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Abstract
In this paper, we are going to estimate the lower bounds for the first eigenvalues of the buckling

problem and clamped plate problem by considering a positive lower bound for the weighted
Ricci curvature. Also, we extended the results for the p-biharmonic operator and we prove a
Lichnerowicz-Obata-Cheng type estimate for the biharmonic operators.

1. Introduction

1. Introduction
Let (M, F, dμ) be an n-dimensional compact connected Finsler manifold with smooth

boundary ∂M. The clamped plate problem and buckling problem on this Finsler manifold
introduced in [8] as follows:

(1.1)

⎧⎪⎪⎨⎪⎪⎩Δ
∇uΔu = Γu in Mu,

u|∂Ω = g−→n (−→n ,∇u)|∂M = 0,

and

(1.2)

⎧⎪⎪⎨⎪⎪⎩Δ
∇uΔu = −ΛΔu in Mu,

u|∂Ω = g−→n (−→n ,∇u)|∂M = 0,

here Δ and Δ∇u are Laplacian and weighted Laplacian, −→n denotes the outer unit normal vec-
tor field of the boundary ∂M and g−→n denotes the induced Riemannian structure on ∂M.
Finding the lower bound for the first eigenvalue of the biharmonic operator on Riemannian
manifolds had been studied for a long time. For instance, Zhang and Zhao in [17] ob-
tained the lower bounds of the first eigenvalues for the biharmonic operator (buckling and
clamped plate problems) with considering the lower positive bound for the Ricci curvature.
After a while, the Lichnerowicz-type estimate theorem investigated on both Riemannian
and Kähler manifolds with the boundary condition for the integral Ricci curvature [3]. Re-
cently, working on the first eigenvalue for different kinds of operator in Finsler geometry
attracts much attention, since it has broader applications and plays an important role in
Finsler geometry. For more study about the first eigenvalue of different operators we refer
[8, 11, 12, 13, 14, 16].
For a domain Ω with compact closure and nonempty boundary ∂Ω of an n-dimensional
Finsler manifold (M, F, dμ), n ≥ 2, the first eigenvalue of the Dirichlet problem for the
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Laplace operator defines as follows (see [10]):

λ1(Ω) = inf

⎧⎪⎪⎨⎪⎪⎩
∫
Ω

F(∇ f )2dμ∫
Ω

f 2dμ
: f ∈ L2

1,0(Ω) \ {0}
⎫⎪⎪⎬⎪⎪⎭ ,

where F∗ is the dual Finsler metric on T ∗M and L2
1,0(Ω) is the completion of C∞0 (Ω) with

respect to the following norm:

‖φ‖2Ω =
∫
Ω

φ2dμ +
∫
Ω

(F∗(dφ))2dμ.

When M is a compact manifold without boundary, the first closed eigenvalue λ1(M) of M is
defined as

λ1(M) = inf

⎧⎪⎪⎨⎪⎪⎩
∫

M F(∇ f )2dμ∫
M f 2dμ

: f ∈ L2
1,0(M) \ {0},

∫
M

f dμ = 0

⎫⎪⎪⎬⎪⎪⎭ .
We recall the first eigenvalue of the both buckling and clamped plate problems from [8] as
follows:

Λ1(M) = min
u∈H2

0 (M),u�0

∫
M(Δu)2dμ∫
M |∇u|2dμ

,

and

Γ1(M) = min
u∈H2

0 (M),u�0

∫
M(Δu)2dμ∫

M u2dμ
.

Here H2(M) is defined as

H2(M) = {u : u, |∇u|, |∇2u|2HS(∇u) ∈ L2(M)},
where ∫

M
|∇2u|2HS(∇u)dμ :=

∫
Mu

|∇2u|2HS(∇u)dμ.

Here Mu = {x ∈ M| ∇u|x � 0} and |.|2HS is the Hilbert-Schmidt norm such that for a bounded
operator A : H → H that acts on a Hilbert space H with an orthonormal basis {ei : i ∈ I}
define as

|A|2HS := Σi∈I |Aei|2H .
Also H2

0(M) which is the subset of H2(M) is

H2
0(M) :=

{
u ∈ H2(M) : u|∂M = ∂u

∂−→n
∣∣∣∣∣
∂M
= 0
}
.

