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Abstract
In this paper, we shall focus on the Wasserstein distance between two jump processes deter-

mined by stochastic differential equations in Rd or the Riemannian manifold M. As an applica-
tion, the study on the Wasserstein distance implies that the law of the subordinated Brownian
motion on M is different from the one of the canonical projected process of the Marcus-type
equation with jumps valued in the bundle of orthonormal frames O(M).

1. Introduction

1. Introduction
Let T be a positive constant fixed throughout the paper, and denote by ν(dz) the Lévy

measure over Rd
0 := Rd\{0} such that the function |z|2 ∧ 1 is integrable with respect to the

measure ν(dz). Write Kρ = {z ∈ Rd
0 ; |z| ≤ ρ} for ρ > 0. Let (Ω,  , P) a complete probability

space with the filtration {t ; t ∈ [0, T ]} such that the process {Wt ; t ∈ [0, T ]} is the d-
dimensional Brownian motion starting from the origin in Rd, and that dJ

( ≡ J(ds, dz)
)

is
the Poisson random measure over (0, T ]×Rd

0 with the intensity measure dĴ
( ≡ Ĵ(ds, dz)

)
:=

ds ν(dz). Denote by dJ̃
( ≡ J̃(ds, dz)

)
:= dJ − dĴ the compensated one. From now on, we

shall write dJ
( ≡ J(ds, dz)

)
= IK1 (z) dJ̃ + IKc

1
(z) dJ, in order to simplify our notations.

Let A0, Ai, Bi, C0, Ci ∈ C1(Rd ; Rd) (1 ≤ i ≤ d) such that all partial derivatives of any
orders greater than 1 are bounded. Let D ∈ C1,1(Rd ×Rd

0 ; Rd), that is, D( · , z) ∈ C1(Rd ; Rd)
for each z ∈ Rd

0 and D(x, · ) ∈ C1(Rd
0 ; Rd) for each x ∈ Rd. We further assume that the first

derivatives with respect to the variable in Rd are bounded. Moreover, suppose that

sup
x∈Rd

∣∣∣∣∣∣
∫

K1

(∂D)(x, z) ν(dz)

∣∣∣∣∣∣ + sup
x∈Rd

∫
K1

∣∣∣(∂D)(x, z)
∣∣∣p ν(dz) < +∞,(1)

sup
x∈Rd

sup
z∈Kc

1

∣∣∣(∂zD)(x, z)
∣∣∣ < +∞,(2)

lim
|z|→0

sup
x∈Rd
|D(x, z)| = 0(3)

for all p ≥ 2. Here, the notation “∂” means the gradient with respect to the variable in Rd,
while “∂z” is the one with respect to z ∈ Rd

0. Write A = (A1, . . . , Ad), B = (B1, . . . , Bd) and
C = (C1, . . . , Cd).

For ξ ∈ Rd, let us consider the Rd-valued processes {Xt ; t ∈ [0, T ]} and {Yt ; t ∈ [0, T ]}
determined by the equations:
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Xt = ξ +

∫ t

0
A0(Xs) ds +

∫ t

0
A(Xs−) dWs +

∫ t

0

∫
R

d
0

B(Xs−) z dJ,(4)

Yt = ξ +

∫ t

0
C0(Ys) ds +

∫ t

0
C(Ys−) dWs +

∫ t

0

∫
R

d
0

D(Ys−, z) dJ.(5)

Under the conditions on all of the coefficients of (4) and (5), there exist the unique solutions
(cf. [1, 9, 13]). Our main goal is to study the upper and lower estimates on the Wasserstein
distance, which can be also interpreted as the Kantrovich-Rubinstein one via the duality
formula, between the random variables Xt and Yt, in terms of the coefficients of (4) and (5).
Historical background on the Wasserstein distance can be seen in a standard book [19].

Our interest can be applied to the study on the Riemannian manifold M. Although there
are several approaches to construct the jump processes on M, we shall adopt in the present
paper the method by the canonical projection of the process valued in the bundle of the
orthonormal frames O(M) over M, which is often called the Eells-Elworthy-Malliavin con-
struction. The O(M)-valued process is defined by the solution to the Marcus-type stochastic
differential equations with jumps such that the process jumps along the exponential mapping
along the horizontal vector fields over O(M). See [2, 3, 10, 13]. On the other hand, since the
Brownian motion on M can be constructed by the analytic approach via the semigroup ap-
proach of the Laplace-Beltrami operator, or by the probabilistic one via the Eells-Elworthy-
Malliavin approach in terms of the Stratonovich-type stochastic differential equations with-
out any jumps seen in [7, 9], we can obtain the M-valued jump process by the subordination.
Our interest is to study the Wasserstein distance between the subordinated Brownian motion
on M and the projected jump process determined by the Marcus-type equation with jumps.
Furthermore, we can also revisit the results stated in [5, 16] that the law of the subordinated
Brownian motion on M doesn’t always coincide with the one of the projected jump process
determined by the Marcus-type equation. Since the lower bound of the L1-Wasserstein dis-
tance between those processes is studied in Section 4, our approach it to attack the interest
in the paper completely different from [5, 16].

The organization of the paper is as follows: let us study in Rd the upper estimate of
the Wasserstein distance in Section 2, and its lower estimate in Section 3. As one of the
applications to our results, consider the problem on the laws of the processes valued in the
Riemannian manifolds in Section 4.

2. Upper estimate on Wasserstein distance

2. Upper estimate on Wasserstein distance
Let X and Y be the Rd-valued processes determined by the equations (4) and (5). The

Wasserstein distance between the Rd-valued random variables Xt and Yt is defined by

(6) dW(Xt, Yt) := sup
h∈Lip1(Rd)

|E[h(Xt)] − E[h(Yt)]| ,

where Lip1(Rd) is the family of the Lipschitz continuous functions h on Rd such that |h(x)−
h(y)| ≤ |x − y| for x, y ∈ Rd (see [15] for the Wasserstein distance). Choose 0 ≤ t ≤ T , and
define the stopping time σ by

(7) σ := inf
{
s > 0 ; J

(
(0, s] × Kc

1
)
� 0

} ∧ t.

Then, it is a routine work to obtain that
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Proposition 1. For p ≥ 1, it holds that

(8) E

[
sup
u<σ
|Xu − Yu|p

]
≤ √t C1,p,T,A0,A,B,C0,C,D,ξ,

where C1,p,T,A0,A,B,C0,C,D,ξ is the positive constant.

