frn

We recall the first eigenvalue of the both buckling and clamped plate problems from [8] as
follows:

(M) = inf{ L f € Lio(M)\ {0},f

M

fd,u:O}.

(Au)*d,
Ai(M) = min M,
ueH2(M),u#0 fM [Vul2du

and
(Au)*dy
[(M)= min fMi
weHi(Mw=0 [ uPdp
Here H*(M) is defined as
HX(M) = {u: u, [Vul,IVuljg,, € L(M)},
where

212 . 2 12
f V205 it = f AT A
M M,

u

Here M, = {x € M| Vu|, # 0}and H;{s is the Hilbert-Schmidt norm such that for a bounded
operator A : H — H that acts on a Hilbert space H with an orthonormal basis {e; : i € I}
define as

2 . 2
|A|HS = z:iellAei|H-

Also H3(M) which is the subset of H*(M) is

Hy(M) = {u € HA(M) : uloy = 8—_”)’ = 0}.
on lom

Lately, Pan and Zhang in [8] considered Ricy > (n—1)k where N € (n, 00) and k is a positive
constant, then they obtained the lower and upper bounds of the buckling and clamped plate
problems on a Finsler manifold.

In this paper, we are going to estimate the lower bounds of the first eigenvalues for these two
problems for an n-dimensional compact connected Finsler manifold with smooth boundary
so that its weighted Ricci curvature Ric,, is bounded from below by a positive constant.
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Also, we estimate the lower bound of the first eigenvalue for the following nonlinear eigen-
value problem:

(1.3) Nou=AplulPu  in M,

where u € Wg’p (M), and Aiu = A(AulP~>Au) is an elliptic operator of fourth order, called
p-biharmonic operator. Obviously, for p = 2, (1.3) describes clamped plate problem. All
solutions of (1.3) in Riemannian manifolds are distributional in the sense that

f |AulP 2 Aulgdy = A, f ulP~2ugdp,
M M
for all ¢ € C7(M) and if ¢ = u, then we have

Jy 1Auldu
p= inf ———,
[y lulrdu

here the infimum will be taken over all u € Wé "P(M). If we consider a Finsler manifold with
vanishing S-curvature, then the symmetry exchange holds for the Finsler Laplacian.

El Khalil et.al. in [4] proved that for any bounded domain Q with 1 < p < +oco, Af, satisfies
the following:

A

1) Af, : Wg’p (Q) — W27 (Q) is an hemicontinuous operator where p’ = Ll
p —_—

(ii) It is a bounded monotonous, and coercive operator.

(ii1) This operator is a bicontinuous operator.

They considered all weak solutions of the following problem on a bounded domain Q c RY,
N>1

(1.4) Au= @l inQ,  ue WT(Q).

This means that for all ¢ € C°(€2), we have
f |AulP 2 AuApdx = A f PO’ ugdx,
Q Q

1
here p € L'(Q), p # 0. Also, they defined A(u) = —||Au||§ as a potential functional on
p

Wé "’(Q), then obtained their main result as follows:
1
Theorem 1.1. Let M = {u € Wy”(Q): pB(u) = 1}, where B) = — [, p(0)lul’dx, and set
14

Iy ={K c M : K is symmetric, compact and y(K) > 1},

here y(K) = k is the smallest integer such that there exists an odd continuous map f : K —
R —{0). Then for any integer k € N*, we get that

Ay := inf A(u),
i~ jnf maxpAG)

is a critical value of A restricted on M. Especially, there exists u;, € K;, € I'y so that

Ay = pA(uy) = sup pA(u),

ueky
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and (A, uy) is a solution of (1.4) corresponding to the positive eigenvalue Ay, such that when
k — +oo, then A, — +o0.

Lately, Abolarinwa and his coauthor in [1] considered a nonlinear problem involving
p-biharmonic operator and they studied monotonicity and differentiability of the first eigen-
value of this operator under consideration a Riemannian manifold endowed with Ricci flow

0
Eg(t, x) = —2Ric(t,x), (,x) € [0,T] X M,
9(0, x) = go,

here Ric is the Ricci curvature tensor of g and 0 < T < T, is taken to be the maximum
time of existence for the flow, T, is the first time when the flow blows up. Our purpose
here is to peruse the first eigenvalue of Af,, the main assumption is that we take the lower
bound Ric, > C for some constant C > 0.