Lately, Pan and Zhang in [8] considered RicN ≥ (n−1)k where N ∈ (n,∞) and k is a positive
constant, then they obtained the lower and upper bounds of the buckling and clamped plate
problems on a Finsler manifold.
In this paper, we are going to estimate the lower bounds of the first eigenvalues for these two
problems for an n-dimensional compact connected Finsler manifold with smooth boundary
so that its weighted Ricci curvature Ric∞ is bounded from below by a positive constant.
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Also, we estimate the lower bound of the first eigenvalue for the following nonlinear eigen-
value problem:

(1.3) Δ2
pu = λp|u|p−2u in M,

where u ∈ W2,p
0 (M), and Δ2

pu = Δ(|Δu|p−2Δu) is an elliptic operator of fourth order, called
p-biharmonic operator. Obviously, for p = 2, (1.3) describes clamped plate problem. All
solutions of (1.3) in Riemannian manifolds are distributional in the sense that∫

M
|Δu|p−2ΔuΔφdμ = λp

∫
M
|u|p−2uφdμ,

for all φ ∈ C∞0 (M) and if φ = u, then we have

λp = inf
u

∫
M |Δu|pdμ∫
M |u|pdμ

,

here the infimum will be taken over all u ∈ W2,p
0 (M). If we consider a Finsler manifold with

vanishing S-curvature, then the symmetry exchange holds for the Finsler Laplacian.
El Khalil et.al. in [4] proved that for any bounded domain Ω with 1 < p < +∞, Δ2

p satisfies
the following:
(i) Δ2

p : W2,p
0 (Ω)→ W−2,p′(Ω) is an hemicontinuous operator where p′ =

p
p − 1

.

(ii) It is a bounded monotonous, and coercive operator.
(iii) This operator is a bicontinuous operator.

They considered all weak solutions of the following problem on a bounded domain Ω ⊂ RN ,
N ≥ 1

Δ2
pu = λρ(x)|u|p−2u inΩ, u ∈ W2,p

0 (Ω).(1.4)

This means that for all φ ∈ C∞0 (Ω), we have∫
Ω

|Δu|p−2ΔuΔφdx = λ
∫
Ω

ρ(x)|u|p−2uφdx,

here ρ ∈ Lr(Ω), ρ � 0. Also, they defined A(u) =
1
p
‖Δu‖pp as a potential functional on

W2,p
0 (Ω), then obtained their main result as follows:

Theorem 1.1. Let  =
{
u ∈ W2,p

0 (Ω); pB(u) = 1
}
, where B(u) =

1
p

∫
Ω
ρ(x)|u|pdx, and set

Γk = {K ⊂ : K is symmetric, compact and γ(K) ≥ 1} ,
here γ(K) = k is the smallest integer such that there exists an odd continuous map f : K →
R

k − {0}. Then for any integer k ∈ N∗, we get that

λk := inf
k∈Γk

max
u∈K
ρA(u),

is a critical value of A restricted on M. Especially, there exists uk ∈ Kk ∈ Γk so that

λk = ρA(uk) = sup
u∈Kk

ρA(u),
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and (λk, uk) is a solution of (1.4) corresponding to the positive eigenvalue λk, such that when
k → +∞, then λk → +∞.

Lately, Abolarinwa and his coauthor in [1] considered a nonlinear problem involving
p-biharmonic operator and they studied monotonicity and differentiability of the first eigen-
value of this operator under consideration a Riemannian manifold endowed with Ricci flow⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂

∂t
g(t, x) = −2Ric(t, x), (t, x) ∈ [0, T ] × M,

g(0, x) = g0,

here Ric is the Ricci curvature tensor of g and 0 < T < Tmax is taken to be the maximum
time of existence for the flow, Tmax is the first time when the flow blows up. Our purpose
here is to peruse the first eigenvalue of Δ2

p, the main assumption is that we take the lower
bound Ric∞ ≥ C for some constant C > 0.
Actually, this paper contains three important sections. First of all, in section 2 we study the
first eigenvalues for the biharmonic operator eigenvalue problems (buckling problem and
clamped plate problem) on a compact Finsler manifold under some condition for weighted
Ricci curvature Ric∞. The second factor is the first eigenvalue of the Finsler p-biharmonic
operator, which will be investigated in section 3. The most important reason for studying
this operator is that it generalizes p-Laplacian, so that is interesting to ask if we could extend
such results for the case of p-biharmonic operator. In this way considering different types
of geometric Ricci flows on manifold endowed with this operator seems to have an essential
result. The last but not least step in this paper is section 4 which is the generalization of
Lichnerowicz and Obata’s works (see [5], [6]). We take the same conditions as well as those
works which leading ultimately to the geometric structure of such manifolds.

