

Title	Note on quasi-injective modules
Author(s)	Harada, Manabu
Citation	Osaka Journal of Mathematics. 1965, 2(2), p. 351-356
Version Type	VoR
URL	https://doi.org/10.18910/9767
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

NOTE ON QUASI-INJECTIVE MODULES

MANABU HARADA

(Received June 25, 1965)

Let R be a ring with identity element and M be a unitary left R -module. M is called quasi-injective if every element in $\text{Hom}_R(N, M)$ for any R -module N in M is extended to an element in $\text{Hom}_R(M, M)$. M is an essential extension of N if $M' \cap N \neq (0)$ for any non-zero R -submodule M' of M and we call in this case that N is an essential submodule in M .

In Goldie [2] and Johnson, Wong [4] they have defined an R -submodule in M for R -submodule N as follows: $\text{cl}N = \{m \in M \mid (N; m) \text{ is an essential left ideal in } R\}$. If $\text{cl}N = N$, then N is called closed. We call $\text{cl}(0)$ the singular submodule of M .

Johnson and Wong studied structures of closed submodules of a quasi-injective R -module with zero singular submodule and Goldie has also considered rings with zero singular ideal in [3], [4] and [2], respectively.

In this short note we shall prove the following theorem:

Let M be a quasi-injective R -module. Then M is a direct-sum of $Z_2(M) = \text{cl}(\text{cl}(0))$ and any maximal submodule M_0 with zero singular submodule: $M = M_0 \oplus Z_2(M)$. Furthermore, every closed submodule in M corresponds uniquely to a direct summand of M_0 , which is closed in M_0 .

From this result we know some results in [3], [4] are valid without assumption $\text{cl}(0) = (0)$.

In § 2 we shall study all types of quasi-injective modules in a case where either R is a Dedekind domain or an algebra over a field with finite dimension.

We always assume that R is a ring with identity and M a unitary left R -module.

1. Closed submodules.

We shall denote the singular submodule $\text{cl}(0)$ of M by $Z(M)$ and $\text{cl}(\text{cl}(0))$ by $Z_2(M)$ following to [2]. We also call $Z_2(M)$ the torsion submodule of M and M is torsion free if $Z_2(M) = (0)$. If R is a commutative integral domain, then they coincide with the usual torsion submodules

and torsion-free modules.

We note that if M is an essential extension of N , then the left ideal $(N:m)$ is essential in R for any element m in M .

From [2], Lemma 2, 2 we have

Lemma 1.1. *$Z_2(M)$ is a closed submodule in M .*

From the definition of closed module we have

Lemma 1.2. *Every closed submodule of M contains $Z_2(M)$.*

Lemma 1.3. *For submodules N_1, N_2 of M we have*

$$\text{cl}(N_1 \cap N_2) = \text{cl}N_1 \cap \text{cl}N_2.$$

Let N be a submodule of M . If a submodule B of M is a maximal one with property $N \cap B = (0)$, then we call B a complement of N in M . We denote it by N^c .

Lemma 1.4. *Let N be a submodule of M and B a complement of N . Then M is an essential extension of $B \oplus N$. Hence, $\text{cl}(B \oplus N) = M$.*

Proposition 1.5. *Let M be a quasi-injective R -module. Then every closed submodule N is a direct summand of M , namely $M = N \oplus N^c$ (cf. [4], Proposition 1.5).*

Proof. Let N be a closed submodule and B a complement of N in M . Put $M_0 = B \oplus N$. Let p be a projection of M_0 to N . Then there exists an element $g \in \text{Hom}_R(M, M)$ such that $g|M_0 = p$. Since $g^{-1}(0) \supseteq B$ and $g^{-1}(0) \cap N = (0)$, $g^{-1}(0) = B$. Furthermore, since $\text{cl}M_0 = M$ by Lemma 1.4, there exists an essential left ideal L for any element m in M such that $Lm \subseteq M_0$. Therefore, $Lg(m) = g(Lm) \subseteq N$. Since $\text{cl}N = N$, $g(m) \in N$. Hence, $g(M) = N$. Therefore, $M = g^{-1}(0) + g(M) = B \oplus N$.

