<table>
<thead>
<tr>
<th>Title</th>
<th>Note on quasi-injective modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Harada, Manabu</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 1965, 2(2), p. 351-356</td>
</tr>
<tr>
<td>Version Type</td>
<td>VoR</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/9767</td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>
Let R be a ring with identity element and M be a unitary left R-module. M is called quasi-injective if every element in $\text{Hom}_R(N, M)$ for any R-module N in M is extended to an element in $\text{Hom}_R(M, M)$. M is an essential extension of N if $M' \cap N \neq (0)$ for any non-zero R-submodule M' of M and we call in this case that N is an essential submodule in M.

In Goldie [2] and Johnson, Wong [4] they have defined an R-submodule in M for R-submodule N as follows: $\text{cl}N = \{ m \in M \mid (N; m) \text{ is an essential left ideal in } R \}$. If $\text{cl}N = N$, then N is called closed. We call $\text{cl}(0)$ the singular submodule of M.

Johnson and Wong studied structures of closed submodules of a quasi-injective R-module with zero singular submodule and Goldie has also considered rings with zero singular ideal in [3], [4] and [2], respectively.

In this short note we shall prove the following theorem:

Let M be a quasi-injective R-module. Then M is a direct-sum of $Z_2(M) = \text{clcl}(0)$ and any maximal submodule M_0 with zero singular submodule: $M = M_0 \oplus Z_2(M)$. Furthermore, every closed submodule in M corresponds uniquely to a direct summand of M_0, which is closed in M_0.

From this result we know some results in [3], [4] are valid without assumption $\text{cl}(0) = (0)$.

In § 2 we shall study all types of quasi-injective modules in a case where either R is a Dedekind domain or an algebra over a field with finite dimension.

We always assume that R is a ring with identity and M a unitary left R-module.

1. Closed submodules.

We shall denote the singular submodule $\text{cl}(0)$ of M by $Z(M)$ and $\text{clcl}(0)$ by $Z_2(M)$ following to [2]. We also call $Z_2(M)$ the torsion submodule of M and M is torsion free if $Z_2(M) = (0)$. If R is a commutative integral domain, then they coincide with the usual torsion submodules.
and torsion-free modules.

We note that if M is an essential extension of N, then the left ideal $(N:m)$ is essential in R for any element m in M.

From [2], Lemma 2.2 we have

Lemma 1.1. $Z_2(M)$ is a closed submodule in M.

From the definition of closed module we have

Lemma 1.2. Every closed submodule of M contains $Z_2(M)$.

Lemma 1.3. For submodules N_1, N_2 of M we have

$$\text{cl}(N_1 \cap N_2) = \text{cl}N_1 \cap \text{cl}N_2.$$

Let N be a submodule of M. If a submodule B of M is a maximal one with property $N \cap B = (0)$, then we call B a complement of N in M. We denote it by N^\perp.

Lemma 1.4. Let N be a submodule of M and B a complement of N. Then M is an essential extension of $B\oplus N$. Hence, $\text{cl}(B\oplus N) = M$.

Proposition 1.5. Let M be a quasi-injective R-module. Then every closed submodule N is a direct summand of M, namely $M = N \oplus N^\perp$ (cf. [4], Proposition 1.5).

Proof. Let N be a closed submodule and B a complement of N in M. Put $M_0 = B \oplus N$. Let p be a projection of M_0 to N. Then there exists an element $g \in \text{Hom}_R(M, M)$ such that $g|_{M_0} = p$. Since $g^{-1}(0) \subseteq B$ and $g^{-1}(0) \cap N = (0)$, $g^{-1}(0) = B$. Furthermore, since $\text{cl}M_0 = M$ by Lemma 1.4, there exists an essential left ideal L for any element m in M such that $Lm \subseteq M_0$. Therefore, $Lg(m) = g(Lm) \subseteq N$. Since $\text{cl}N = N$, $g(m) \in N$. Hence, $g(M) = N$. Therefore, $M = g^{-1}(0) + g(M) = B \oplus N$.

Corollary. Let M be a quasi-injective. If N is closed, then N is quasi-injective (cf. [3], Theorem 1.6).

Proof. Since it is clear that a direct summand of a quasi-injective module is quasi-injective, we have the corollary from Proposition 1.5.