2. Finsler Geometry

2. Finsler Geometry
Let M be an n-dimensional smooth manifold and π : T M → M be the natural projection

from the tangent bundle T M. Let (x, y) be a point of T M with x ∈ M, y ∈ TxM, and let

(xi, yi) be the local coordinate on T M with y = yi ∂

∂xi . A Finsler metric on M is a function
F : T M −→ [0,∞) satisfying the following properties:
(i) Regularity: F is C∞ on the entire slit tangent bundle T M \ {0},
(ii) positive homogeneity: F(x, ay) = aF(x, y) for all a > 0,
(iii) strong convexity: the n × n Hessian matrix

(gi j) :=
([1

2
F2]
yiy j

)
,

is positive definite at every point of T M \ {0}.
Let V = Vi ∂

∂xi be a non-vanishing vector field on an open subset  ⊂ M. One can introduce
a Riemannian metric g̃ = gV on the tangent bundle over  as follows:

gV(X, Y) := XiY jgi j(x, v), ∀X = Xi ∂

∂xi , Y = Yi ∂

∂xi .

In particular, gV(V,V) = F(V)2.
Let π : T M → M be the natural projection map, the pull-back bundle π∗T M admits a
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unique linear connection called Chern connection. The Chern connection determines by the
following structure equations:

DV
XY − DV

Y X = [X, Y],

this mentioned as torsion freeness and the almost g-compatibility is

XgV(Y, Z) = gV(DV
XY, Z) + gV(Y,DV

XZ) + 2CV(DV
XV, Y,Z),

where V ∈ TxM − {0}, X, Y, Z ∈ T M. Note that DV
XY is the covariant derivative with respect

to reference vector V ∈ TxM \ {0}. The Cartan tensor defines as follows:

CV(X, Y,Z) := Ci jk(V)XiY jZk =
1
4
∂3F2

∂ViV jVk (V)XiY jZk.

The coefficients of the Chern connection are

Γi
jk =

1
2
gil
(
δgkl

δx j +
δg jl

δxk −
δg jk

δxl

)
,

which is

DV
∂

∂xi

∂

∂x j := Γi
jk(x,V)

∂

∂xk ,

where

δ

δxi =
∂

∂xi − N j
i
∂

∂y j , N j
i =
∂G j

∂yi , Gi =
1
4
gil{[F2]xkylyk − [F2]xl}.

Let ∇V be the Chern connection, and then, the Chern curvature RV(X, Y)Z for vector fields
X, Y, Z ∈ C(π∗T M) is defined by:

RV(X, Y)Z := ∇V
X∇V

Y Z − ∇V
Y∇V

XZ − ∇V
[X,Y]Z.

For a flag (V,W) consist of non-zero tangent vectors V,W ∈ TxM and a 2-plane P ⊂ TxM
with V ∈ P the flag curvature K(V,W) is defined as follows:

K(V,W) :=
gV(RV(V,W)W,V)

gV(V,V)gV(W,W) − gV(V,W)2 ,

here, W is a tangent vector such that V,W span the 2-plane P and V ∈ TxM is extended to a
geodesic field, i.e., ∇V

VV = 0 near x. The Ricci curvature of V is defined as:

Ric(V) =
n−1∑
i=1

K(V, ei),

here e1, · · · , en−1,
V

F(V)
form an orthonormal basis of TxM with respect to gV . Namely, one

has Ric(aV) = aRic(V) for any a > 0.
The reversible function λ : M −→ R is defined by:

λ(x) = max
y∈Tx M\{0}

F(y)
F(−y) .