Corollary. *Let M be a quasi-injective. If N is closed, then N is quasi-injective (cf. [3], Theorem 1.6).*

Proof. Since it is clear that a direct summand of a quasi-injective module is quasi-injective, we have the corollary from Proposition 1.5.

If we consider R as a left R -module, we have from the definition

Lemma 1.6. *Let $M \supseteq N$ be R -modules. Then 1) $Z(R)M \subseteq Z(M)$, 2) $Z_2(R)M \subseteq Z_2(M)$, 3) $Z(N) = N \cap Z(M)$ and 4) $Z_2(N) = N \cap Z_2(M)$.*

Theorem 1.7. *Let M be a quasi-injective R -module and M_0 a submodule which is a maximal one with $Z(M_0) = (0)$. Then $M = M_0 \oplus Z_2(M)$. A submodule N of M is closed if and only if N contains $Z_2(M)$ and $M_0 \cap N$ is a direct summand of M_0 .*

Proof. From Lemma 1.6 we obtain that $M_0 \cap Z_2(M) = (0)$ and M_0 is a complement of $Z_2(M)$. Hence, $M = M_0 \oplus Z_2(M)$ by Proposition 1.5, since $Z_2(M)$ is closed. If N is a closed submodule of M , then $N \supseteq Z_2(M)$ by Lemma 1.1 and $N = M_0 \cap N \oplus Z_2(M)$. Since $N \cap M_0$ is closed in M_0 , $N \cap M_0$ is a direct summand of M_0 by Proposition 1.5. Conversely, we assume that $N \supseteq Z_2(M)$ and $N \cap M_0$ is a direct summand of M_0 ; $M_0 = N \cap M_0 \oplus N_1$. Considering in M_0 , $M_0 = \text{cl}M_0 = \text{cl}(N \cap M_0) + \text{cl}N_1$. Since $\text{cl}(N \cap M_0) \cap \text{cl}N_1 = \text{cl}(N \cap M_0 \cap N_1) = \text{cl}(0) = (0)$ by Lemma 1.2, $N \cap M_0$ is closed in M_0 . Let $x \in \text{cl}N$: $x = m_0 + y$, where $m_0 \in M_0$, $y \in Z_2(M)$. Since $Lx \subseteq N$ for an essential left ideal L , $Lm_0 \subseteq N \cap M_0$. Hence, $m_0 \in N \cap M_0$. Therefore, $x \in N$.

Corollary. *Let M be a quasi-injective. If N_1, N_2 are closed in M , then $N_1 + N_2$ is closed. Hence, $\text{clcl}(S_1 + S_2) = \text{clcl}(S_1) + \text{clcl}(S_2)$ for any submodules S_1 and S_2 (cf. [3], Theorem 1.4 and [4], Theorem 1.2).*

Proof. Since N_i is closed, N_i contains $Z_2(M)$. Hence, it is sufficient to show that $N_1 \cap M_0 + N_2 \cap M_0$ is a direct summand of M_0 by Theorem 1.7, where $M = M_0 \oplus Z_2(M)$. Thus, we may assume $Z(M) = (0)$. $N_1 \cap N_2$ is closed by Lemma 1.2. Hence, $M = N_1 \oplus N'_1 = (N_1 \cap N_2) \oplus M'$. Since $N_2 \cap (N_1 \cap M') = (0)$, there exists a submodule N'_2 such that $N'_2 \supseteq N_1 \cap M'$ and $M = N_2 \oplus N'_2$. Furthermore, $N'_2 = (N_1 \cap M') \oplus N'_3$. Therefore, $M = N_2 \oplus (N_1 \cap M') \oplus N'_3$. On the other hand $N_1 = (N_1 \cap N_2) \oplus N_1 \cap M'$. Hence, $N_1 + N_2 = N_2 + (N_1 \cap M')$. Therefore, $M = (N_1 + N_2) \oplus N'_3$. The second half is clear from the first.

