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Let R be a ring with identity element and M be a unitary left R-
module. M is called quasi-injective if every element in Homgx(NV, M)
for any R-module N in M is extened to an element in Homg(M, M).
M is an essential extension of N if M’NN=(0) for any non-zero R-
submodule M’ of M and we call in this case that N is an essential
submodule in M.

In Goldie [2] and Johnson, Wong [4] they have defined an R-
submodule in M for R-submodule N as follows: cIN={meM|(N ; m)
is an essential left ideal in R}. If cIN=N, then N is called closed.
We call cl(0) the singular submodule of M.

Johnson and Wong studied structures of closed submodules of a
quasi-injective R-module with zero singular submodule and Goldie has
also considered rings with zero singular ideal in [3], [4] and [2],
respectively.

In this short note we shall prove the following theorem :

Let M be a quasi-injective R-module. Then M is a direct-sum of
Z,(M)=clcl(0) and any maximal submodule M, with zero singular sub-
module : M=M,PZ,(M). Furthermore, every closed submodule in M
corresponds uniquely to a direct summand of M,, which is closed in M,.

From this result we know some results in [37], [4] are valid without
assumption cl(0)=(0).

In § 2 we shall study all types of quasi-injective modules in a case
where either R is a Dedekind domain or an algebra over a field with
finite dimension.

We always assume that R is a ring with identity and M a unitary
left R-module.

1. Closed submodules.

We shall denote the singular submodule cl(0) of M by Z(M) and
clcl(0) by Z,(M) following to [2]. We also call Z,(M) the torsion sub-
module of M and M is torsion free if Z,(M)=(0). If R is a commuta-
tive integral domain, then they coincide with the usual torsion submodules
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and torsion-free modules.

We note that if M is an essential extension of N, then the left
ideal (N :m) is essential in R for any element m in M.

From [2], Lemma 2,2 we have

Lemma 1.1. Z,(M) is a closed submodule in M.
From the definition of closed module we have

Lemma 1.2. Every closed submodule of M contains Z,(M).
Lemma 1.3. For submodules N,, N, of M we have

cl(V,NN,) = cIN,NclN,.

Let N be a submodule of M. If a submodule B of M is a maximal
one with property NNB=(0), then we call B a complement of N in M.
We denote it by N°.

Lemma 1.4. Let N be a submodule of M and B a complement of N.
Then M is an essential extension of BON. Hence, cl{BON )=M.

Proposition 1.5. Let M be a quasi-injective R-module. Then every
closed submodule N is a direct summand of M, namely M=NPN® (cf.
[4], Proposition 1.5).

Proof. Let N be a closed submodule and B a complement of N
in M. Put M;=B®N. Let p be a projection of M, to N. Then there
exists an element geHomy (M, M) such that g|M,=p. Since g7 (0)2B
and g (0)NN=(0), g7 (0)=B. Furthermore, since clM,=M by Lemma
1.4, there exists an essential left ideal L for any element m in M such
that Lm< M,. Therefore, Lg(m)=g(Lm)CN. Since cIN=N, g(m)EN.
Hence, g(M)=N. Therefore, M=g '(0)+g(M)=BPN.

Corollary. Let M be a quasi-injective. If N is closed, then N is
quasi-injective (cf. [ 3], Theorem 1.6).

Proof. Since it is clear that a direct summand of a quasi-injective
module is quasi-injective, we have the corollary from Proposition 1.5.
If we consider R as a left R-module, we have from the definition

Lemma 1.6. Let M2N be R-modules. Then 1) Z(R)M<SZ(M),
2) Z(RM<SZ,(M), 3) ZIN)=NNZM) and 4) Z{N)=NNZ,(M).

Theorem 1.7. Let M be a quasi-injective R-module and M, a sub-
module which is a maximal one with Z(M,)=(0). Then M=M&DZ,(M).
A submodule N of M is closed if and only if N contains Z, (M) and
M,NN is a direct summand of M,.
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Proof. From Lemma 1.6 we obtain that M,NZ,(M)=(0) and M,
is a complement of Z,(M). Hence, M=M,PZ,(M) by Proposition 1.5,
since Z,(M) is closed. If N is a closed submodule of M, then N2Z,(M)
by Lemma 1.1 and N=M,NNPZ,(M). Since NNM, is closed in M,,
NNM, is a direct summand of M, by Proposition 1.5. Conversely, we
assume that N2Z,(M) and NNM, is a direct summand of M,; M,=
NNM,®N,. Considering in M,, M,=clM,=cl(NNM,)+clN,. Since
cd(NNM)NclN,=cl(NNM,NN,)=cl(0)=(0) by Lemma 1.2, NNM, is
closed in M,. Let x=clN: x=m,+y, where m,eM,, yeZ,(M). Since
Lx< N for an essential left ideal L, Lm, S NNM,. Hence, msNNM,.
Therefore, x&N.