It is clear that 1 ≤ λ(x) < +∞ for any x ∈ M. Here λF = supx∈M λ(x) is called the



358 S. Hajiaghasi and S. Azami

reversibility of (M, F), and (M, F) is called reversible if λF = 1.
The gradient vector field of a differentiable function f on M by the Legendre transformation
 : TxM → T ∗x M is defined as

∇ f := 
−1(d f ).

Let Mf = {x ∈ M : ∇ f |x � 0}. We define the Hessian of f on Mf as follows:

H( f )(X, Y) := XY( f ) − ∇∇ f
X Y( f ), ∀X, Y ∈ Γ(T M| ).

For a given volume form dμ = σ(x)dx and vector V ∈ TxM \ {0}, the distortion of M is
defined by

τ(V) := ln

√
det(gi j(V))
σ

.

Considering the rate of changes of the distortion along geodesics, leads to the so-called
S-curvature as follows

S(V) :=
d
dt

[τ(γ(t), γ̇(t)]t=0,

where γ(t) is the geodesic with γ(0) = x and γ̇(0) = V . Define

Ṡ(V) := F−2(V)
d
dt

[S(γ(t), γ̇(t)]t=0.

Then the weighted Ricci curvatures of M defined as follows

Ricn(V) :=

⎧⎪⎪⎨⎪⎪⎩Ric(V) + Ṡ(V), f or S(V) = 0,

−∞, otherwise,

RicN(V) := Ric(V) + Ṡ(V) − S(V)2

(N − n)F(V)2 , ∀N ∈ (n,∞),

Ric∞(V) := Ric(V) + Ṡ(V).

Fix a volume form dμ, the divergence div(X) of X is defined as:

d(X�dμ) = div(X)dμ.

For a given smooth function f : M −→ R, the Laplacian Δ f of f is defined by Δ f =
div(∇ f ) = div(−1(d f )).
Given a vector field V , the weighted gradient vector and the weighted Laplacian on the
weighted Riemannian manifold (M, gV) are defined by

∇Vu :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
gi j(V)

∂u
∂x j

∂

∂xi
, on Mu,

0, on M \ Mu,

ΔVu := div(∇Vu).

Here Mu := {x ∈ M|du(x) � 0}. We note that ∇u = ∇Vu, Δu = ΔVu.
Assume that (M, F, dμ) is a Finsler measure space with boundary ∂M, then we shall view
∂M as a hypersurface embedded in M. More importantly, ∂M is a Finsler manifold with a
Finsler structure F∂M induced by F. For any x ∈ ∂M, there exists exactly two unit normal
vectors −→n , which are characterized by
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Tx(∂M) = {C ∈ TxM|g−→n (−→n ,V) = 0, g−→n (−→n ,−→n ) = 1}.
The normal vector −→n induces a volume form dμ−→n on ∂M from dμ by

V�dμ = g−→n (−→n ,V)dμ−→n , ∀V ∈ T M.

The Stokes theorem holds as follows (see [10]):∫
M

div(V)dμ =
∫
∂M
g−→n (−→n ,V)dμ−→n .

Proving our main results, we may need the following formulas.

Lemma 2.1 ([7]). Let (M, F, dμ) be a Finsler measure space, and u : M → R a smooth
function on M. Then

(2.1) Δ∇u
(F(∇u)2

2

)
− D(Δu)(∇u) = Ric∞(∇u) + |∇2u|2HS(∇u),

as well as

(2.2) Δ∇u
(F(∇u)2

2

)
− D(Δu)(∇u) ≥ RicN(∇u) +

(Δu)2

N
,

for N ∈ (n,∞), point-wise on Mu.

Also, we could easily obtain the p-Bochner formula

1
p
Δ∇u(F(∇u)p) = (p − 2)F(∇u)p−2(∇∇u(F(∇u)))2(2.3)

+ F(∇u)p−2
[
‖∇2u‖2HS + D(Δu)(∇u) + ‖∇u‖2Ric∞(∇u)

]
.

At first due to the definition of Laplacian in Finsler geometry we have

1
p
Δ∇u(F(∇u)p) =

1
p
Δ∇u(F(∇u)2)p/2 =

1
p

div∇∇u(F(∇u)2)p/2.

It is easy to see that the direct computation due to the definitions of divergence and gradient
in Finsler geometry concludes (2.3).