Proposition 1.8. *Let M be quasi-injective. Then the set of closed submodules coincides with the set of complement submodules containing $Z(M)$. Especially, if we assume $Z(M) = (0)$, then every complement of a submodule N is isomorphic to each other and N^{cc} containing N coincides with $\text{cl}N$.*

Proof. Let $N = N_1^c \supseteq Z(M)$. For any element $n \in N_1 \cap \text{cl}N$ we have $Ln \subseteq N_1 \cap N = (0)$, where L is an essential left ideal. Hence, $n \in Z(M) \cap N_1 = (0)$. Therefore, $\text{cl}N = N$. The converse is clear from Proposition 1.5. We assume $Z(M) = (0)$. In this case we note that $\text{clcl}N = \text{cl}N$. By Lemmas 1.3 and 1.4 and Corollary to Theorem 1.7 we have $M = \text{cl}(N \oplus N^c) = \text{cl}N \oplus N^c$ for any submodule N . Hence, $N^c \approx M/\text{cl}N$. Furthermore, we obtain $M = N^c \oplus N^{cc} = \text{cl}N \oplus N^c$ by Proposition 1.5. If $N^{cc} \supseteq N$, then $N^{cc} \supseteq \text{cl}N$. Hence, $N^{cc} = \text{cl}N$.

2. Special cases.

First we consider some relations between a quasi-injective module M and its injective envelope $E(M)$.

Proposition 2.1. *Let M be an R -module. Then $E(M)=E(Z_2(M))\oplus E(B)$ and $Z_2(E(M))=E(Z_2(M))$, where B is a maximal torsion-free submodule in M .*

Proof. We assume $Z_2(M)=(0)$ and $E=E(M)$. Then $E=E_0\oplus Z_2(E)$ by Theorem 1.7. Let p be a projection of E to E_0 . If $p(m)=0$ for $m\in M$, then $m\in M\cap Z_2(E)=Z_2(M)=(0)$ by Lemma 1.6. Hence, M is monomorphic to E_0 . Therefore, $Z_2(E)=(0)$. If $Z_2(M)=M$, then $M\subseteq E(M)\subseteq Z_2(E)$. Hence, $Z_2(E)=E$. Since M is an essential extension of $B\oplus Z_2(M)$, $E=E(B)\oplus E(Z_2(M))$.

Lemma 2.2. *Let M be an R -module and $K=\text{Hom}_R(E(M), E(M))$. M is quasi-injective if and only if M is a K -module. (See [3], Theorem 1.1.)*

Proposition 2.3. *Let M be quasi-injective. If $E(M)=N_1\oplus N_2$, then $M=M\cap N_1\oplus M\cap N_2$, and $N_i=E(M\cap N_i)$.*

Proof. Let p be a projection of $E(M)$ to N . Since $p\in K$, $p(M)\subseteq M$ by Lemma 2.2. Hence, $M=M\cap N_1\oplus M\cap N_2$.

Corollary. *Let R be a commutative integral domain. Then every injective module is a direct sum of the torsion submodule and a maximal torsion-free submodule. An injective envelope of torsion (resp. torsion-free) module is torsion (resp. torsion-free).*

Proposition 2.4. *Let M_1, M_2 be quasi-injective such that $E(M_1)\not\approx E(M_2)$. Then $M_1\oplus M_2$ is quasi-injective if and only if $M_1\approx M_2$.*

Proof. $E(M_1\oplus M_2)=E(M_1)\oplus E(M_2)$. If $M_1\approx M_2$, $M=M_1\oplus M_2$ is a $\text{Hom}_R(E(M), E(M))$ -module, and hence M is quasi-injective by Lemma 2.2. Conversely, we assume that M is quasi-injective. Let f be an element in $K=\text{Hom}_R(E(M), E(M))$ such that $f|E(M_2)\equiv 0$, $f|E(M_1)$ induces the isomorphism φ . Then $f(M)=f(M_1)\subseteq M\cap E(M_2)=M_2$ by Proposition 2.3. If we consider the same argument on M_2 for φ^{-1} , we can find $g\in K$ such that $gf|E(M_1)\equiv \text{identity}|E(M_1)$. Hence, $M_1=gf(M_1)\subseteq g(M_2)\subseteq M_1$. Therefore, $M_1\approx M_2$.