Proof. First, let us consider the case of p ≥ 2, and study the estimate on
E
[
supu<t∧σ |Yu − ξ|p]. Let 0 ≤ t ≤ T̃ ≤ T . Since

Yu = ξ +

∫ u

0
C0(Ys) ds +

∫ u

0
C(Ys−) dWs +

∫ u

0

∫
K1

D(Ys−, z) dJ̃

for 0 ≤ u < σ, we see from the Hölder inequality and the Burkholder-Davis-Gundy one (cf.
Proposition 7.1.2 in [12] and Proposition 2.6.1 in [13]) that

E

[
sup

u<t∧σ
|Yu − ξ|p

]
≤ C2,p,T̃ E

[∫ t

0
|C0(Ys∧σ)|p ds

]
+C3,p,T̃ E

[∫ t

0
‖C(Ys∧σ)‖p ds

]

+C4,p,T̃ E

⎡⎢⎢⎢⎢⎢⎣
(∫ t

0

∫
K1

|D(Ys∧σ, z)|2 dĴ
)p/2⎤⎥⎥⎥⎥⎥⎦

+C5,p,T̃ E

[∫ t

0

∫
K1

|D(Ys∧σ, z)|p dĴ
]

≤ T̃ C6,p,T̃ ,ξ +C7,p,T̃ ,C0,C,D

∫ t

0
E

[
sup

u<s∧σ
|Yu − ξ|p

]
ds.

Here, we use the fact that the set {s ∈ [0, t] ; Ys � Ys−} is at most countable a.s. This leads
us via the Gronwall inequality to obtain that

E

[
sup

u<t∧σ
|Yu − ξ|p

]
≤ T̃ C6,p,T̃ ,ξ exp

(
t C7,p,T̃ ,C0,C,D

) ≤ T̃ C8,p,T,C0,C,D,ξ,

where C8,p,T,C0,C,D,ξ := sup0≤t≤T
{
C6,p,t,ξ exp

(
t C7,p,t,C0,C,D

)}
. In particular, choosing T̃ = t

yields that

(9) E

[
sup

u<t∧σ
|Yu − ξ|p

]
≤ t C8,p,T,C0,C,D,ξ.

Secondly, let us study the estimate on E
[
supu<t∧σ |Xu − Yu|p]. Since

Xu = ξ +

∫ u

0
A0(Xs) ds +

∫ u

0
A(Xs−) dWs +

∫ u

0

∫
K1

B(Xs−) z dJ̃,

Yu = ξ +

∫ u

0
C0(Ys) ds +

∫ u

0
C(Ys−) dWs +

∫ u

0

∫
K1

D(Ys−, z) dJ̃

for 0 ≤ u < t ∧ σ, we have

E

[
sup

u<t∧σ
|Xu − Yu|p

]
≤ C9,p E

[
sup

u<t∧σ

∣∣∣∣∣
∫ u

0

{
A0(Xs) −C0(Ys)

}
ds

∣∣∣∣∣
p]

+C9,p E

[
sup

u<t∧σ

∣∣∣∣∣
∫ u

0

{
A(Xs) −C(Ys)

}
dWs

∣∣∣∣∣
p]

+C9,p E

[
sup

u<t∧σ

∣∣∣∣∣∣
∫ u

0

∫
K1

{
B(Xs−) z − D(Ys−, z)

}
dJ̃

∣∣∣∣∣∣
p]
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=: I1,p,t + I2,p,t + I3,p,t.

Now, we shall study the upper estimate of I1,p,t, I2,p,t and I3,p,t via the Burkholder-Davis-
Gundy inequality (cf. Proposition 7.1.2 in [12] and Proposition 2.6.1 in [13]) and the Hölder
one.

As for I1,p,t, since the functions A0 and C0 satisfy the linear growth conditions, we see
that

I1,p,t ≤ C10,p,T̃ E

[∫ t

0

∣∣∣A0(Xs∧σ) −C0(Ys∧σ)
∣∣∣p ds

]

≤ C11,p,T̃ E

[∫ t

0

∣∣∣A0(Xs∧σ) − A0(Ys∧σ)
∣∣∣p ds

]

+C11,p,T̃ E

[∫ t

0

∣∣∣A0(Ys∧σ) − A0(ξ)
∣∣∣p ds

]

+C11,p,T̃ E

[∫ t

0

∣∣∣C0(Ys∧σ) −C0(ξ)
∣∣∣p ds

]
+ t C11,p,T̃

∣∣∣A0(ξ) −C0(ξ)
∣∣∣p

≤ C12,p,T̃ ,A0

∫ t

0
E

[
sup

u<s∧σ
|Xu − Yu|p

]
ds + T̃ C13,p,T̃ ,A0,C0,ξ.

As for I2,p,t, similarly to the estimate of I1,p,t, since the functions Ai and Ci (1 ≤ i ≤ d) satisfy
the linear growth conditions, we see that

I2,p,t ≤ C14,p,T̃ E

[∫ t

0

∥∥∥A(Xs∧σ) −C(Ys∧σ)
∥∥∥p

ds
]

≤ C15,p,T̃ E

[∫ t

0

∥∥∥A(Xs∧σ) − A(Ys∧σ)
∥∥∥p

ds
]
+C15,p,T̃ E

[∫ t

0

∥∥∥A(Ys∧σ) − A(ξ)
∥∥∥p

ds
]

+C15,p,T̃ E

[∫ t

0

∥∥∥C(Ys∧σ) −C(ξ)
∥∥∥p

ds
]
+C15,p,T̃

∥∥∥A(ξ) −C(ξ)
∥∥∥p

≤ C16,p,T̃ ,A

∫ t

0
E

[
sup

u<s∧σ
|Xu − Yu|p

]
ds + T̃ C17,p,T̃ ,A,C,ξ.

As for I3,p,t, similarly to the estimate of I2,p,t, since

B(Xs) z − D(Ys, z) =
{
B(Xs) z − B(Ys) z

}
+

{
B(Ys) z − B(ξ) z

}
− {

D(Ys, z) − D(ξ, z)
}
+

{
B(ξ) z − D(ξ, z)

}
,

we have

I3,p,t ≤ C18,p,T̃ E

⎡⎢⎢⎢⎢⎢⎣
(∫ t

0

∫
K1

∣∣∣B(Xs∧σ) z − D(Ys∧σ, z)
∣∣∣2 dĴ

)p/2⎤⎥⎥⎥⎥⎥⎦
+C18,p,T̃ E

[∫ t

0

∫
K1

∣∣∣B(Xs∧σ) z − D(Ys∧σ, z)
∣∣∣p dĴ

]