3. Eigenvalue estimation of biharmonic operator

3. Eigenvalue estimation of biharmonic operator
In this section, we are going to improve estimate from [8] for the first eigenvalue of the

clamped plate problem (1.1) and buckling problem (1.2).

Theorem 3.1. Let (M, F) be an n-dimensional compact connected Finsler manifold with
smooth boundary ∂M. Assume positive constant C as lower bound for the weighted Ricci
curvature Ric∞. Let Λ1(M) be the first eigenvalue of the buckling problem (1.2), then for
any vector field X ∈ Γ(T M) such that ‖X‖∞ = supM F(X) < ∞ and infM div(X) > 0, we have

Λ1(M) ≥
( infM divX

2‖X‖∞
)2
+C.

Proof. We know that for any f ∈ C∞0 (Ω), the vector field (F∗(d f ))2X has compact support
on M, so we compute



360 S. Hajiaghasi and S. Azami

div(XF(∇ f )2) = 2F(∇ f )(X(F(∇ f ))) + F(∇ f )2div(X)(3.1)

≥ −2F(∇ f )‖X‖∞∇F(∇ f ) + F(∇ f )2 inf
M

div(X).

Applying Young’s inequality for any ε > 0, we get

(3.2) F(∇ f )∇F(∇ f ) ≤ (∇F(∇ f ))2

2ε2
+
ε2F(∇ f )2

2
.

Now (3.1) changes as follows

div(X(F∗(d f ))2) ≥ −2‖X‖∞
( (∇F(∇ f ))2

2ε2
+
ε2F(∇ f )2

2

)
(3.3)

+ (F∗(d f ))2 inf
M

div(X).

Using divergence theorem, we obtain∫
M

div(XF(∇ f )2)dμ =
∫
∂M

F(∇ f )2g−→n (−→n , X)dμ−→n = 0.

From (3.2) and (3.3), we infer∫
M

div(XF(∇ f )2)dμ ≥ ε2

‖X‖∞ (inf
M

divX − ε2‖X‖∞)
∫

M
F(∇ f )2dμ,

hence

(3.4)

∫
M div(XF(∇ f )2)dμ∫

M F(∇ f )2dμ
≥ ε2

‖X‖∞ (inf
M

divX − ε2‖X‖∞).

Consider g(ε) = ε2 infM divX − ε4‖X‖∞, then a simple calculation get

g
′
(ε) = 2ε inf

M
divX − 4ε3‖X‖∞, g

′′
(ε) = 2 inf

M
divX − 12ε2‖X‖∞.

Its clear that whenever g
′
(ε) = 0, then there is ε0 =

( infM divX
2‖X‖∞

)1/2
so that g

′′
(ε0) =

−4 infM divX. Therefore, we infer

max g(x) =
( infM divX

2‖X‖1/2∞
)2
.

Consequently, it follows from (3.4), that

(3.5)

∫
M div(XF(∇ f )2)dμ∫

M F(∇ f )2dμ
≥
( infM divX

2‖X‖∞
)2
.

Using the following formula∫
M

(Δ f )2dμ =
∫

M

(
‖∇2 f ‖2HS + Ric∞(∇ f )

)
dμ,

since Ric∞ ≥ C, and (∇F(∇ f ))2 < |∇2 f |2, from (3.5) it follows that

(3.6)

∫
M(Δ f )2dμ∫

M F(∇ f )2dμ
≥
( infM divX

2‖X‖∞
)2
+C,

so as X was an arbitrary vector field, due to the definition of the first eigenvalue of (1.2), we
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conclude

Λ1(M) ≥
( infM divX

2‖X‖∞
)2
+C. �

Theorem 3.2. Consider the Finsler manifold (M, F) and the vector field X ∈ Γ(T M) such
that satisfy in the conditions that stated in the first theorem. Let Γ1(M) be the first eigen-
value of the clamped plate problem (1.1) and λ1(M) as the first eigenvalue of the Dirichlet
eigenvalue problem for Laplace operator. Then we have

Γ1(M) ≥
(( infM divX

2‖X‖∞
)2
+C
)
λ1(M).