Actually, this paper contains three important sections. First of all, in section 2 we study the
first eigenvalues for the biharmonic operator eigenvalue problems (buckling problem and
clamped plate problem) on a compact Finsler manifold under some condition for weighted
Ricci curvature Ric,. The second factor is the first eigenvalue of the Finsler p-biharmonic
operator, which will be investigated in section 3. The most important reason for studying
this operator is that it generalizes p-Laplacian, so that is interesting to ask if we could extend
such results for the case of p-biharmonic operator. In this way considering different types
of geometric Ricci flows on manifold endowed with this operator seems to have an essential
result. The last but not least step in this paper is section 4 which is the generalization of
Lichnerowicz and Obata’s works (see [5], [6]). We take the same conditions as well as those
works which leading ultimately to the geometric structure of such manifolds.

2. Finsler Geometry

Let M be an n-dimensional smooth manifold and 7 : TM — M be the natural projection
from the tangent bundle 7M. Let (x,y) be a point of TM with x € M, y € T M, and let

(x', y') be the local coordinate on TM with y = y' pre A Finsler metric on M is a function
F : TM — [0, o0) satisfying the following properties:

(1) Regularity: F is C* on the entire slit tangent bundle 7M \ {0},

(i1) positive homogeneity: F(x, ay) = aF(x,y) for all a > 0,

(iii) strong convexity: the n X n Hessian matrix

1
(9if) = ([EFZ]_)/LJI)’
is positive definite at every point of 7M \ {0}.

Let V = Vi— be a non-vanishing vector field on an open subset I € M. One can introduce

Oxi
a Riemannian metric § = gy on the tangent bundle over U as follows:
(X,Y) = X'Yg;i(x,v), VX= X"i Y = 1/1'i
gV £ L glj X7U ’ - axi, - axi'

In particular, gy(V, V) = F(V)?.
Let # : TM — M be the natural projection map, the pull-back bundle n*TM admits a
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unique linear connection called Chern connection. The Chern connection determines by the
following structure equations:

DyY - DyX = [X,Y],
this mentioned as torsion freeness and the almost g-compatibility is
Xgv(Y.Z) = gv(DxY.Z) + gy(Y, DXZ) + 2Cy(Dy V. Y, 2),

where V e T.M — {0}, X,Y,Z € TM. Note that D;Y is the covariant derivative with respect
to reference vector V € T, .M \ {0}. The Cartan tensor defines as follows:

Cy(X,Y,Z) = Cin(V)X'Y/ZF = lﬂ(V)XinZk
b 9 . l] 4 aVlVJVk .
The coeflicients of the Chern connection are
.1 ufogu 09 69k
l—*l. - _ ll(_ 4+ = — _)’
k=295 T sak T o
which is
0 . 0
v =7 T .
Di pri ij(x, V)axk’
oxt
where
1) 0 .0 . 0GY 1.
_.:_._Nil_.,N'ZZ—,,Gl:—ll F2 ] k _ F2 .
oxi oxi lay] i ay, 4g {[ ]x“y’y [F]a}

Let VY be the Chern connection, and then, the Chern curvature R (X, Y)Z for vector fields
X,Y,Z € C(m*TM) is defined by:
RY(X,Y)Z := VYVyZ - VYVYZ - V|, /2.

For a flag (V, W) consist of non-zero tangent vectors V, W € T,M and a 2-plane P ¢ T .M
with V € P the flag curvature K(V, W) is defined as follows:

gv(RV(V, WW, V)
gy(V, V)gy(W, W) — gy(V, W)?’
here, W is a tangent vector such that V, W span the 2-plane P and V € T, M is extended to a
geodesic field, i.e., V“fV = 0 near x. The Ricci curvature of V is defined as:

KV, W) :=

n—1
Ric(V) = > K(V,e,

i=1

Vv
here ey, -+ ,e,-1, m form an orthonormal basis of 7, M with respect to gy. Namely, one

has Ric(aV) = aRic(V) for any a > 0.
The reversible function A : M — R is defined by:

F(y)

A(x) = max .
(%) yel . M\(0} F(—y)

It is clear that 1 < A(x) < +4oco for any x € M. Here Ap = sup,., A(x) is called the
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reversibility of (M, F), and (M, F) is called reversible if Ap = 1.
The gradient vector field of a differentiable function f on M by the Legendre transformation
L:T.M — T;M is defined as

V= L7Ndf).
Let My = {x € M : Vf|, # 0}. We define the Hessian of f on M as follows:
H(H)(X,Y) := XY(f) = VY Y(f), VXY e [(TMly).