≤ C19,p,T̃ E

⎡⎢⎢⎢⎢⎢⎣
(∫ t

0

∫
K1

∣∣∣B(Xs∧σ) − B(Ys∧σ)
∣∣∣2 |z|2 dĴ

)p/2⎤⎥⎥⎥⎥⎥⎦
+C19,p,T̃ E

⎡⎢⎢⎢⎢⎢⎣
(∫ t

0

∫
K1

∣∣∣B(Ys∧σ) z − B(ξ) z
∣∣∣2 dĴ

)p/2⎤⎥⎥⎥⎥⎥⎦
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+C19,p,T̃ E

⎡⎢⎢⎢⎢⎢⎣
(∫ t

0

∫
K1

∣∣∣D(Ys∧σ, z) − D(ξ, z)
∣∣∣2 dĴ

)p/2⎤⎥⎥⎥⎥⎥⎦
+ t C19,p,T̃

(∫
K1

∣∣∣B(ξ) z − D(ξ, z)
∣∣∣2 ν(dz)

)p/2

+C19,p,T̃ E

[∫ t

0

∫
K1

∣∣∣B(Xs∧σ) − B(Ys∧σ)
∣∣∣p |z|p dĴ

]

+C19,p,T̃ E

[∫ t

0

∫
K1

∣∣∣B(Ys∧σ) z − B(ξ) z
∣∣∣p dĴ

]

+C19,p,T̃ E

[∫ t

0

∫
K1

∣∣∣D(Ys∧σ, z) − D(ξ, z)
∣∣∣p dĴ

]

+ t C19,p,T̃

∫
K1

∣∣∣B(ξ) z − D(ξ, z)
∣∣∣p ν(dz)

≤ C20,p,T̃ ,B

∫ t

0
E

[
sup

u<s∧σ
|Xu − Yu|p

]
ds + T̃ C21,p,T̃ ,B,D,ξ.

Hence, we can obtain that

E

[
sup

u<t∧σ

∣∣∣Xu − Yu

∣∣∣p
]
≤ T̃

(
C13,p,T̃ ,A0,C0,ξ +C17,p,T̃ ,A,C,ξ +C21,p,T̃ ,B,D,ξ

)

+
(
C12,p,T̃ ,A0

+C16,p,T̃ ,A +C20,p,T̃ ,B
) ∫ t

0
E

[
sup

u<s∧σ

∣∣∣Xu − Yu

∣∣∣p
]

ds,

which implies from the Gronwall inequality that

E

[
sup

u<t∧σ

∣∣∣Xu − Yu

∣∣∣p
]
≤ T̃

(
C13,p,T̃ ,A0,C0,ξ +C17,p,T̃ ,A,C,ξ +C21,p,T̃ ,B,D,ξ

)

× exp
[(

C12,p,T̃ ,A0
+C16,p,T̃ ,A +C20,p,T̃ ,B

)
t
]

≤ T̃ C22,p,T,A0,A,B,C0,C,D,ξ,

where

C22,p,T,A0,A,B,C0,C,D,ξ := sup
0≤t≤T

{(
C13,p,t,A0,C0,ξ +C17,p,t,A,C,ξ +C21,p,t,B,D,ξ

)

× exp
[(

C12,p,t,A0 +C16,p,t,A +C20,p,t,B
)

t
]}
.

In particular, choosing T̃ = t implies that

E

[
sup

u<t∧σ

∣∣∣Xu − Yu

∣∣∣p
]
≤ t C22,p,T,A0,A,B,C0,C,D,ξ,

Finally, the study for 1 ≤ p < 2 is just the direct consequence of the Cauchy-Schwarz
inequality:

E

[
sup

u<t∧σ

∣∣∣Xu − Yu

∣∣∣p
]
≤ E

[
sup

u<t∧σ

∣∣∣Xu − Yu

∣∣∣2p
]1/2

≤ √t
√

C22,2p,T,A0,A,B,C0,C,D,ξ.

Thus, we can get the assertion by choosing as
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C1,p,T,A0,A,B,C0,C,D,ξ :=

⎧⎪⎪⎨⎪⎪⎩
√

T C22,p,T,A0,A,B,C0,C,D,ξ (p ≥ 2),√
C22,2p,T,A0,A,B,C0,C,D,ξ (1 ≤ p < 2).

(10)

The proof is complete. �

Proposition 2. Let 0 ≤ t ≤ T. Suppose that there exists a constant p0 > 1 satisfying∫
Kc

1

|z|p0 ν(dz) < +∞.

Then, for all 1 ≤ p < p0, it holds that

(11) E

[
sup
u≤t
|Xu − Yu|p

]
≤ (

t1/(2αp) ∨ tp/p0
)
C23,p,p0,T,A0,A,B,C0,C,D,ξ,

where αp := p0/(p0 − p) and C23,p,p0,T,A0,A,B,C0,C,D,ξ is the positive constant.

Proof. Define the sequence of stopping times
{
σn ; n ∈ N} given by

σ1 := σ, σn+1 := inf
{
s > σn ; J

(
(σn, s] × Kc

1
)
� 0

}
∧ t

for n ∈ N, inductively.
(i) Since the upper estimate of E

[
supu<σ1

|Xu − Yu|p
]

has been already proved in Propo-
sition 1, it is sufficient to study the estimate of E

[|Xσ1 − Yσ1 |p
]
. Write

Lt =

∫ t

0

∫
R

d
0

z dJ.

Remark that

E
[|ΔLσ1 |p0

]
= E

⎡⎢⎢⎢⎢⎣
∣∣∣∣∣∣
∫ t

0

∫
Kc

1

z dJ

∣∣∣∣∣∣
p0
⎤⎥⎥⎥⎥⎦

≤ C24,p0

∣∣∣∣∣∣
∫ t

0

∫
Kc

1

z dĴ

∣∣∣∣∣∣
p0

+C24,p0 E

⎡⎢⎢⎢⎢⎣
∣∣∣∣∣∣
∫ t

0

∫
Kc

1

z dJ̃

∣∣∣∣∣∣
p0
⎤⎥⎥⎥⎥⎦

≤ (C25,p0,T +C26,p0 )
∫ t

0

∫
Kc

1

|z|p0 ν(dz) +C26,p0

⎛⎜⎜⎜⎜⎝
∫ t

0

∫
Kc

1

|z|2 dĴ
⎞⎟⎟⎟⎟⎠

p0/2

≤ t C27,p0,T

∫
Kc

1

|z|p0 ν(dz)

=: t C28,p0,T

from the Hölder inequality and the Burkholder inequality, and∣∣∣Xσ1 − Yσ1

∣∣∣ ≤ ∣∣∣Xσ1− − Yσ1−
∣∣∣ + ∣∣∣B(Xσ1−)ΔLσ1 − D(Yσ1−,ΔLσ1 )

∣∣∣
≤ |Xσ1− − Yσ1−|

(
1 + ‖∂B‖∞ |ΔLσ1 |

)
+ |Yσ1− − ξ|

(‖∂B‖∞ |ΔLσ1 | + ‖∂D(·,ΔLσ1 )‖∞
)

+ sup
z∈Kc

1

|B(ξ) − (∂zD)(ξ, z)| |ΔLσ1 |.