Proof. From (3.6) for all f ∈ H2
0(M), it follows that

(3.7)

∫
M(Δ f )2dμ∫

M f 2dμ
≥
(( infM divX

2‖X‖∞
)2
+C
)∫

M F(∇ f )2dμ∫
M f 2dμ

.

Due to the fact that f is nonzero with f |∂M = 0, and from the definition of the first eigenvalue
for Dirichlet problem, we have

(3.8) λ1(M) ≤
∫

M F(∇ f )2dμ∫
M f 2dμ

.

Therefore, from the definition of Γ1(M), (3.7), and (3.8) together with the fact that X is
arbitrary, we infer

Γ1(M) ≥
(( infM divX

2‖X‖∞
)2
+C
)
λ1(M), �

Remark 3.3. Replacing F(∇ f ) by f in (3.5) implies∫
M F(∇ f )2dμ∫

M f 2dμ
≥
( infM divX

2‖X‖∞
)2
,

which by (3.7) leads to

Γ1(M) ≥
( infM divX

2‖X‖∞
)2(( infM divX

2‖X‖∞
)2
+C
)
.

We will need the following Hessian comparison theorem which was proved by Yin ea
al.[16].

Theorem 3.4. Let (M, F) be an n-dimensional Finsler manifold with Ricci curvature
Ric ≥ (n − 1)k, and let γ : [0, r(x)] → M be a minimizing geodesic satisfying γ(0) = p,
where r(x) is the distance function dF(p, x) from any given point p ∈ M. Consider k as a
flag curvature such that

ctk(r) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

√
k cot(

√
kr), k > 0,

1
r

k = 0,
√−k coth(

√−kr) k < 0.
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Then the Hessian trace of r satisfy

tr∇rH(r) ≤ (n − 1)ctk(r).

Here equality holds iff the radial flag curvature K(γ̇(t); .) ≡ k along the geodesic γ(t). In
this case, any Jacobi field J(t) orthogonal to γ̇(t) can be written as J(t) = sk(t)E(t), where
E(t) ⊥ γ̇(t) is a parallel vector field along γ and

sk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
k

sin(
√

kt), k > 0,

t, k = 0,
1√−k

sinh(
√−kt), k < 0.

As an application of this section’s theorems, we can obtain the following results:

Corollary 3.5. Let (M, F) be an n-dimensional complete Finsler manifold, and consider
BM(p,R) as a geodesic ball with radius R < in j(p). Let k(p,R) = sup{KM(x); x ∈ BM(p,R)}.
Here KM(x) is the flag curvature of M at x. If k > 0, k(p,R) = k2, R <

π

2k
and the weighted

Ricci curvature Ric∞ ≥ C, then we have

Λ1(BM(p,R)) ≥ [(n − 1)ctk]/4r2 +C,

Γ1(BM(p,R)) ≥ ([(n − 1)ctk]/4r2 +C)λ1(BM(p,R)).

Proof. Let X = ∇r, then from Theorem 3.1, we get

Λ1(BM(p,R)) ≥
[ infBM(p,R) Δr

2‖∇r‖∞
]2
+C

≥
[ (n − 1)ctk(r)

2r

]2
+C,

and

Γ1(BM(p,R)) ≥
([ (n − 1)ctk(r)

2r

]2
+C
)
λ1(BM(p,R)). �

4. Eigenvalue estimation of p-biharmonic operator

4. Eigenvalue estimation of p-biharmonic operator
In this section, we want to study the first eigenvalue of the so called p-biharmonic operator

(1.3). Singular elliptic problems involving p-biharmonic operators have been studied by
many authors (see for instance [2], [9]). It is well known that such problems like (1.3) with
M = Ω ∈ Rn and the condition u = Δu = 0 on ∂Ω has simple and isolated least positive
eigenvalue λ∗p in the sense that the set of all solutions with λ = λ∗p forms the one-dimensional
linear space spanned by a positive eigenfunction u∗ associated with λ∗p so that f is strictly
superharmonic. For more study, we refer to ([4]).
We shall use the same method as the last section for proving our main result.