For a given volume form du = o(x)dx and vector V € T, M \ {0}, the distortion of M is
defined by

V)= In ydet(gi;(V))
g

Considering the rate of changes of the distortion along geodesics, leads to the so-called
S-curvature as follows

d
$V) = 2 [r(v(0), (D=0,

where y(¢) is the geodesic with y(0) = x and y(0) = V. Define

. d
S(V) = F‘Z(V)E[Swo),ﬂr)]t:o.

Then the weighted Ricci curvatures of M defined as follows

Ries(V) = {Ric(V) +8(V), for S(V) =0,
—o0, otherwise,
. - , S(v)?
RlCN(V) = RlC(V) + S(V) - m, VN € (I’l, OO),
Rice(V) := Ric(V) + S(V).

Fix a volume form dy, the divergence div(X) of X is defined as:
d(X]dw) = div(X)du.

For a given smooth function f : M — R, the Laplacian Af of f is defined by Af =
div(Vf) = div(£~1(df)).

Given a vector field V, the weighted gradient vector and the weighted Laplacian on the
weighted Riemannian manifold (M, gy) are defined by

i, ou 0
YV)—7—, on M,
ASTRE J Ox; 0x; Ay = div(VVu).
0, on M\ M,,

Here M, := {x € M|du(x) # 0}. We note that Vu = VVu, Au = AVu.

Assume that (M, F,du) is a Finsler measure space with boundary dM, then we shall view
OM as a hypersurface embedded in M. More importantly, M is a Finsler manifold with a
Finsler structure Fy,, induced by F. For any x € dM, there exists exactly two unit normal
vectors 77, which are characterized by
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T(0M) = (C € T Mlg(7, V) = 0,g5(11,7) = 1).
The normal vector 77 induces a volume form du; on OM from du by
Vidu = g»(11, V)du, YV € TM.
The Stokes theorem holds as follows (see [10]):

f div(V)du = f g (11, V)dp;.
M oM

Proving our main results, we may need the following formulas.

Lemma 2.1 ([7]). Let (M, F,du) be a Finsler measure space, and u : M — R a smooth
function on M. Then

2
(2.1) AV"(F (Z”) ) — D(Au)(Vu) = Rice(Vu) + |V2u|§,S(Vu),
as well as
2 2
(2.2) AV"(F(Z”) )— D(Au)(Vu) > Ricy(Vu) + (Aﬁ) ,

for N € (n, ), point-wise on M,,.

Also, we could easily obtain the p-Bochner formula
1 Vu -2 oVu 2
(2.3) ;A (F(Vw)?) = (p = DF (V)P “ (V' (F(Vu)))

+ F(Vu)?2||IV?ull%s + D(Au)(Vu) + ||Vul*Rice (Vur) |.
At first due to the definition of Laplacian in Finsler geometry we have
1 1 1
—AY(F(Vu)") = —AY“(F(Vu)*)P'? = —divVV“(F(Vu)*)P'2.
p p p

It is easy to see that the direct computation due to the definitions of divergence and gradient
in Finsler geometry concludes (2.3).

3. Eigenvalue estimation of biharmonic operator

In this section, we are going to improve estimate from [8] for the first eigenvalue of the
clamped plate problem (1.1) and buckling problem (1.2).