Proposition 2.5. *Let R be a left noetherian ring and M a quasi-injective R -module. Then M is a direct-sum of indecomposable quasi-injective R -modules. Furthermore, this decomposition is unique up to isomorphism, ([10], Theorem 4.5).*

Proof. $E(M)=\sum\oplus\bar{M}_\alpha$ by [6], Theorem 2.5, where \bar{M}_α is an indecomposable injective R -module. Put $M_\alpha=M\cap\bar{M}_\alpha$. Then $M=\sum\oplus M_\alpha$ by Lemma 2.2. Since M_α is a direct summand of M , M_α is quasi-injective. It is clear that M_α is indecomposable. We assume $M=\sum\oplus M_\alpha'$

is a second decomposition. Since R is left noetherian, $E(M)=\sum \bigoplus E(M_\alpha)$ and $E(M_\alpha)$ is indecomposable by Proposition 2.3. Then there exists an automorphism φ in K such that $\varphi: \bar{M}_\alpha \approx E(M_{\rho(\alpha)})$ for all α by [5], Proposition 2.7, where ρ is a permutation of indices α . Since $\varphi(M) \subseteq M$, $\varphi(M_\alpha) = \varphi(M \cap \bar{M}_\alpha) \subseteq M \cap E(M_{\rho(\alpha)}) = M_{\rho(\alpha)}$. Taking φ^{-1} , we obtain $M_\alpha \approx M_{\rho(\alpha)}$.

Now we assume that R is a commutative noetherian ring. Then we know by [6], Proposition 3.1 that every indecomposable injective R -module is isomorphic to $E(R/P)$, where P is a prime ideal in R .

Proposition 2.6. *Let M be an indecomposable quasi-injective R -module. If M is torsion-free, then M is injective.*

Proof. Since $E(M)=E(R/P)$ is torsion-free by Proposition 2.1, $Z(R/P)=(0)$. Hence, P is not essential in R . There exists a non-zero ideal Q such that $P \cap Q=(0)$. Therefore, P is minimal prime and $(0)_P=PR_P$. From [6], Theorem 3.6 $E(R/P)$ is R_P -injective. Since R_P is the quotient field K of R/P , $E(M)=Km$. Furthermore, $K \subseteq \text{Hom}_R(E(R/P), E(R/P))$. Hence, $M=KM=E(M)$.

Corollary. *Let R be a Dedekind domain and M a quasi-injective R -module. Then M is either injective or a direct-sum of R -modules $E(R/P_i)$ and $R/S_j^{n_j}$. Conversely, such a module is quasi-injective, where $\{P_i, S_j\}$ is a set of non-zero distinct primes in R .*

Proof. $M=M_0 \oplus Z_2(M)$. If $M_0 \neq (0)$, then $M_0 \approx \sum \bigoplus Q$ by Propositions 2.5 and 2.6, where Q is the quotient field of R . Since $Z_2(M)$ is torsion, $Z_2(M)=\sum_{i \in I} \bigoplus (E(R/P_i))^{\alpha_i} \oplus \sum_{j \in J} (R/(S_j^{n_j}))^{\beta_j}$ by Proposition 2.5 and [5], Theorem 10. However if $M_0 \neq (0)$ then there exist natural epimorphisms of M_0 to $E(R/S_j)$. Hence, $J=\phi$ by Lemma 2.2, which means M is injective. If $M_0=(0)$, then $M \approx \sum \bigoplus E(R/P_i)^{\alpha_i} \oplus \sum (R/(S_j^{n_j}))^{\beta_j}$ and $\{P_i, S_j\}$ is a set of non-zero distinct primes by Proposition 2.4. The converse is clear.

