

| Title        | THE BETTI NUMBERS OF REAL TORIC VARIETIES ASSOCIATED TO WEYL CHAMBERS OF TYPES E7 AND E8 |
|--------------|------------------------------------------------------------------------------------------|
| Author(s)    | Choi, Suyoung; Yoon, Younghan; Yu, Seonghyeon                                            |
| Citation     | Osaka Journal of Mathematics. 2024, 61(3), p. 409-417                                    |
| Version Type | VoR                                                                                      |
| URL          | https://doi.org/10.18910/97640                                                           |
| rights       |                                                                                          |
| Note         |                                                                                          |

# Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

# THE BETTI NUMBERS OF REAL TORIC VARIETIES ASSOCIATED TO WEYL CHAMBERS OF TYPES $E_7$ AND $E_8$

Suyoung CHOI, Younghan YOON and Seonghyeon YU

(Received May 16, 2023, revised July 18, 2023)

#### **Abstract**

We compute the rational Betti numbers of the real toric varieties associated to Weyl chambers of types  $E_7$  and  $E_8$ , completing the computations for all types of root systems.

#### 1. Introduction

It is known that a root system of type R generates a non-singular complete fan  $\Sigma_R$  by its Weyl chambers and co-weight lattice [10], and that  $\Sigma_R$  corresponds to a smooth compact (complex) toric variety  $X_R$  by the fundamental theorem for toric geometry. In particular, the real locus of  $X_R$  is called *the real toric variety associated to the Weyl chambers*, denoted by  $X_R^{\mathbb{R}}$ .

It is natural to ask for the topological invariants of  $X_R^{\mathbb{R}}$ . By [6], the  $\mathbb{Z}_2$ -Betti numbers of  $X_R^{\mathbb{R}}$  can be completely computed from the face numbers of  $\Sigma_R$ . In general, however, computing the rational Betti numbers of a real toric variety is much more difficult. In 2012, Henderson [8] computed the rational Betti numbers of  $X_{A_n}^{\mathbb{R}}$ . The computation of other classical and exceptional types has been carried out using the formulae for rational Betti numbers developed in [13] or [5]. At the time of writing this paper, results have been established for  $X_R^{\mathbb{R}}$  of all types except  $E_7$  and  $E_8$ .

For the classical types  $R = A_n$ ,  $B_n$ ,  $C_n$ , and  $D_n$ , the kth Betti numbers  $\beta_k$  of  $X_R^{\mathbb{R}}$  are known to be as follows (see [8], [4], [3]):

$$\beta_{k}(X_{A_{n}}^{\mathbb{R}};\mathbb{Q}) = \binom{n+1}{2k} a_{2k},$$

$$\beta_{k}(X_{B_{n}}^{\mathbb{R}};\mathbb{Q}) = \binom{n}{2k} b_{2k} + \binom{n}{2k-1} b_{2k-1},$$

$$\beta_{k}(X_{C_{n}}^{\mathbb{R}};\mathbb{Q}) = \binom{n}{2k-2} \left(2^{n} - 2^{2k-2}\right) a_{2k-2} + \binom{n}{2k} (2b_{2k} - 2^{2k}a_{2k}), \text{ and}$$

$$\beta_{k}(X_{D_{n}}^{\mathbb{R}};\mathbb{Q}) = \binom{n}{2k-4} \left(2^{2k-4} + (n-2k+2)2^{n-1}\right) a_{2k-4} + \binom{n}{2k} (2b_{2k} - 2^{2k}a_{2k}),$$

where  $a_r$  is the rth Euler zigzag number (A000111 in [11]) and  $b_r$  is the rth generalized Euler number (A001586 in [11]).

<sup>2020</sup> Mathematics Subject Classification. 57S12, 14M25, 55U10, 57N65.

The authors were supported by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2019R1A2C2010989).