Theorem 3.1. Let (M, F) be an n-dimensional compact connected Finsler manifold with
smooth boundary OM. Assume positive constant C as lower bound for the weighted Ricci
curvature Rice,. Let A{(M) be the first eigenvalue of the buckling problem (1.2), then for
any vector field X € I'(T M) such that ||X||. = sup,, F(X) < oo and infy; div(X) > 0, we have

infy, divX )2 C
2/1XTlo

Proof. We know that for any f* € C’(Q), the vector field (F*(df ))?X has compact support
on M, so we compute

A(M) > (
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(3.1) div(XF(Vf)*) = 2F(VAX(F(V ) + F(Vf) div(X)
> 2F(VAHIX|IVF(Vf) + F(Vf)* izrtl4f div(X).
Applying Young’s inequality for any € > 0, we get
(VEVN)P  EFCPP

(32) F(VHOVF(Vf) S =3 a
Now (3.1) changes as follows

VF(VF)? €F(Vf)?
(3.3) VX @Y 2 20K S+ S

+ (F*(df))* inf div(X).
Using divergence theorem, we obtain
[ avaer @i = [ FE P 0duy =0
M oM

From (3.2) and (3.3), we infer
2

f divVIXF(V ?)du > ——(inf divX — €2[1X[l) f F(Vf)dyu,
M IX]leo ™ M M
hence
div(XF(Vf)*)du 2
(3.4) Ju . > ; (inf divX - €1X).
J, FOV)2du [1X1loo
Consider g(€) = €*infy; divX — 41X, then a simple calculation get
g(e) = 2einf divX 461X |loo, g (e)=2 inf divX ~ 12€*1X|co.-
, infy, divX\!/2 "
Its clear that whenever g (¢) = 0, then there is ¢ = (%) so that g (ey) =
—4inf ), divX. Therefore, we infer -
max g0 (infM diVX)2
xg(x) =————
21Xl

Consequently, it follows from (3.4), that

Dy SVXEV (infM divX)2

35
) Jy FOV)2du 2/I1X]leo

Using the following formula
[ aridu= [ (1921 + Ricwwn) o
M M

since Rice, > C, and (VF(Vf))? < |[V2f[?, from (3.5) it follows that

(3.6)

[, (A du N (infM divX)2 c
Jy FOdu N 20Xl ’

so as X was an arbitrary vector field, due to the definition of the first eigenvalue of (1.2), we
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conclude
inf,; divX )2 L C

A = 21X

Theorem 3.2. Consider the Finsler manifold (M, F) and the vector field X € T'(T M) such
that satisfy in the conditions that stated in the first theorem. Let I'\(M) be the first eigen-
value of the clamped plate problem (1.1) and A1;(M) as the first eigenvalue of the Dirichlet
eigenvalue problem for Laplace operator. Then we have

infy, divX
211Xl
Proof. From (3.6) for all f € HS(M), it follows that

[, (A du N ((infM divx)2 . c) J, FOV ) du
[, fPap —\ 21Xl [, frdu

Due to the fact that f is nonzero with flgy, = 0, and from the definition of the first eigenvalue
for Dirichlet problem, we have

o = (( )2 + Y,

(3.7)

f, FV P
[, frdu

Therefore, from the definition of I';(M), (3.7), and (3.8) together with the fact that X is
arbitrary, we infer

(3.8) (M) <

infy, divX

X )2 + C)/ll(M), m|

T(M) > ((

Remark 3.3. Replacing F(Vf) by f in (3.5) implies

Jy FOV)du N (infM divX)2
I Pdu 20Xl
which by (3.7) leads to

inf, divX )2 ( ( inf, divX )2 )

(M) > (
: 2/IXlw 2[1Xle

We will need the following Hessian comparison theorem which was proved by Yin ea
al.[16].

Theorem 3.4. Let (M, F) be an n-dimensional Finsler manifold with Ricci curvature
Ric > (n — 1k, and let y : [0,r(x)] — M be a minimizing geodesic satisfying y(0) = p,
where r(x) is the distance function dg(p, x) from any given point p € M. Consider k as a
flag curvature such that

Vk cot(Vkr), k>0,
1

et (r) = ¢ = k=0,
r
V—k coth(V-kr) k < 0.
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Then the Hessian trace of r satisfy
try,H(r) < (n — Dct(r).