Here, we have used (3) in the second equality with the help of the mean value theo-
rem for w �−→ D(ξ, w) between 0 and ΔLσ1 of ξ. Then, we see that
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E

[
sup
u≤σ1

|Xu − Yu|p
]

≤ C29,p E

[
sup
u<σ1

|Xu − Yu|p
]
+C29,p E

[∣∣∣Xσ1 − Yσ1

∣∣∣p]

≤ C30,p E

[(
sup
u<σ1

|Xu − Yu|p
) (

2 + ‖∂B‖p∞ |ΔLσ1 |p
)]

+C30,p E

[(
sup
u<σ1

|Yu − ξ|p
) (‖∂B‖p∞ |ΔLσ1 |p + ‖∂D(·,ΔLσ1 )‖p∞

)]

+C30,p

⎛⎜⎜⎜⎜⎜⎝sup
z∈Kc

1

∣∣∣B(ξ) − (∂zD)(ξ, z)
∣∣∣p
⎞⎟⎟⎟⎟⎟⎠ E[|ΔLσ1 |p

]

+C30,p

⎛⎜⎜⎜⎜⎜⎝sup
z∈Kc

1

∣∣∣B(ξ) − (∂zD)(ξ, z)
∣∣∣p
⎞⎟⎟⎟⎟⎟⎠ E[|ΔLσ1 |p0

]p/p0

≤ (
t1/(2αp) ∨ tp/p0

)
C31,p,p0,T,A0,A,B,C0,C,D,ξ

from Proposition 1 and the moment estimate (9). Here, we have used the Hölder
inequality in the third inequality.

(ii) Consider the case of σ1 ≤ u ≤ σ2. Since

Xu − Yu = Xσ1 − Yσ1 +

∫ u

σ1

{
A0(Xs) −C0(Ys)

}
ds +

∫ u

σ1

{
A(Xs) −C(Ys)

}
dWs

+

∫ u

σ1

∫
K1

{
B(Xs−) z − D(Xs−, z)

}
dJ̃

for σ1 ≤ u < σ2, and∣∣∣Xσ2 − Yσ2

∣∣∣ ≤ ∣∣∣Xσ2− − Yσ2−
∣∣∣ + ∣∣∣B(Xσ2−)ΔLσ2 − D(Yσ2−,ΔLσ2 )

∣∣∣
≤ |Xσ2− − Yσ2−|

(
1 + ‖∂B‖∞ |ΔLσ2 |

)
+ |Yσ2− − Yσ1 |

(‖∂B‖∞ |ΔLσ2 | + ‖∂D(·,ΔLσ2 )‖∞
)

+ sup
z∈Kc

1

|B(Yσ1 ) − (∂zD)(Yσ1 , z)| |ΔLσ2 |,

the estimate E
[
supu≤σ2

|Xu − Yu|p
]

can be also given via a similar method studied in
Proposition 1 and (i) stated above, because

E

[
sup
u≤σ2

∣∣∣Xu − Yu

∣∣∣p
]

≤ C32,p E

[
sup
u≤σ1

∣∣∣Xu − Yu

∣∣∣p
]
+C32,p E

[
sup

σ1≤u≤σ2

∣∣∣Xu − Yu

∣∣∣p
]

≤ (
t1/(2αp) ∨ tp/p0

)
C32,p

(
C31,p,p0,T,A0,A,B,C0,C,D,ξ +C33,p,p0,T,A0,A,B,C0,C,D,ξ

)
=:

(
t1/(2αp) ∨ tp/p0

)
C34,p,p0,T,A0,A,B,C0,C,D,ξ.

(iii) The inductive argument as stated in (ii) enables us to obtain that

E

[
sup
u≤σn

|Xu − Yu|p
]
≤ (

t1/(2αp) ∨ tp/p0
)
C35,p,p0,T,A0,A,B,C0,C,D,ξ.
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The proof is complete. �

Theorem 1. Under the same situation as Proposition 2, it holds that

(12) dW(Xt, Yt) ≤ (
t1/(2α1) ∨ tp/p0

)
C23,1,p0,T,A0,A,B,C0,C,D,ξ.

Proof. The assertion is the direct consequence of Proposition 2, because

dW(Xt, Yt) ≤ E[|Xt − Yt|] ≤ (
t1/(2α1) ∨ tp/p0

)
C23,1,p0,T,A0,A,B,C0,C,D,ξ. �

Remark 1. Under the same situation stated in Theorem 1, the Wasserstein distance
dW(Xt, Yt) is small, if the coefficients in each term of the equations (4) and (5) are close,
which implies that the characteristic functions of the random variables Xt and Yt are also
close, since the function Rd 
 x �−→ ei θ·x for θ ∈ Rd is in Lip1(Rd).

3. Lower estimate on Wasserstein distance

3. Lower estimate on Wasserstein distance
In this section, we shall consider the lower estimate of the Wasserstein distance. Assume

the condition in Proposition 2 throughout this section again. Since

Xt = ξ +

∫ t

0
A0(Xs) ds +

∫ t

0
A(Xs) dWs +

∫ t

0

∫
K1

B(Xs−) z dJ̃ +
∫ t

0

∫
Kc

1

B(Xs−) z dJ,(13)

Yt = ξ +

∫ t

0
C0(Ys) ds +

∫ t

0
C(Ys) dWs +

∫ t

0

∫
K1

D(Ys−, z) dJ̃ +
∫ t

0

∫
Kc

1

D(Ys−, z) dJ,(14)

we have

(15) E[Xt − Yt] =
∫ t

0
E
[
A0(Xs) −C0(Ys)

]
ds +

∫ t

0

∫
Kc

1

E
[
B(Xs) z − D(Ys, z)

]
dĴ.

For 1 ≤ k ≤ d, let us define

C36,k,A0,B,C0,D := inf
x∈Rd

∣∣∣∣∣∣
{
Ak

0(x) −Ck
0(x)

}
+

∫
Kc

1

{
Bk(x) z − Dk(x, z)

}
ν(dz)

∣∣∣∣∣∣ .(16)

Proposition 3. Under the same situation as Proposition 2, it holds that

(17)
∣∣∣E[Xt − Yt]

∣∣∣ ≥ {
t
(
C36,k,A0,B,C0,D −C37,p0,T,A0,A,B,C0,C,D,ξ

(
t1/(2α1) ∨ t1/p0

))} ∨ 0,

where C37,p0,T,A0,A,B,C0,C,D,ξ is a positive constant.