For the exceptional types  $R = G_2$ ,  $F_4$ , and  $E_6$ , the Betti numbers of  $X_R^{\mathbb{R}}$  are as in Table 1 (see [2, Proposition 3.3]).

| Table 1. Nonzero Betti numbers of $X_{G_2}^{\mathbb{R}}$ , $X_{F_4}^{\mathbb{R}}$ , and $X_{E_6}^{\mathbb{R}}$ |
|----------------------------------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------------------------------|

| $\beta_k(X_R^{\mathbb{R}})$ | $R = G_2$ | $R = F_4$ | $R = E_6$ |
|-----------------------------|-----------|-----------|-----------|
| k = 0                       | 1         | 1         | 1         |
| k = 1                       | 9         | 57        | 36        |
| k = 2                       | 0         | 264       | 1,323     |
| k = 3                       | 0         | 0         | 4,392     |

The purpose of this paper is to compute the Betti numbers for the remaining exceptional types  $E_7$  and  $E_8$ . The reason these cases have remained unsolved to date is that, as remarked in [2], the corresponding fans are too large to be dealt with. We provide a technical method to decompose all facets of the Coxeter complex; using this method, we obtain explicit subcomplexes  $K_S$  that play an important role in our main computation. Furthermore, we obtain a smaller simplicial complex by removing vertices in  $K_S$  without changing its homology groups so that the Betti numbers can be computed.

**Theorem 1.1.** The kth Betti numbers  $\beta_k$  of  $X_{E_7}^{\mathbb{R}}$  and  $X_{E_8}^{\mathbb{R}}$  are as follows.

$$\beta_k(X_{E_7}^{\mathbb{R}}; \mathbb{Q}) = \begin{cases} 1, & \text{if } k = 0 \\ 63, & \text{if } k = 1 \\ 8,127, & \text{if } k = 2 \\ 131,041, & \text{if } k = 3 \\ 122,976, & \text{if } k = 4 \\ 0, & \text{otherwise.} \end{cases}$$

$$\beta_k(X_{E_8}^{\mathbb{R}};\mathbb{Q}) = \begin{cases} 1, & if \ k = 0 \\ 120, & if \ k = 1 \\ 103,815, & if \ k = 2 \\ 6,925,200, & if \ k = 3 \\ 23,932,800, & if \ k = 4 \\ 0, & otherwise. \end{cases}$$

## 2. Real toric varieties associated to the Weyl chambers

We recall some known facts about the real toric varieties associated to the Weyl chambers, following the notation in [2] unless otherwise specified.

Let  $\Phi_R$  be an irreducible root system of type R in a finite dimensional Euclidean space and  $W_R$  its Weyl group. The connected components of the complement of the reflection hyperplanes are called the *Weyl chambers*. We fix a particular Weyl chamber, called the fundamental Weyl chamber  $\Omega$ , and the fundamental co-weights  $\omega_1, \ldots, \omega_n$  form the set of

its rays. Then,  $\mathbb{Z}(\{\omega_1,\ldots,\omega_n\})$  has a lattice structure, called the co-weight lattice. Consider the set of Weyl chambers as a nonsingular complete fan  $\Sigma_R$  with the co-weight lattice. From the set  $V = \{v_1,\ldots,v_m\}$  of rays spanning  $\Sigma_R$  we obtain the simplicial complex  $K_R$ , called the Coxeter complex of type R on V, whose faces in  $K_R$  are obtained via the corresponding faces in  $\Sigma_R$  (see [1] for more details). The directions of rays on the co-weight lattice give a linear map  $\lambda_R \colon V \to \mathbb{Z}^n$ . In addition, the composition map  $\Lambda_R \colon V \xrightarrow{\lambda_R} \mathbb{Z}^n \xrightarrow{\text{mod } 2} \mathbb{Z}_2^n$  can be expressed as an  $n \times m \pmod{2}$  matrix, called a (mod 2) characteristic matrix. Let S be an element of the row space  $Row(\Lambda_R)$  of  $\Lambda_R$ , the vector space spanned by the row vectors of  $\Lambda_R$ . Since each column of  $\Lambda_R$  corresponds to a vertex  $v \in V$ , S can be regarded as a subset of V. Let us consider the induced subcomplex  $K_S$  of  $K_R$  with respect to S. It is known that the reduced Betti numbers of  $K_S$  are related to the Betti numbers of  $K_R^n$ .