Corollary. Let M be a quasi-injective. If N,, N, are closed in M,
then N,+N, is closed. Hence, clcl(S,+S,)=clcl(S,)+clcl(S,) for any sub-
modules S, and S, (cf. [3], Theorem 1.4 and [4], Theorem 1.2).

Proof. Since N; is closed, N; contains Z,(M). Hence, it is sufficient
to show that N,NM,+N,NM, is a direct summand of M, by Theorem
1.7, where M=M,PZ,(M). Thus, we may assume Z(M)=(0). N,NN,
is closed by Lemma 1.2. Hence, M=N,®N,/=(N,NN, PM'. Since
N,N(N,NM")=(0), there exists a submodule N,” such that N/2N,NM
and M=N,®N,. Furthermore, N,/ =(N,NM")®BN,. Therefore, M=N,D
(N,NM")®N,. On the other hand N,=(N,NN,)®N,NM’. Hence, N,+ N,
= N,+(N,NM’). Therefore, M=(N,+ N,)®N,’. The second half is
clear from the first.

Proposition 1.8. Let M be quasi-injective. Then the set of closed
submodules coincides with the set of complement submodules containing
Z(M). Especially, if we assume Z(M)=(0), then every complement of a
submodule N is isomorphic to each other and N°° containing N coincides
with clN.

Proof. Let N=N;2Z(M). For any element n=N,NclN we have
Lns N,NN=(0), where L is an essential left ideal. Hence, = Z(M) N N,
=(0). Therefore, cIN=N. The converse is clear from Proposition 1.5.
We assume Z(M)=(0). In this case we note that clclN=cIN. By
Lemmas 1.3 and 1.4 and Corollary to Theorem 1.7 we have M=cl(NDN°)
=clIN@N° for any submodule N. Hence, N°~M/cIN. Furthermore,
we obtain M=N°‘PN°“=cINHN° by Proposition 1.5. If N°°2ON, then
N°e¢DclN. Hence, N°“=clN.

2. Special cases.

First we consider some relations between a quasi-injective module
M and its injective envelope E(M).
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Proposition 2.1. Let M be an R-module. Then E(M)=E(Z(M))
DE(B) and Z{EM))=E(Z(M)), where B is a maximal torsion-free sub-
module in M.

Proof. We assume Z,(M)=(0) and E=E(M). Then E=EdZ(E)
by Theorem 1.7. Let p be a projection of E to E,. If p(m)=0 for
meM, then meMNZ,(E)=Z,(M)=(0) by Lemma 1.6. Hence, M is
monomorphic to E,. Therefore, Z(E)=(0). If Z(M)=M, then MCE(M)
cZ(E). Hence, Z(E)=E. Since M is an essential extension of B®
Z (M), E=E(B)DE(Z{M)).

Lemma 2.2. Let M be an R-module and K=Hom(E(M), E(M)).
M is quasi-injective if and only if M is a K-module. (See [ 3], Theorem
1.1)

Proposition 2.3. Let M be quasi-injective. If E(M)=N,BN,, then
M=MNN,EMNN,, and N;=E(MNN;).

Proof. Let p be a projection of E(M) to N. Since p=K, p(M)=M
by Lemma 2.2. Hence, M=MNN,OMNN,.

Corollary. Let R be a commutative integral domain. Then every
injective module is a direct sum of the torsion submodule and a maximal
torsion-free submodule. An injective envelope of torsion (vesp. torsion-free)
module is torsion (resp. torsion-free).

Proposition 2.4. Let M,, M, be quasi-injective such that E(Ml)g
EM,). Then M, ®M, is quasi-injective if and only if M,~M,.

Proof. E(M,®M)=EM,)PEM,). If Mi=M, M=M,DM, is a
Homg(E(M), E(M))-module, and hence M is quasi-injective by Lemma
2.2. Conversely, we assume that M is quasi-injective. Let f be an
element in K=Homg(E(M), E(M)) such that f|E(M,)=0, f|E(M,) induces
the isomorphism @. Then f(M)=f(M,)SMNE(M,) =M, by Proposition
2.3. If we consider the same argument on M, for o', we can find
g€ K such that gf|E(M,)=identity |E(M,). Hence, M,=gf(M,)< g(M,)
cM,. Therefore, M,~M,.

Proposition 2.5. Let R be a left noetherian ving and M a quasi-
injective R-module. Then M is a direct-sum of indecomposable quasi-
injective KR-modules. Furthermore, this decomposition is wunique up to
isomorphism, ([107], Theorem 4. 5).