Proof. Now, we are in the position that

E[Xt − Yt] =
∫ t

0
E
[
A0(Xs) −C0(Ys)

]
ds +

∫ t

0

∫
Kc

1

E
[
B(Xs) z − D(Ys, z)

]
dĴ

=

∫ t

0

(
ψ0,s + ψs

)
ds +

∫ t

0

(
ϕ0,s + ϕs

)
ds,

where

ψ0,t := E
[
A0(Yt) −C0(Yt)

]
, ϕ0,t := E

[
A0(Xt) − A0(Yt)

]
,

ψt :=
∫

Kc
1

E
[
B(Yt) z − D(Yt, z)

]
ν(dz), ϕt :=

∫
Kc

1

E
[
B(Xt) z − B(Yt) z

]
ν(dz).
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Hence, since the coefficients Ai (0 ≤ i ≤ d) and B are Lipschitz continuous, we see that

∣∣∣E[Xt − Yt]
∣∣∣ ≥

∣∣∣∣∣∣
∫ t

0

(
ψ0,s + ψs

)
ds

∣∣∣∣∣∣ −
∣∣∣∣∣∣
∫ t

0

(
ϕ0,s + ϕs

)
ds

∣∣∣∣∣∣
≥

∣∣∣∣∣∣
∫ t

0

(
ψ0,s + ψs

)
ds

∣∣∣∣∣∣ −C38,A0,B

∫ t

0
E
[|Xs − Ys|] ds.

On the other hand, since∫ t

0
E
[|Xs − Ys|] ds ≤ t

(
t1/(2α1) ∨ t1/p0

)
C23,1,p0,T,A0,A,B,C0,C,D,ξ

from Proposition 2, and ∫ t

0

(
ψ0,s + ψs

)
ds = t

(
ψ0,κ + ψκ

)
from the mean value theorem, where 0 < κ < t is a constant, we have∣∣∣E[Xt − Yt]

∣∣∣ ≥ t
{∣∣∣ψ0,κ + ψκ

∣∣∣ −C38,A0,B C23,1,p0,T,A0,A,B,C0,C,D,ξ
(
t1/(2α1) ∨ t1/p0

)}
(18)

= t
{∣∣∣ψ0,κ + ψκ

∣∣∣ −C39,p0,T,A0,A,B,C0,C,D,ξ
(
t1/(2α1) ∨ t1/p0

)}
,

where C39,p0,T,A0,A,B,C0,C,D,ξ := C38,A0,B C23,1,p0,T,A0,A,B,C0,C,D,ξ. Then, we have

∣∣∣ψ0,κ + ψκ
∣∣∣ =

∣∣∣∣∣∣E
[
A0(Yκ) −C0(Yκ)

]
+

∫
Kc

1

E
[
B(Yκ) z − D(Yκ, z)

]
ν(dz)

∣∣∣∣∣∣
≥

∣∣∣∣∣∣E
[
Ak

0(Yκ) −Ck
0(Yκ)

]
+

∫
Kc

1

E
[
Bk(Yκ) z − Dk(Yκ, z)

]
ν(dz)

∣∣∣∣∣∣
≥ C36,k,A0,B,C0,D

from the condition (16). We can derive from (18) that∣∣∣E[Xt − Yt]
∣∣∣ ≥ t

{
C36,k,A0,B,C0,D −C39,p0,T,A0,A,B,C0,C,D,ξ

(
t1/(2α1) ∨ t1/p0

)}
.

Since it is trivial that
∣∣∣E[Xt − Yt]

∣∣∣ ≥ 0, we can get the conclusion. �

Theorem 2 (Lower estimate). Under the same condition in Proposition 2, it holds that

(19) dW(Xt, Yt) ≥
[
t
{
C36,k,A0,B,C0,D −C39,p0,T,A0,A,B,C0,C,D,ξ

(
t1/(2α1) ∨ t1/p0

)} ] ∨ 0.

Proof. Since the function h defined by h(x) = x is in Lip1(Rd), Proposition 3 implies that

dW(Xt, Yt) ≥
∣∣∣E[Xt − Yt]

∣∣∣
≥

[
t
{
C36,k,A0,B,C0,D −C39,p0,T,A0,A,B,C0,C,D,ξ

(
t1/(2α1) ∨ t1/p0

)} ] ∨ 0,

which completes the proof. �

Corollary 1. Under the same condition in Proposition 2, the laws of the Rd-valued pro-
cesses X and Y are not always equivalent.

Proof. Suppose that the laws of the processes X and Y are equivalent. Then, those any
finite-dimensional distributions are also equivalent, which implies that dW(Xt, Yt) = 0 for all
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0 < t ≤ T . Now, let us choose t ∈ [0, T ] such that

(20) 0 < t <
(

C36,k,A0,B,C0,D

C39,p0,T,A0,A,B,C0,C,D,ξ

)2α1

∧
(

C36,k,A0,B,C0,D

C39,p0,T,A0,A,B,C0,C,D,ξ

)p0

.

Then, from the estimate (19) in Theorem 2, the Wasserstein distance of the Rd-valued ran-
dom variables Xt and Yt can be estimated from the below as

dW(Xt, Yt) ≥
∣∣∣E[Xt − Yt

]∣∣∣ ≥ t
{
C36,k,A0,B,C0,D −C39,p0,T,A0,A,B,C0,C,D,ξ

(
t1/2α1 ∨ t1/p0

)}
,

which is strictly positive from (20). That is the contradiction. �

4. Study on manifolds

4. Study on manifolds
In this section, we shall study the situation on a Riemannian manifold. Let M be a con-

nected, compact and smooth Riemannian manifold of dimension d with the Levi-Civita
connection ∇ = {Γi

jk ; 1 ≤ i, j, k ≤ d}, and denote by

O(M) =
{
r = (x, ex) ; x ∈ M, ex =

(
(e1)x, . . . , (ed)x

)
is the orthonormal basis in TxM

}
the bundle of orthonormal frames on M. Let π : O(M) → M be the projection given by
π(r) = x for r = (x, ex) ∈ O(M). For r = (x, ex) ∈ O(M), denote by ϕ a local coordinate in
a coordinate neighborhood V ⊂ O(M) around r, and by ψ a local coordinate in a coordinate
neighborhood π(V) ⊂ M around x = π(r). Write π̃ = ψ ◦ π ◦ ϕ−1. Let Hi (1 ≤ i ≤ d) be the
horizontal vector fields over O(M). Then, for F ∈ C∞