**Theorem 2.1** ([2]). For any root system  $\Phi_R$  of type R, let  $W_R$  be the Weyl group of  $\Phi_R$ . Then, there is a  $W_R$ -module isomorphism

$$H_*(X_R^{\mathbb{R}}) \cong \bigoplus_{S \in Row(\Lambda_R)} \widetilde{H}_{*-1}(K_S),$$

where  $K_S$  is the induced subcomplex of  $K_R$  with respect to S.

The definition of the  $W_R$ -action on  $Row(\Lambda_R)$  is explained in Lemma 3.1 in [2], and implies that

(2.1) 
$$K_S \cong K_{gS} \text{ for } S \in Row(\Lambda_R) \text{ and } g \in W_R.$$

Combining Theorem 2.1 with (2.1), we need only investigate representatives  $K_S$  of the  $W_R$ -orbits in  $Row(\Lambda_R)$ .

**Proposition 2.2** ([2]). For type  $E_7$ , there are 127 nonzero elements in  $Row(\Lambda_{E_7})$ . In addition, there are exactly three orbits (whose representatives are denoted by  $S_1, S_2$ , and  $S_3$ ), and the numbers of elements for each orbit are 63, 63, and 1, respectively.

For type  $E_8$ , there are 255 nonzero elements in  $Row(\Lambda_{E_8})$ . There are only two orbits (whose representatives are denoted by  $S_4$  and  $S_5$ ), and the numbers of elements for each orbit are 120 and 135, respectively.

Thus, for our purpose, it is enough to compute the (reduced) Betti numbers of  $K_{S_i}$  for  $1 \le i \le 5$ . For practical reasons such as memory constraints and high time complexity, it is not easy to obtain  $K_S$  directly by computer programs. The remainder of this section is devoted to introducing an effective way to obtain  $K_S$ .

For a fixed fundamental co-weight  $\omega$ , let  $H_{\omega}$  be the isotropy subgroup of  $\omega$  in  $W_R$ , and let  $K_{\omega}$  be the subcomplex of  $K_R$  such that the set of facets of  $K_{\omega}$  is  $\{h \cdot \Omega \mid h \in H_{\omega}\}$ , where  $\Omega$  is the fundamental Weyl chamber.

**Lemma 2.3.** The set of facets of  $K_R$  is decomposed as the union of the sets of all facets of  $K^g = g \cdot K_{\omega}$  for all  $g \in W_R/H_{\omega}$ .

Proof. For each facet  $\sigma \in K_R$ , there uniquely exists  $g_{\sigma} \in W_R$  such that  $g_{\sigma} \cdot \Omega = \sigma$  by Propositions 8.23 and 8.27 in [7]. Thus, there is exactly one  $g_{\sigma} \cdot H_{\omega} \in W_R/H_{\omega}$  such that  $\sigma$  is a facet of  $K^{g_{\sigma}}$  as desired.

Obviously, the set of facets of  $K_S$  is then obtainable as the union of the sets of all facets of  $K_S^g$  for all  $g \in W_R/H_\omega$ .

In this paper, we fix the fundamental co-weight  $\omega$  to correspond to  $\alpha_1$  for type  $E_7$ , and to correspond to  $\alpha_8$  for type  $E_8$  in Figure 1.

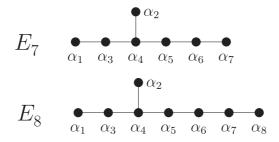


Fig. 1. The Dynkin diagrams for types  $E_7$  and  $E_8$ 

However, since  $K^g$  still has many facets, it is not easy to obtain  $K_S^g$  from  $K^g$  directly; see Table 2.

|                     | $R = E_7$ | $R = E_8$   |
|---------------------|-----------|-------------|
| # vertices of $K_R$ | 17,642    | 881,760     |
| # facets of $K_R$   | 2,903,040 | 696,729,600 |
| $ W_R/H_\omega $    | 126       | 240         |
| # facets of $K^g$   | 23,040    | 2,903,040   |

Table 2. Statistics for  $K_R$  when  $R = E_7$  and  $E_8$ 

Hence, we establish a lemma to improve the time complexity. Denote by  $V_S^g$  the set of vertices in  $K_S^g$ .