Here equality holds iff the radial flag curvature K(y(t);.) = k along the geodesic y(t). In
this case, any Jacobi field J(t) orthogonal to y(t) can be written as J(t) = sy (t)E(t), where
E(t) L y(t) is a parallel vector field along y and

1
— sin(Wki), k>0,
vk

Sk =11, k=0,

1
—— sinh(V—k?), k<O.
V-k

As an application of this section’s theorems, we can obtain the following results:

Corollary 3.5. Let (M, F) be an n-dimensional complete Finsler manifold, and consider
By(p, R) as a geodesic ball with radius R < inj(p). Let k(p, R) = sup{Ky(x); x € By(p,R)}.
Here Ky(x) is the flag curvature of M at x. Ifk > 0, k(p,R) = k>, R < % and the weighted

Ricci curvature Rics, > C, then we have
Ai(Bu(p,R) > [(n—Dey]/4r +C,
LiBu(p.R) > ([(n = Detil/4r% + OAi(Bu(p, R)-
Proof. Let X = Vr, then from Theorem 3.1, we get

[(" — Den(r)
2r

\

Ai(Bu(p.R)) =

[\

2
] +C,
and

T1(By(p.R)) > ([%]2

¥ C)m(BM(p, R)). o

4. Eigenvalue estimation of p-biharmonic operator

In this section, we want to study the first eigenvalue of the so called p-biharmonic operator
(1.3). Singular elliptic problems involving p-biharmonic operators have been studied by
many authors (see for instance [2], [9]). It is well known that such problems like (1.3) with
M = Q € R" and the condition u = Au = 0 on 0Q has simple and isolated least positive
eigenvalue 4, in the sense that the set of all solutions with 2 = A}, forms the one-dimensional
linear space spanned by a positive eigenfunction u* associated with 4, so that f is strictly
superharmonic. For more study, we refer to ([4]).

We shall use the same method as the last section for proving our main result.

Theorem 4.1. Let (M, F,du) be an n-dimensional compact connected Finsler manifold
with smooth boundary OM with Ric., > C, for C > 0. Then for any vector field X € I(TM)
such that ||X|| = sup,, F(X) < oo and infy; div(X) > 0, we have
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e
X (%f divX — 62||X||0<,)) +C,

where 'y is the first eigenvalue of (1.1) and A, is the first eigenvalue of the Dirichlet eigen-

T 2PA)P > (

value problem.

Proof. Using Bochner formula (2.1) for f € C7(M), we obtain

A

@.1) f (VEV)du < f V2 Py
M M

2/
< ( f (<Af>2>”/2dﬂ) " Vol 7 - ¢ f IV .
M M
Note that
p/l2

flVfV’d/JS(f (IVflp)z/Pdlu) (VOZ(M))I_p/Z,

M M
SO
4.2 \vj 2d > 1 v pd 2/p
(42) [ 198> (s [ ovan)

Substituting (4.2) in (4.1) yields

4.3) f (VE(Vf)d <( f (A )P)z/pw l(M))H/”—C(; f v V’)W
. M Py M / ¢ (Vol(M))'=P2 / '

On the other hand, due to the (3.4) and substituting fM IV fl?du from (4.2), and (4.3), we
obtain

2

(T (M) P (M) PVOl(MPVol(M)* = C > X (igllf divX — €1X]|o)-

Herep=1-2/pand a = (1 — p/2)(2/p), 4, is the first eigenvalue for the Laplacian. Thus
we conclude

2
€ (inf divX — 62||X||oo)) +C 0

LD 2 (G

Remark 4.2. For a Finsler manifold (M, F, du) with compact closure and nonempty
boundary, suppose that f is a first Dirichlet eigenfunction of A, in M, and X be a vector
field on M satisfying infy; div(X) > 0. Then we have the following inequalities for the first
eigenvalue of p-Laplacian from [13]:

(1) If there exist a point xo € M where f(xp) < 0, then
inf; div(X) ]r’"
psupy F(X) 1~
(2) If there exist a point xo € M where f(xp) > 0, then
inf; div(X) ]1’
— .
psupy, F(X)

A1, (M) > [

A1p(M) >

Corollary 4.3. Let (m, F,du) be an n-dimensional compact connected Finsler manifold
with compact closure and nonempty boundary OM, then for the first eigenvalue of (1.1) we
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have:

(1) If there exist a point xo € M where f(xy) < 0, then

inf, divX )2 N C)( inf; div(X) )P_
2[1Xleo psup,, F(X))’

(2) If there exist a point xy € M where f(xg) > 0, then

T(M) > ((

infy; divX )2 . C)( inf, div(X) )1"