(
O(M)

)
, the vector fields Hi (1 ≤ i ≤ d)

can be expressed as

(HiF)(r) =
d∑

j=1

e j
i

(
∂Fϕ

∂x j

) (
ϕ(r)

) −
d∑

k, l, p, q=1

Γ
q
kl
(
π(r)

)
ek

i el
p

(
∂Fϕ

∂eq
p

) (
ϕ(r)

)
(21)

in the local coordinate around r ∈ O(M), where Fϕ = F ◦ ϕ−1 and ϕ(r) = (xi, e j
i ; 1 ≤ i, j ≤

d).
For r ∈ O(M), let us consider the O(M)-valued process {R̃t ; t ∈ [0, T ]} determined by the

Stratonovich stochastic differential equation of the form:

(22) dR̃t = H(R̃t) ◦ dWt, R̃0 = r,

equivalently,

F(R̃t) = F(r) +
∫ t

0
(HF)(R̃s) ◦ dWs = F(r) +

∫ t

0
(F)(R̃s) ds +

∫ t

0
(HF)(R̃s) dWs,(23)

for all F ∈ C∞(O(M)), where H =
(
H1, . . . , Hd

)
and

(F)(r) =
1
2

d∑
i=1

(
Hi(HiF)

)
(r).

The operator  is the infinitesimal generator of the process R̃, which is often called the
horizontal Laplacian of Bochner’s sense (cf. [9]). Then, the M-valued process {X̃t ; t ∈
[0, T ]} defined by X̃t := π(R̃t) is the Brownian motion on M with the infinitesimal generator
ΔM/2, where ΔM is the Laplace-Beltrami operator on M. In fact, for any f ∈ C∞(M), since
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(24)
(
( f ◦ π)

)
(r) =

1
2

(ΔM f )
(
π(r)

)
,

we have

f (X̃t) = ( f ◦ π)(r) +
∫ t

0

(
( f ◦ π)

)
(R̃s) ds +

∫ t

0

(
H( f ◦ π)

)
(R̃s) dWs(25)

= f (x) +
∫ t

0

1
2

(ΔM f )(X̃s) ds +
∫ t

0

(
(π∗H) f

)
(X̃s) dWs,

where
(
(π∗A) f

)(
π(r)

)
=

(
A( f ◦ π)

)
(r) for a vector field A over O(M), a smooth function f on

M, and r ∈ O(M).
Let {τt ; t ∈ [0, T ]} be a subordinator with the Lévy triplet (γτ, 0, η), independent of the

Brownian motion W, where η(dθ) is the Lévy measure on (0,+∞) such that the function
θ ∧ 1 is integrable with respect to the measure η(dθ), and γτ :=

∫ 1
0 θ η(dθ) is the drift. Then,

for each t ∈ [0, T ], the Lévy-Itô decomposition theorem (cf. [18]) implies that

(26) τt = γ
τ t +

∫ t

0

∫ +∞

0
θ dN,

where dN
( ≡ N(ds, dθ)

)
is the Poisson random measure over (0, T ] × (0,+∞) with the

intensity measure dN̂
( ≡ N̂(ds, dθ)

)
= ds η(dθ), dÑ

( ≡ Ñ(ds, dθ)
)
= dN − dN̂ is the

compensated one, and dN
( ≡ N(ds, dθ)

)
= I(0,1](θ) dÑ + I(1,+∞)(θ) dN. Denote by p(θ, z) the

density of the Rd-valued random variable Wθ for θ > 0. From Theorem 30.1 in [18], the
subordinated process {Wτt ; 0 ≤ t ≤ T } is the Rd-valued Lévy process with the Lévy triplet
(γWτ , 0, ν), where ν(dz) is the σ-finite measure on Rd

0 defined by

(27) ν(dz) :=
∫ +∞

0
P
[
Wθ ∈ dz

]
η(dθ)

(
=

∫ +∞

0
p(θ, z) η(dθ) dz

)
,

and γWτ :=
∫

K1
z ν(dz). Hence, for each t ∈ [0, T ], we see that

(28) Wτt = t γWτ +

∫ t

0

∫
R

d
0

z dJ

from the Lévy-Itô decomposition theorem (cf. [18]) again, where dJ
( ≡ J(ds, dz)

)
is the

Poisson random measure over (0, T ] × Rd
0 with the intensity measure dĴ

( ≡ Ĵ(ds, dz)
)
=

ds ν(dz), dJ̃
( ≡ J̃(ds, dz)

)
= dJ − dĴ and dJ

( ≡ J(ds, dz)
)
= IK1 (z) dJ̃ + IKc

1
(z) dJ. Then, the

O(M)-valued subordinated process {Rt := R̃τt ; t ∈ [0, T ]} satisfies that

F(Rt) = F(r) +
∫ τt

0
(F)(R̃s) ds +

∫ τt

0
(HF)(R̃s) dWs(29)

= F(r) +
∫ t

0
(F)(R̃τs−) dτs +

∫ t

0
(HF)(R̃τs−) dWτs

= F(r) +
∫ t

0
(F)(Rs) ds +

∫ t

0

∫ +∞

0
(F)(Rs−) θ dN +

∫ t

0

∫
R

d
0

(HF)(Rs−) z dJ

for all F ∈ C∞(O(M)), where

(F)(r) := (F)(r) γτ + (HF)(r) γWτ =

∫ 1

0
(F)(r) θ η(dθ) +

∫
K1

(HF)(r) z ν(dz).
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Define the M-valued process {Xt ; t ∈ [0, T ]} by Xt := X̃τt = π(Rt). In particular, we have

f (Xt) = ( f ◦ π)(r) +
∫ t

0

(
( f ◦ π)

)
(Rs) ds +

∫ t

0

∫ +∞

0

(
( f ◦ π)

)
(Rs−) θ dN(30)

+

∫ t

0

∫
R

d
0

(
H( f ◦ π)

)
(Rs−) z dJ

= f (x) +
∫ t

0

(
(π∗) f

)
(Xs) ds +

∫ t

0

∫ +∞

0

(
(π∗) f

)
(Xs−) θ dN

+

∫ t

0

∫
R

d
0

(
(π∗H) f

)
(Xs−) z dJ

for f ∈ C∞(M), which implies that

E
[
f (Xt)

]
= f (x) +

∫ t

0
E

[(
(π∗) f

)
(Xs)

]
ds(31)

+

∫ t

0

∫ +∞

1
E

[(
(π∗) f

)
(Xs) θ

]
dN̂ +

∫ t

0

∫
Kc

1

E

[(
(π∗H) f

)
(Xs) z

]
dĴ

= f (x) +
∫ t

0

∫ +∞

0
E

[(
(π∗) f

)
(Xs) θ

]
dN̂ +

∫ t

0

∫
R

d
0

E

[(
(π∗H) f

)
(Xs) z

]
dĴ.