**Lemma 2.4.** Let 
$$g, h \in W_R/H_\omega$$
. If  $g \cdot V_S^h = V_S^{gh}$ , then  $g \cdot K_S^h = K_S^{gh}$ .

Proof. For  $g \in W_R/H_\omega$ , we naturally consider g a simplicial isomorphism from  $K^h$  to  $K^{gh}$ . If  $g \cdot V_S^h = V_S^{gh}$ , then the restriction of g to  $K_S^h$  is well-defined. Thus, g is also regarded as a simplicial isomorphism between  $K_S^h$  and  $K_S^{gh}$ .

By the above lemma, when  $g \cdot V_S^h = V_S^{gh}$ ,  $K_S^{gh}$  is obtainable without any computation. Since checking the hypothesis of the lemma is much easier than forming  $K_S^g$  from  $K^g$ , a good deal of time can be saved. Using this method, one can obtain  $K_S$  within a reasonable time with standard computer hardware.

# 3. Simplicial complexes for types $E_7$ and $E_8$

Since each  $K_S$  for the types  $E_7$  or  $E_8$  is too large for direct computation, it is impossible to compute their Betti numbers directly using existing methods. In this section, we introduce the specific smaller simplicial complex  $\widehat{K}_S$  whose homology group is isomorphic as a group to that of  $K_S$ .

Let K be a simplicial complex. The  $link\ Lk_K(v)$  of v in K is a set of all faces  $\sigma \in K$  such that  $v \notin \sigma$  and  $\{v\} \cup \sigma \in K$ , while the (closed)  $star\ St_K(v)$  of v in K is a set of all faces  $\sigma \in K$  such that  $\{v\} \cup \sigma \in K$ . For a vertex v of  $K_S$  satisfying  $Lk_K(v) \neq \emptyset$ , we consider the following Mayer-Vietoris sequence:

```
\cdots \to \widetilde{H}_k(Lk_K(v)) \to \widetilde{H}_k(K-v) \oplus \widetilde{H}_k(St_K(v)) \to \widetilde{H}_k(K) \to \widetilde{H}_{k-1}(Lk_K(v)) \to \cdots,
```

where  $K - v = \{\sigma \setminus \{v\} \mid \sigma \in K\}$  and k is a positive integer. We note that  $\widetilde{H}_k(St_K(v)) = 0$  for  $k \ge 0$  since  $St_K(v)$  is a topological cone. Therefore, for  $k \ge 0$ , if  $\widetilde{H}_k(Lk_K(v))$  is trivial, then  $\widetilde{H}_k(K - v) \cong \widetilde{H}_k(K)$  as groups. In this case, we call v a *removable vertex* of K.

Let us consider the canonical action of the Weyl group  $W_R$  on the vertex set  $V_R$  of  $K_R$ . It is known that there are exactly n vertex orbits  $V_1, \ldots, V_n$  of  $K_R$ , where n is the number of simple roots of  $W_R$ .

**Theorem 3.1.** For a subcomplex L of  $K_R$ , the simplicial complex obtained by the algorithm below has the same homology group as L.

## **Algorithm**

```
1: K \leftarrow L
 2: for i = 1, ..., n do
 3:
          W \leftarrow \emptyset
 4:
          for each v \in V_i do
                if v is removable in K then
 5:
                     W \leftarrow W \cup \{v\}
 6:
                end if
 7:
          end for
 8:
 9:
          K \leftarrow K - W := \{ \sigma \setminus W \mid \sigma \in K \}
10: end for
11: Return K
```

Proof. By Proposition 8.29 in [7], for each facet C of  $K_R$ , every vertex orbit of  $K_R$  contains exactly one vertex of C. That is, for any  $v, w \in V_i$ , v and w are not adjacent. Then, for any subcomplex K of  $K_R$  and  $v, w \in V_i$ , v is not contained in  $Lk_K(w)$ .