Proof. E(M)=3®M, by [6], Theorem 2.5, where M, is an inde-
composable injective R-module. Put M,=MNM,. Then M=3 ®M,
by Lemma 2.2, Since M, is a direct summand of M, M, is quasi-
injective. It is clear that M, is indecomposable. We assume M=> PM,/
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is a second decomposition. Since R is left noetherian, E(M)=3PE(M,)
and E(M,) is indecomposable by Proposition 2.3. Then there exists
an automorphism ¢ in K such that ¢: M,~E(M,.y) for all a by [5],
Proposition 2.7, where p is a permutation of indices a. Since p(M)S M,
e(M)=p(MNM,)SMNE(M,4)=M,,. Taking ¢!, we obtain M,~
Mp(m)’-

Now we assume that R is a commutative noetherian ring. Then
we know by [6], Proposition 3.1 that every indecomposable injective
R-module is isomorphic to E(R/P), where P is a prime ideal in R.

Proposition 2.6. Let M be an indecompoable quasi-injective R-module.
If M is torsion-free, then M is injective.

Proof. Since E(M)=E(R/P) is torsion-free by Proposition 2.1,
Z(R/P)=(0). Hence, P is not essential in R. There exists a non-zero
ideal @ such that PNQ=(0). Therefore, P is minimal prime and (0),=
PR,. From [6], Theorem 3.6 E(R/P) is Rp—injective. Since R, is the
quotient field K of R/P, E(M)=Km. Furthermore, K<Homg(E(R/P),
E(R/P)). Hence, M=KM=E(M).

Corollary. Let R be a Dedekind domain and M a quasi-injective
R-module. Then M is either injective or a direct-sum of R-modules
E(R/P,) and R|/Sji. Conversely, such a module is quasi-injective, where
{P;, S;} is a set of non-zero distinct primes in R.

Proof. M=M,®Z,(M). If M,+(0), then M,~3PQ by Propositions

2.5 and 2.6, where @ is the quotient field of R. Since Z,(M) is tor-

sion, Z,(M)=>3] P(E(R/P;))*D 2 (R/(S3/)Pi> by Proposition 2.5 and [5],
iel jer

Theorem 10. However if M, =+(0) then there exist natural epimorphisms
of M, to E(R/S;). Hence, /J=¢ by Lemma 2.2, which means M is injec-
tive. If M,=(0), then M~3} QE(R/P;)*® > (R/(S7))’; and {P;,S;} is a
set of non-zero distinct primes by Proposition 2. 4. The converse is clear.

Next, we consider a case of algebra A over a field K with finite
dimension. Then we know from [7] that every indecomposable A-
injective module M is isomorphic to (eA)*=Homg(¢A, K), where ¢ is a
primitive idempotent in A. Hence, there exists a non-degenerated bi-
linear mapping (,) of eA(Kg)M to K with respect to A. It is clear that

the adjoint elements of Hom (M, M)=B is equal to e¢Ae¢. Hence for

an A-submodule N of M, ann N= {x|=eA, (x, N)=0} is an eAe-module
if and only if N is a B-module. Thus from Lemma 2.2 we have

1) M® means a direcsum of a-copies of M.
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Proposition 2.7. Let A be an algebra over a field K such that
[A: K}<oo. Then every quasi-injective A-module is a direct-sum of
modules (¢;A/e;R;)*, where e; is a primitive idempotents and R; is a right
ideal in A such that e;Ae,R;=R;.

Corollary. Let A be as above. If A is a generalized uniserial ring,
then every sub-module of indecomposable injective module is quasi-injective.

Remark. The converse of Proposition 2.7 is, in general, not true.
Finally, we consider the singular ideal of quasi-Frobenius ring.

Proposition 2.8. Let R be quasi-Frobenius. Then Z(R) is eqal to
the radical N of R and R is a direct sum of semi-simple subring and a
quasi-Frobenius ring R, such that Z(R,)=R,.

Proof. Let S be a left scole of R, namely the sum of minimal left
ideals in R. Then S is a unique minimal essential left ideal of R.
Hence, Z(R)=the right annihilator S, of S in R. Since N,=N, by [8]
and S=N,, Z(R)=S,=N,,=N,,=N by [8]. Furthermore, R is left R-
injective by [1]. Hence, R=L®PZ,(R) as a left R-module by Theorem
1.7. Since Z,(R)2N, NLcNNL=(0). Hence, LS. S=SNNDL,
where L’2 L is a direct-sum of non-nilpotent minimal left ideals. Since
SN=(0), S’=L’. It is clear that Z,(R)=(S®*),. Therefore, L'Z,(R)=(0),
which means that L is a two-sided ideal. Since L is completely re-
ducible, L is semi-simple.
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