The second equality can be justified, because∫ t

0
E

[(
(π∗) f

)
(Xs)

]
ds

=

∫ t

0
E

[(
( f ◦ π)

)
(Rs)

]
ds

=

∫ t

0

∫ 1

0
E

[(
( f ◦ π)

)
(Rs) θ

]
η(dθ) ds +

∫ t

0

∫
K1

E

[(
H( f ◦ π)

)
(Rs) z

]
ν(dz) ds

=

∫ t

0

∫ 1

0
E

[(
(π∗) f

)
(Xs) θ

]
dN̂ +

∫ t

0

∫
K1

E

[(
(π∗H) f

)
(Xs) z

]
dĴ.

On the other hand, for r ∈ O(M), let {Ut ; t ∈ [0, T ]} be the O(M)-valued process deter-
mined by the canonical stochastic differential equation with jumps of Marcus type:

F(Ut) = F(r) +
∫ t

0
(F)(Us) ds +

∫ t

0

∫ +∞

0

{
F
(
Exp( θ)(Us−)

) − F(Us−)
}

dN(32)

+

∫ t

0

∫
R

d
0

{
F
(
Exp(H z)(Us−)

) − F(Us−)
}

dJ

for all F ∈ C∞
(
O(M)

)
, where

(F)(u) :=
∫ 1

0

{
F
(
Exp( θ)(u)

) − F(u)
}
η(dθ) +

∫
K1

{
F
(
Exp(H z)(u)

) − F(u)
}
ν(dz).

Moreover, for given θ ∈ (0,+∞) and z ∈ Rd
0, let

{
Λθ,σ(u) := Exp(σθ)(u) ; σ ∈ [0, 1], u ∈

O(M)
}

and
{
Ξz,σ(u) := Exp(σ z H)(u) ; σ ∈ [0, 1], u ∈ O(M)

}
be the one parameter groups of

diffeomorphisms over O(M), that is, the unique solutions to the ordinary differential equa-
tions of the forms:
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d
dσ
Λθ,σ(u) = (θ)

(
Λθ,σ(u)

)
, Λθ,0(u) = u,(33)

d
dσ
Ξz,σ(u) = (Hz)

(
Ξz,σ(u)

)
, Ξz,0(u) = u.(34)

Define the M-valued process {Yt ; t ∈ [0, T ]} by Yt = π(Ut). Since

π
(
Exp( θ)(u)

)
= Exp(π∗ θ)

(
π(u)

)
, π

(
Exp(H z)(u)

)
= Exp(π∗H z)

(
π(u)

)
,

we see that, for f ∈ C∞(M),

f (Yt) = ( f ◦ π)(Ut)(35)

= f (x) +
∫ t

0

(
(π∗) f

)
(Ys) ds +

∫ t

0

∫ +∞

0

{
f
(
Exp(π∗ θ)(Ys−)

) − f (Ys−)
}

dN

+

∫ t

0

∫
R

d
0

{
f
(
Exp(π∗H z)(Ys−)

) − f (Ys−)
}

dJ,

which implies that

E
[
f (Yt)

]
= f

(
π(r)

)
+

∫ t

0
E

[(
(π∗) f

)
(Ys)

]
ds(36)

+

∫ t

0

∫ +∞

1
E

[
f
(
Exp(π∗ θ)(Ys)

) − f (Ys)
]
dN̂

+

∫ t

0

∫
Kc

1

E

[
f
(
Exp(π∗H z)(Ys)

) − f (Ys)
]
dĴ

= f
(
π(r)

)
+

∫ t

0

∫ +∞

0
E

[
f
(
Exp(π∗ θ)(Ys)

) − f (Ys)
]

dN̂

+

∫ t

0

∫
R

d
0

E

[
f
(
Exp(π∗H z)(Ys)

) − f (Ys)
]

dĴ.

The second equality can be justified, because∫ t

0
E

[(
(π∗) f

)
(Ys)

]
ds =

∫ t

0
E

[(
( f ◦ π)

)
(Us)

]
ds

=

∫ t

0

∫ 1

0
E

[
( f ◦ π)

(
Exp( θ)(Us)

) − ( f ◦ π)(Us)
]
η(dθ) ds

+

∫ t

0

∫
K1

E

[
( f ◦ π)

(
Exp(H z)(Us)

) − ( f ◦ π)(Us)
]
ν(dz) ds

=

∫ t

0

∫ 1

0
E

[
f
(
Exp(π∗ θ)(Ys)

) − f (Ys)
]

dN̂

+

∫ t

0

∫
K1

E

[
f
(
Exp(π∗H z)(Ys)

) − f (Ys)
]

dĴ.

Hence, we have

E
[
f (Yt)

] − E[ f (Xt)
]

(37)

=

∫ t

0

∫ +∞

0
E

[(
(ψ∗π∗) f ψ

)(
ψ(Ys)

) − (
(ψ∗π∗) f ψ

)(
ψ(Xs)

)]
θ dN̂
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+

∫ t

0

∫
R

d
0

E

[(
(ψ∗π∗H) f ψ

)(
ψ(Ys)

) − (
(ψ∗π∗H) f ψ

)(
ψ(Xs)

)]
z dĴ

+

∫ t

0

∫ +∞

0
E

[
f ψ

(
Exp(ψ∗π∗ θ)

(
ψ(Ys)

)) − f ψ
(
ψ(Ys)

)
− (

(ψ∗π∗) f ψ
)(
ψ(Ys)

)
θ
]

dN̂

+

∫ t

0

∫
R

d
0

E

[
f ψ

(
Exp(ψ∗π∗H z)

(
ψ(Ys)

)) − f ψ
(
ψ(Ys)

)

− (
(ψ∗π∗H) f ψ

)(
ψ(Ys)

)
z
]

dĴ.

Then, we have

Theorem 3. Let C40 ∈ Rm ⊗ Rm be a positive definite symmetric matrix, and f ∈ C∞(M)
such that

(38)
(
(ψ∗π∗H)

(
(ψ∗π∗H) f

))
(ξ) = C40, ξ ∈ M.

Then, under the condition ∫
K1

|z| ν(dz) < ∞,

the law of the subordinated Brownian motion X on M is not the one of the M-valued process
Y given by the projection of the O(M)-valued process determined by the equation (36).