Note that, for removable vertices v and w of K, w is still removable in K - v if w is not in the link of v in K, whereas there is no guarantee that w is removable in K - v in general. Thus, we can remove all removable vertices of K in  $V_i$  from K at once without changing their homology groups. We do this procedure inductively for every vertex orbit to obtain K, and obviously, that  $H_*(K) \cong H_*(L)$  as groups.

If line 5 of the algorithm above is replaced with '**if**  $Lk_K(v)$  forms a cone **then**', simplicial complex K returned in line 11 is unique up to isomorphism, regardless of any changes in the order of vertex orbits [9]. However, Theorem 3.1 is enough to compute the Betti numbers of  $K_{S_i}$  for  $1 \le i \le 5$ .

In this paper, we fix the order by size of orbit, with  $|V_i| < |V_{i+1}|$ . Let  $\widehat{K}_S$  be the complex resulting from  $K_S$  as obtained by the algorithm in Theorem 3.1. Then, the sizes of  $\widehat{K}_S$  obtained as in Table 3 are dramatically smaller than the sizes of  $K_S$ .

Table 3. Numbers of vertices of  $K_S$  and  $\widehat{K}_S$ 

| $E_7$           | $S = S_1$ | $S = S_2$ | $S = S_3$ |
|-----------------|-----------|-----------|-----------|
| $K_S$           | 9,176     | 8,672     | 4,664     |
| $\widehat{K}_S$ | 408       | 928       | 4,664     |

| $E_8$           | $S = S_4$ | $S = S_5$ |
|-----------------|-----------|-----------|
| $K_S$           | 432,944   | 451,200   |
| $\widehat{K}_S$ | 9,328     | 15,488    |

The following proposition establishes some properties of  $K_S$  and  $\widehat{K}_S$ .

# **Proposition 3.2.**

- (1)  $K_{S_1}$  and  $K_{S_4}$  have two connected components; the other  $K_S$  are connected.
- (2) For  $S = S_1, S_4$ , two components of  $K_S$  are isomorphic.
- (3) All  $\widehat{K}_S$  are pure simplicial complexes.
- (4) Each component of  $\widehat{K}_{S_1}$  is isomorphic to some induced subcomplex of  $K_{D_6}$ .
- (5) Each component of  $\widehat{K}_{S_4}$  is isomorphic to  $\widehat{K}_{S_3}$ .

The above proposition was checked by a computer program. The Python codes used for validation are available at https://github.com/Seonghyeon-Yu/E7-and-E8. Note that to verify the correctness of these codes, we computed the Betti numbers for the types already known in Table 1 using the codes.

In conclusion, by Proposition 3.2, we only need to compute the Betti numbers of  $K_S$  for  $S = S_2, S_3$ , and  $S_5$ , since the Betti numbers of  $K_S$  of  $K_{D_6}$  are already computed in [3] for all  $S \in Row(\Lambda_{D_6})$ .

#### Remark 3.3.

- (1) Each isomorphism in Proposition 3.2 (2) can be represented as one of simple roots; see Figure 1. For the type  $E_7$ , the simple root  $\alpha_3$  represents the isomorphism between the components of  $\widehat{K}_{S_1}$ ; for the type  $E_8$ , the simple root  $\alpha_2$  represents the isomorphism between the components of  $\widehat{K}_{S_4}$ .
- (2) Denote by  $\bar{K}_S$  a connected component of  $\hat{K}_S$ . The f-vectors  $f(\bar{K}_S)$  of  $\bar{K}_S$  as follows:

$$f(\bar{K}_{S_1}) = (204, 1312, 1920)$$
  $f(\bar{K}_{S_4}) = (4664, 36288, 60480)$   $f(\bar{K}_{S_2}) = (928, 6848, 15360, 11520)$   $f(\bar{K}_{S_5}) = (15488, 193536, 645120)$   $f(\bar{K}_{S_3}) = (4664, 36288, 60480)$ 

As seen, the f-vectors of  $\bar{K}_{S_3}$  and  $\bar{K}_{S_4}$  are the same because of Proposition 3.2 (5). From the f-vectors, we can compute the Euler characteristic of  $K_S$ .