Next, we consider a case of algebra A over a field K with finite dimension. Then we know from [7] that every indecomposable A -injective module M is isomorphic to $(eA)^*=\text{Hom}_K(eA, K)$, where e is a primitive idempotent in A . Hence, there exists a non-degenerated bilinear mapping $(,)$ of $eA \otimes M$ to K with respect to A . It is clear that the adjoint elements of $\text{Hom}_A(M, M)=B$ is equal to eAe . Hence for an A -submodule N of M , $\text{ann } N=\{x \mid eA, (x, N)=0\}$ is an eAe -module if and only if N is a B -module. Thus from Lemma 2.2 we have

1) M^α means a direct sum of α -copies of M .

Proposition 2.7. *Let A be an algebra over a field K such that $[A : K] < \infty$. Then every quasi-injective A -module is a direct-sum of modules $(e_i A / e_i R_i)^*$, where e_i is a primitive idempotent and R_i is a right ideal in A such that $e_i A e_i R_i \subseteq R_i$.*

Corollary. *Let A be as above. If A is a generalized uniserial ring, then every sub-module of indecomposable injective module is quasi-injective.*

Remark. The converse of Proposition 2.7 is, in general, not true. Finally, we consider the singular ideal of quasi-Frobenius ring.

Proposition 2.8. *Let R be quasi-Frobenius. Then $Z(R)$ is equal to the radical N of R and R is a direct sum of semi-simple subring and a quasi-Frobenius ring R_1 such that $Z_2(R_1) = R_1$.*

Proof. Let S be a left socle of R , namely the sum of minimal left ideals in R . Then S is a unique minimal essential left ideal of R . Hence, $Z(R) =$ the right annihilator S_r of S in R . Since $N_r = N$, by [8] and $S = N_r$, $Z(R) = S_r = N_{rr} = N_{tr} = N$ by [8]. Furthermore, R is left R -injective by [1]. Hence, $R = L \oplus Z_2(R)$ as a left R -module by Theorem 1.7. Since $Z_2(R) \supseteq N$, $NL \subseteq N \cap L = (0)$. Hence, $L \subseteq S$. $S = S \cap N \oplus L'$, where $L' \supseteq L$ is a direct-sum of non-nilpotent minimal left ideals. Since $SN = (0)$, $S^2 = L'$. It is clear that $Z_2(R) = (S^2)_r$. Therefore, $L'Z_2(R) = (0)$, which means that L is a two-sided ideal. Since L is completely reducible, L is semi-simple.

OSAKA CITY UNIVERSITY

References

- [1] S. Eilenberg and T. Nakayama: *On the dimension of modules and algebras* IV, Nagoya Math. J. **10** (1956), 87–95.
- [2] A. W. Goldie: *Torsion-free modules and rings*, J. Algebra **1** (1964), 268–287.
- [3] R. E. Johnson: *Structure theory of faithful rings* II, Trans. Amer. Soc. **84** (1957) 423–544.
- [4] R. E. Johnson and E. T. Wong: *Quasi-injective modules and irreducible rings*, J. London Math. Soc. **39** (1961), 260–268.
- [5] I. Kaplansky: *Modules over Dedekind rings and valuation rings*, Trans. Amer. Math. Soc. **72** (1952) 327–340.
- [6] E. Matlis: *Injective modules over noetherian rings*, Pacific J. Math. **48** (1958), 511–528.
- [7] H. Nagao and T. Nakayama: *On the structure of M_0 and M_u -modules*, Math. Z. **59** (1953) 164–170.
- [8] T. Nakayama: *On Frobenius algebras*, I, Ann. of Math. **40** (1939), 611–633, II, Ann. of Math. **42** (1941), 1–21.
- [9] E. T. Wong: *Atomic quasi-injective modules*, J. Math. Kyoto Univ. **3** (1964), 295–303.
- [10] Y. Miyashita: *On quasi-injective modules*, J. Fac. Sci. Hokkaido Univ. **18** (1965), 158–187.