Remark 2. In order to guarantee the existence of the solution function f to the Poisson
equation (38), we need the additional condition on the manifold M. It is sufficient that the
manifold M is complete, and has a positive spectrum and a Ricci curvature bounded below
by a negative constant. See [4, 14].

Proof of Theorem 3. Recall the stopping time σ given in (7). Denote by Tr(C40) the trace
of the matrix C40. Since

(
(ψ∗π∗) f ψ

)(
ψ(ξ)

)
=

(
(π∗) f

)
(ξ) =

(
( f ◦ π)

)
(r) =

(ΔM f )(ξ)
2

=
Tr(C40)

2
for r ∈ O(M) with π(r) = ξ from (24) under the condition (38), the Taylor theorem leads us
to see that

(
(ψ∗π∗) f ψ

)(
ψ(Ys)

) − (
(ψ∗π∗) f ψ

)(
ψ(Xs)

)
=

Tr(C40)
2

− Tr(C40)
2

= 0,

and that

f ψ
(
Exp(ψ∗π∗ θ)

(
ψ(Ys)

)) − f ψ
(
ψ(Ys)

) − (
(ψ∗π∗) f ψ

)(
ψ(Ys)

)
θ

=
1
2

(
(ψ∗π∗ θ)

(
(ψ∗π∗ θ) f ψ

))(
Exp(κ ψ∗π∗ θ)

(
ψ(Ys)

))

=
1
2

(
(ψ∗π∗ θ)

(
(ψ∗π∗ θ) f ψ

))(
ψ
(
Exp(κ π∗ θ)(Ys)

))
= 0

from the Taylor theorem, where 0 < κ < 1 is a constant. Thus, we have from (37) that
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E
[
f (Y(t∧σ)−)

] − E[ f (X(t∧σ)−)
]

=

∫ t

0

∫ +∞

0
E

[(
(ψ∗π∗) f ψ

)(
ψ(Y(s∧σ)−)

) − (
(ψ∗π∗) f ψ

)(
ψ(X(s∧σ)−)

)]
θ dN̂

+

∫ t

0

∫
R

d
0

E

[(
(ψ∗π∗H) f ψ

)(
ψ(Y(s∧σ)−)

) − (
(ψ∗π∗H) f ψ

)(
ψ(X(s∧σ)−)

)]
z dĴ

+

∫ t

0

∫ +∞

0
E

[
f ψ

(
Exp(ψ∗π∗ θ)

(
ψ(Y(s∧σ)−)

)) − f ψ
(
ψ(Y(s∧σ)−)

)
− (

(ψ∗π∗) f ψ
)(
ψ(Y(s∧σ)−)

)
θ
]

dN̂

+

∫ t

0

∫
R

d
0

E

[
f ψ

(
Exp(ψ∗π∗H z)

(
ψ(Y(s∧σ)−)

)) − f ψ
(
ψ(Y(s∧σ)−)

)

− (
(ψ∗π∗H) f ψ

)(
ψ(Y(s∧σ)−)

)
z
]

dĴ

=

∫ t

0

∫
K1

E

[(
(ψ∗π∗H) f ψ

)(
ψ(Y(s∧σ)−)

) − (
(ψ∗π∗H) f ψ

)(
ψ(X(s∧σ)−)

)]
z dĴ

+
1
2

∫ t

0

∫
K1

E

[(
(ψ∗π∗H z)

(
(ψ∗π∗H z) f ψ

))(
ψ
(
Exp(κ π∗H z)(Y(s∧σ)−)

))]
dĴ

=: I1 + I2,

where 0 < κ < 1 is a constant.
Since

E

[∣∣∣ψ(Y(s∧σ)−) − ψ(X(s∧σ)−)
∣∣∣] ≤ √s C41,T,H,x,

similarly to Proposition 1, we can obtain that

I1 ≥ −
∣∣∣∣∣∣
∫ t

0

∫
K1

E

[(
(ψ∗π∗H) f ψ

)(
ψ(Y(s∧σ)−)

) − (
(ψ∗π∗H) f ψ

)(
ψ(X(s∧σ)−)

)]
z dĴ

∣∣∣∣∣∣
≥ −

(∥∥∥∂{(ψ∗π∗H) f ψ}∥∥∥∞
∫

K1

|z| ν(dz)
) ∫ t

0
E
[∣∣∣ψ(Y(s∧σ)−) − ψ(X(s∧σ)−)

∣∣∣] ds

≥ −t3/2
∥∥∥∂{(ψ∗π∗H) f ψ}∥∥∥∞C37,T,H,x

∫
K1

|z| ν(dz),

where
∥∥∥∂{(ψ∗π∗H) f ψ}∥∥∥∞ := supξ∈(ψ◦π)(V)

∣∣∣∣(∂{(ψ∗π∗H) f ψ})(ξ)∣∣∣∣. On the other hand, as for I2,
since the matrix C40 is positive definite, we see that

I2 =
1
2

∫
K1

z∗C40 z ν(dz) ≥ t C42

2

∫
K1

|z|2 ν(dz),

where C42 > 0 is the minimum eigenvalue of the matrix C40. Here, we shall choose t as

(39) 0 < t <

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
C42

∫
K1

|z|2 ν(dz)

2
∥∥∥∂{(ψ∗π∗H) f ψ

∥∥∥∞C41,T,H,x

∫
K1

|z| ν(dz)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

2

.

Then, we can get that

E
[
f (Y(t∧σ)−)

] − E[ f (X(t∧σ)−)
]

(40)
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≥ −t3/2
∥∥∥∂{(ψ∗π∗H) f ψ}∥∥∥∞C41,T,H,x

∫
K1

|z| ν(dz) +
t C42

2

∫
K1

|z|2 ν(dz)

= t
∥∥∥∂{(ψ∗π∗H) f ψ

∥∥∥∞C41,T,H,x

∫
K1

|z| ν(dz)

×

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
−√t +

C42

∫
K1

|z|2 ν(dz)

2
∥∥∥∂{(ψ∗π∗H) f ψ

∥∥∥∞C41,T,H,x

∫
K1

|z| ν(dz)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
,

which is strictly positive.
Now, let us return the proof on the assertion in Theorem 3. Suppose that the laws of the

processes X and Y are equivalent. Then, since those any finite-dimensional distributions are
also equivalent, it holds that

dW
(
f (Y(t∧σ)−), f (X(t∧σ)−)

)
= 0

for 0 < t ≤ T , which is the contradiction to the strict positivity on the lower estimate (40).
�

Remark 3. In [5, 16], a similar study to Theorem 3 has been already discussed. Our
strategy to attack Theorem 3 can be also regarded as completely different approach to their
results.
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