## 4. Computation of the Betti numbers

In this section, we shall use a computer program SageMath~9.3~[12], to compute the Betti numbers of the given simplicial complexes. From Proposition 3.2, we already know the Betti numbers of  $\widehat{K}_{S_1}$ . For  $S_2$  and  $S_3$ , we can compute the Betti numbers of  $\widehat{K}_S$  within a reasonable time; see Table 4.

From Table 4, we can immediately conclude the following theorem.

| $\widetilde{\beta}_k(K_S)$ | $S = S_1$ | $S = S_2$ | $S = S_3$ |
|----------------------------|-----------|-----------|-----------|
| k = 0                      | 1         | 0         | 0         |
| k = 1                      | 0         | 129       | 0         |
| <i>k</i> = 2               | 1,622     | 0         | 28,855    |
| <i>k</i> = 3               | 0         | 1,952     | 0         |
| # orbit                    | 63        | 63        | 1         |

Table 4. Nonzero reduced Betti numbers of  $K_S$  for S in Row( $\Lambda_{E_7}$ )

**Theorem 4.1.** The kth Betti numbers  $\beta_k$  of  $X_{E_7}^{\mathbb{R}}$  are as follows:

$$\beta_k(X_{E_7}^{\mathbb{R}}) = \begin{cases} 1, & if \ k = 0 \\ 63, & if \ k = 1 \\ 8,127, & if \ k = 2 \\ 131,041, & if \ k = 3 \\ 122,976, & if \ k = 4 \\ 0, & otherwise. \end{cases}$$

By Proposition 3.2 and the above result, we now have the Betti numbers of  $\widehat{K}_{S_4}$ . For any vertex v of  $\widehat{K}_{S_5}$ , we can check  $\widetilde{H}_0(Lk_{\widehat{K}_{S_5}}(v)) = \widetilde{H}_1(Lk_{\widehat{K}_{S_5}}(v)) = 0$  by the program. Hence, we have the Mayer-Vietoris sequence

$$0=\widetilde{H}_1(Lk_{\widehat{K}_{S_5}}(v))\to \widetilde{H}_1(\widehat{K}_{S_5}-v)\oplus \widetilde{H}_1(St_{\widehat{K}_{S_5}}(v))\to \widetilde{H}_1(\widehat{K}_{S_5})\to \widetilde{H}_0(Lk_{\widehat{K}_{S_5}}(v))=0.$$

Since  $\widetilde{H}_1(St_{\widehat{K}_{S_5}}(v))$  is trivial,  $\widetilde{H}_1(\widehat{K}_{S_5}-v)$  is isomorphic to  $\widetilde{H}_1(\widehat{K}_{S_5})$ . For the largest vertex orbit V of  $\widehat{K}_{S_5}$ , by the same proof argument as for Theorem 3.1,  $\widetilde{H}_1(\widehat{K}_{S_5}-V)$  is isomorphic to  $\widetilde{H}_1(\widehat{K}_{S_5})$ . Note that the size of  $\widehat{K}_{S_5}-V$  is much smaller than  $\widehat{K}_{S_5}$ . Thus,  $\widetilde{\beta}_1(K_{S_5})$  can be computed within a reasonable time from  $\widehat{K}_{S_5}-V$  instead of  $\widehat{K}_{S_5}$ . However, there is no vertex of  $\widehat{K}_{S_5}$  such that  $\widetilde{H}_2(Lk_{\widehat{K}_{S_5}}(v))=0$ . Thus, for k=2,3 we must compute  $\widetilde{\beta}_k(\widehat{K}_{S_5})$  directly, which takes a few days of run time. See Table 5 for the results.

Table 5. Nonzero reduced Betti numbers of  $K_S$  for S in Row( $\Lambda_{E_8}$ )

| $\widetilde{\beta}_k(K_S)$ | $S = S_4$ | $S = S_5$ |
|----------------------------|-----------|-----------|
| k = 0                      | 1         | 0         |
| <i>k</i> = 1               | 0         | 769       |
| <i>k</i> = 2               | 57,710    | 0         |
| k = 3                      | 0         | 177,280   |
| # orbit                    | 120       | 135       |

Table 5 implies the following theorem.