(M
o) = 21X 2 stpy FOO

5. Lichnerowicz-Obata-Cheng Type estimate

In [15], the authors proved that for a forward n-dimensional complete connected Finsler
manifold (M, F, du) with Ricy > (n — 1)k and constant S-curvature, the first eigenvalue of
Laplace operator satisfy

-1
Nk.
1

A >

N-1n
n—1+k
In this section, considering same condition as [16], we study the first eigenvalue of bihar-

monic operator for both buckling and clamped plate problems. We are trying to obtain the
same results as above under considering the lower bound for Ricci curvature. Here is our

They also showed that if Ricy = (n — 1)k, then diam(M) =

main results:

Theorem 5.1. Let (M, F, du) be an n-dimensional complete Finsler manifold with Ric >
(n — Dk > 0 and constant S-curvature S = (n + 1)cF. Then
(1) For the first eigenvalue of (1.2), we have

(N = n)(n — )Nk + (n + 1)°c*>N
(N—=n)(N-1)
(ii) For the first eigenvalue of (1.1), we have
(N = n)(n— DNk + (n + 1)*c*N
(N-n)(N-1)

where A1(M) is the first eigenvalue of Laplacian and N € (n, o). Moreover, the diameter of
M satisfies

Ai(M) >

(M) > (M),
( )

, (N —n)(n — DN*k + (n + 1)>c*N?
diam(M) > n\/ NV -1,

Proof. (i) From Bochner-Weitzenbdck formula (2.2), we know

v EO°

Since S-curvature is constant, $ = 0 so

2
) — D(Au)(Vu) > F(Vu)*Ricy(Vu) + (Au)”

(5.1) N

S(Vu)?

RiCN(VI/l) = RIC(VM) + m
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(n+ 1)%c?
(N-n)

Integrating Equation (5.1) and using the divergence on M, we obtain

2 (n+1)%c ,  (Aw)?

> (n—Dk+

Hence

[, (Aw)*du _ (N=m( = DNk+ (1 + DN
fM F(Vu)’du (N=n)(N-1)
It follows from the definition of A; that

(N —n)(n— DNk + (n + 1)*c*N
(N-n)(N-1)

5.2)

A(M) >

(i1) Equation (5.2) gives

[, (Auy*dp N ((N — ) - DNk+(n + 1 )2c2N) J,, F(Vu)*du

5.3
6 (N=n)(N-1) fM u*du

Pl
Let f(x) := F(Vh)? + Nlhz, then
Vu+Z gvn(Vh, ee; = X hie;,

where A; is the first eigenvalue of Laplacian and / is the corresponding eigenfunction of A;.
Thus

df(e) dgvn(Vh,Vh)(e;) + 2A1hdh(e;)
= 2gvn(Vy"Vh,Vh) + 2Cy,(Vh,Vh,V}"Vh) + 22, hh;
= 2H(u)(Vh,e;) + 22, hh;

= 2hi(hi + A41h) =0,

which implies that f is constant on M. Now suppose that 4 takes its maximum and minimum
A

at p and g, respectively. Then h(p) = T(tnar)® = hg) = T (i), i.e. Vinasl = .

Without loss of generality, we assume /(p) = 1 and h(g) = —1. Suppose y(s) is a minimum

regular geodesic from p to ¢ on (M, F) with tangent vector (s). Then we have

F(Vh) \/A_T
VI- 72 N’

Let diam(M) be the diameter of M, so we get

[ IVl
—diam(M) > fF()’) ds >,
N Y V1 — u2

N
diam(M) > n, / —.
A1

Using (5.3) in the above gives the result. |

therefore
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RemMark 5.2. In [16], Yin and Zhang proved that with the same condition as above Theo-
rem, the first eigenvalue of the Finsler-Laplacian satisfies

. nn—Dk+ 0+ 12— m+ e
n—1+m+1)c

>

and moreover the diameter of this manifold attains its maximum — and equality holds
k

when the S-curvature vanishes.

As well in [5], Lichnerowicz proved if (M, g) be a complete connected Riemannian n-
dimensional manifold with the same condition as Theorem 5.1, then the first closed eigen-
value of the Laplacian is not less than nk and Obata in [6] showed that if this eigenvalue

attains its lower bound, thus the manifold is isometric to the Euclidean sphere S*(—).

Vk
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