Theorem 4.1. Let (M, F, dμ) be an n-dimensional compact connected Finsler manifold
with smooth boundary ∂M with Ric∞ ≥ C, for C > 0. Then for any vector field X ∈ Γ(T M)
such that ‖X‖∞ = supM F(X) < ∞ and infM div(X) > 0, we have
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(Γ1)−2/p(λ1)2/p ≥
(
ε2

‖X‖∞ (inf
M

divX − ε2‖X‖∞)
)
+C,

where Γ1 is the first eigenvalue of (1.1) and λ1 is the first eigenvalue of the Dirichlet eigen-
value problem.

Proof. Using Bochner formula (2.1) for f ∈ C∞0 (M), we obtain∫
M

(∇F(∇ f ))2dμ ≤
∫

M
|∇2 f |2dμ(4.1)

≤
( ∫

M

(
(Δ f )2)p/2dμ

)2/p
(Vol(M))1−2/p −C

∫
M
|∇ f |2dμ.

Note that ∫
M
|∇ f |pdμ ≤

( ∫
M

(|∇ f |p)2/pdμ
)p/2

(Vol(M))1−p/2,

so

(4.2)
∫

M
|∇ f |2dμ ≥

( 1
(Vol(M))1−p/2

∫
M
|∇ f |pdμ

)2/p
.

Substituting (4.2) in (4.1) yields

(4.3)
∫

M
(∇F(∇ f ))2dμ ≤

( ∫
M

(Δ f )p
)2/p

(Vol(M))1−2/p −C
( 1
(Vol(M))1−p/2

∫
M
|∇ f |p

)2/p
.

On the other hand, due to the (3.4) and substituting
∫

M |∇ f |2dμ from (4.2), and (4.3), we
obtain

(Γ1(M))−2/p(λ1(M))2/pVol(M)βVol(M)α −C ≥ ε2

‖X‖∞ (inf
M

divX − ε2‖X‖∞).

Here β = 1 − 2/p and α = (1 − p/2)(2/p), λ1 is the first eigenvalue for the Laplacian. Thus
we conclude

(Γ1(M))−2/p(λ1(M))2/p ≥
(
ε2

‖X‖∞ (inf
M

divX − ε2‖X‖∞)
)
+C. �

Remark 4.2. For a Finsler manifold (M, F, dμ) with compact closure and nonempty
boundary, suppose that f is a first Dirichlet eigenfunction of Δp in M, and X be a vector
field on M satisfying infM div(X) > 0. Then we have the following inequalities for the first
eigenvalue of p-Laplacian from [13]:
(1) If there exist a point x0 ∈ M where f (x0) < 0, then

λ1,p(M) ≥
[ infM div(X)

p supM F(X)

]p
;

(2) If there exist a point x0 ∈ M where f (x0) > 0, then

λ1,p(M) ≥
[ infM div(X)

p supM
←−
F (X)

]p
.

Corollary 4.3. Let (m, F, dμ) be an n-dimensional compact connected Finsler manifold
with compact closure and nonempty boundary ∂M, then for the first eigenvalue of (1.1) we
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have:
(1) If there exist a point x0 ∈ M where f (x0) < 0, then

Γ1(M) ≥
(( infM divX

2‖X‖∞
)2
+C
)( infM div(X)

p supM F(X)

)p
;

(2) If there exist a point x0 ∈ M where f (x0) > 0, then

Γ1(M) ≥
(( infM divX

2‖X‖∞
)2
+C
)( infM div(X)

p supM
←−
F (X)

)p
.

5. Lichnerowicz-Obata-Cheng Type estimate

5. Lichnerowicz-Obata-Cheng Type estimate
In [15], the authors proved that for a forward n-dimensional complete connected Finsler

manifold (M, F, dμ) with RicN ≥ (n − 1)k and constant S-curvature, the first eigenvalue of
Laplace operator satisfy

λ1 ≥ n − 1
N − 1

Nk.

They also showed that if RicN = (n − 1)k, then diam(M) =

√
N − 1
n − 1

π√
k

.

In this section, considering same condition as [16], we study the first eigenvalue of bihar-
monic operator for both buckling and clamped plate problems. We are trying to obtain the
same results as above under considering the lower bound for Ricci curvature. Here is our
main results:

Theorem 5.1. Let (M, F, dμ) be an n-dimensional complete Finsler manifold with Ric ≥
(n − 1)k > 0 and constant S-curvature S = (n + 1)cF. Then
(i) For the first eigenvalue of (1.2), we have

Λ1(M) ≥ (N − n)(n − 1)Nk + (n + 1)2c2N
(N − n)(N − 1)

.