**Theorem 4.2.** The kth Betti numbers  $\beta_k$  of  $X_{E_8}^{\mathbb{R}}$  are as follows:

$$\beta_k(X_{E_8}^{\mathbb{R}}) = \begin{cases} 1, & if \ k = 0 \\ 120, & if \ k = 1 \\ 103,815, & if \ k = 2 \\ 6,925,200, & if \ k = 3 \\ 23,932,800, & if \ k = 4 \\ 0, & otherwise. \end{cases}$$

The Euler characteristic number  $\chi(X)$  of a topological space X is equal to the alternating sum of the Betti numbers  $\beta_k(X)$  of X. We can use this fact as a confidence check for our results.

Remark 4.3. The  $\mathbb{Z}_2$ -cohomology ring of a real toric variety is completely determined by its fan [6], and then, it can be obtained that  $\chi(X_{E_7}^{\mathbb{R}}) = 0$  and  $\chi(X_{E_8}^{\mathbb{R}}) = 17,111,296$ . Obviously, the alternating sums of the Betti numbers based on our results match  $\chi(X_{E_7}^{\mathbb{R}})$  and  $\chi(X_{E_8}^{\mathbb{R}})$ , respectively.

#### References

- [1] A. Björner: Some combinatorial and algebraic properties of Coxeter complexes and Tits buildings, Adv. in Math. **52** (1984), 173–212.
- [2] S. Cho, S. Choi and S. Kaji: Geometric representations of finite groups on real toric spaces, J. Korean Math. Soc. **56** (2019), 1265–1283.
- [3] S. Choi, S. Kaji and H. Park: *The cohomology groups of real toric varieties associated with Weyl chambers of types C and D*, Proc. Edinb. Math. Soc. (2) **62** (2019), 861–874.
- [4] S. Choi, B. Park and H. Park: *The Betti numbers of real toric varieties associated to Weyl chambers of type B*, Chinese Ann. Math. Ser. B **38** (2017), 1213–1222.
- [5] S. Choi and H. Park: On the cohomology and their torsion of real toric objects, Forum Math. 29 (2017), 543–553.
- [6] M.W. Davis and T. Januszkiewicz: *Convex polytopes, Coxeter orbifolds and torus actions*, Duke Math. J. **62** (1991), 417–451.
- [7] B. Hall: Lie groups, Lie Algebras, and Representations, Springer, Cham, 2015.
- [8] A. Henderson: *Rational cohomology of the real Coxeter toric variety of type A*; in Configuration Spaces, Geometry, Combinatorics, and Topology, Pisa, 2012, 313–326.
- [9] J. Matoušek: *LC reductions yield isomorphic simplicial complexes*, Contrib. Discrete Math. **3** (2008), 37–39.
- [10] C. Procesi: The toric variety associated to Weyl chambers; in Mots, Lang. Raison. Calc., Hermès, Paris, 1990, 153–161.
- [11] N.J.A. Sloane: The on-line encyclopedia of integer sequences, available at http://oeis.org.
- [12] W.A. Stein et al: Sage Mathematics Software (Version 9.3), The Sage Development Team 2023, http://www.sagemath.org.
- [13] A.I. Suciu and A. Trevisan: Real toric varieties and abelian covers of generalized Davis-Januszkiewicz spaces, preprint, 2012.

Suyoung Choi Department of mathematics, Ajou University 206, World cup-ro, Yeongtong-gu Suwon 16499 Republic of Korea e-mail: schoi@ajou.ac.kr

Younghan Yoon Department of mathematics, Ajou University 206, World cup-ro, Yeongtong-gu Suwon 16499

Republic of Korea

e-mail: younghan300@ajou.ac.kr

Seonghyeon Yu Department of mathematics, Ajou University 206, World cup-ro, Yeongtong-gu Suwon 16499 Republic of Korea

e-mail: yoosh0319@ajou.ac.kr