(ii) For the first eigenvalue of (1.1), we have

Γ1(M) ≥
( (N − n)(n − 1)Nk + (n + 1)2c2N

(N − n)(N − 1)

)
λ1(M),

where λ1(M) is the first eigenvalue of Laplacian and N ∈ (n,∞). Moreover, the diameter of
M satisfies

diam(M) ≥ π
√

(N − n)(n − 1)N2k + (n + 1)2c2N2

(N − n)(N − 1)Γ1
.

Proof. (i) From Bochner-Weitzenböck formula (2.2), we know

(5.1) Δ∇u
(F(∇u)2

2

)
− D(Δu)(∇u) ≥ F(∇u)2RicN(∇u) +

(Δu)2

N
.

Since S-curvature is constant, Ṡ = 0 so

RicN(∇u) = Ric(∇u) +
S(∇u)2

(N − n)F(∇u)2
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≥ (n − 1)k +
(n + 1)2c2

(N − n)
.

Integrating Equation (5.1) and using the divergence on M, we obtain∫
M

(Δu)2dμ ≥
∫

M

((
(n − 1)k +

(n + 1)2c2

(N − n)
)
F(∇u)2 +

(Δu)2

N

)
dμ.

Hence

(5.2)

∫
M(Δu)2dμ∫

M F(∇u)2dμ
≥ (N − n)(n − 1)Nk + (n + 1)2c2N

(N − n)(N − 1)
.

It follows from the definition of Λ1 that

Λ1(M) ≥ (N − n)(n − 1)Nk + (n + 1)2c2N
(N − n)(N − 1)

.

(ii) Equation (5.2) gives

(5.3)

∫
M(Δu)2dμ∫

M u2dμ
≥
( (N − n)(n − 1)Nk + (n + 1)2c2N

(N − n)(N − 1)

)∫
M F(∇u)2dμ∫

M u2dμ
.

Let f (x) := F(∇h)2 +
λ1

N
h2, then

∇u + Σn
i=1g∇h(∇h, ei)ei = Σ

n
i=1hiei,

where λ1 is the first eigenvalue of Laplacian and h is the corresponding eigenfunction of λ1.
Thus

d f (ei) = dg∇h(∇h,∇h)(ei) + 2λ1hdh(ei)

= 2g∇h(∇∇h
ei
∇h,∇h) + 2C∇h(∇h,∇h,∇∇h

ei
∇h) + 2λ1hhi

= 2H(u)(∇h, ei) + 2λ1hhi

= 2hi(hii + λ1h) = 0,

which implies that f is constant on M. Now suppose that h takes its maximum and minimum

at p and q, respectively. Then h(p) =
λ1

N
(hmax)2 = h(q) =

λ1

N
(hmin)2, i.e. |hmax| = |hmin|.

Without loss of generality, we assume h(p) = 1 and h(q) = −1. Suppose γ(s) is a minimum
regular geodesic from p to q on (M, F) with tangent vector γ̇(s). Then we have

F(∇h)√
1 − h2

=

√
λ1

N
.

Let diam(M) be the diameter of M, so we get√
λ1

N
diam(M) ≥

∫
γ

F(γ̇)
‖∇u‖√
1 − u2

ds ≥ π,

therefore

diam(M) ≥ π
√

N
λ1
.

Using (5.3) in the above gives the result. �
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Remark 5.2. In [16], Yin and Zhang proved that with the same condition as above Theo-
rem, the first eigenvalue of the Finsler-Laplacian satisfies

λ1 ≥ n(n − 1)k + (n + 1)2c2 − (n + 1)c
n − 1 + (n + 1)c

,

and moreover the diameter of this manifold attains its maximum
π√
k

and equality holds

when the S-curvature vanishes.
As well in [5], Lichnerowicz proved if (M, g) be a complete connected Riemannian n-
dimensional manifold with the same condition as Theorem 5.1, then the first closed eigen-
value of the Laplacian is not less than nk and Obata in [6] showed that if this eigenvalue

attains its lower bound, thus the manifold is isometric to the Euclidean sphere Sn(
1√
k

).
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