If we consider R as a left R-module, we have from the definition

Lemma 1.6. Let $M \supseteq N$ be R-modules. Then 1) $Z(R)M \subseteq Z(M)$, 2) $Z_2(R)M \subseteq Z_2(M)$, 3) $Z(N) = N \cap Z(M)$ and 4) $Z_2(N) = N \cap Z_2(M)$.

Theorem 1.7. Let M be a quasi-injective R-module and M_0 a submodule which is a maximal one with $Z(M_0) = (0)$. Then $M = M_0 \oplus Z_2(M)$. A submodule N of M is closed if and only if N contains $Z_2(M)$ and $M_0 \cap N$ is a direct summand of M_0.
Proof. From Lemma 1.6 we obtain that \(M_0 \cap Z_2(M) = (0) \) and \(M_0 \) is a complement of \(Z_2(M) \). Hence, \(M = M_0 \oplus Z_2(M) \) by Proposition 1.5, since \(Z_2(M) \) is closed. If \(N \) is a closed submodule of \(M \), then \(N \supseteq Z_2(M) \) by Lemma 1.1 and \(N = M_0 \cap N \oplus Z_2(M) \). Since \(N \cap M_0 \) is closed in \(M_0 \), \(N \cap M_0 \) is a direct summand of \(M_0 \) by Proposition 1.5. Conversely, we assume that \(N \supseteq Z_2(M) \) and \(N \cap M_0 \) is a direct summand of \(M_0 \); \(M_0 = N \cap M_0 \oplus N_1 \). Considering in \(M_0 \), \(M_0 = \text{cl}M_0 = \text{cl}(N \cap M_0) + \text{cl}N_1 \). Since \(\text{cl}(N \cap M_0) \cap \text{cl}N_1 = \text{cl}(N \cap M_0 \cap N_1) = \text{cl}(0) = (0) \) by Lemma 1.2, \(N \) is closed in \(M_0 \). Let \(x \in \text{cl}N : x = m_0 + y \), where \(m_0 \in M_0, y \in Z_2(M) \). Since \(Lx \subseteq N \) for an essential left ideal \(L \), \(Lm_0 \subseteq N \cap M_0 \). Hence, \(m_0 \in N \cap M_0 \). Therefore, \(x \in N \).

Corollary. Let \(M \) be a quasi-injective. If \(N_1, N_2 \) are closed in \(M \), then \(N_1 + N_2 \) is closed. Hence, \(\text{cl}(S_1 + S_2) = \text{cl}(S_1) + \text{cl}(S_2) \) for any submodules \(S_1 \) and \(S_2 \) (cf. [3], Theorem 1.4 and [4], Theorem 1.2).

Proof. Since \(N_i \), it is sufficient to show that \(N_i \cap M_0 \) is a direct summand of \(M_0 \) by Theorem 1.7, where \(M = M_0 \oplus Z_2(M) \). Thus, we may assume \(Z(M) = (0) \). \(N_i \) is closed by Lemma 1.2. Hence, \(M = N_i \oplus N'_i = (N_i \cap M_0) \oplus M' \). Since \(N_i \cap (N_i \cap M') = (0) \), there exists a submodule \(N'_i \) such that \(N'_i \supseteq N_i \cap M' \) and \(M = N_i \oplus N'_i \). Furthermore, \(N'_2 = (N_i \cap M') \oplus N'_i \). Therefore, \(M = N_2 \oplus (N_i \cap M') \oplus N'_i \). On the other hand \(N_i = (N_i \cap N_2) \oplus N_i \cap M' \). Hence, \(N_1 + N_2 = N_i + (N_i \cap M') \). Therefore, \(M = (N_1 + N_2) \oplus N'_i \). The second half is clear from the first.

Proposition 1.8. Let \(M \) be quasi-injective. Then the set of closed submodules coincides with the set of complement submodules containing \(Z(M) \). Especially, if we assume \(Z(M) = (0) \), then every complement of a submodule \(N \) is isomorphic to each other and \(N^c \) containing \(N \) coincides with \(\text{cl}N \).

Proof. Let \(N = N_i \supseteq Z(M) \). For any element \(n \in N_i \cap \text{cl}N \) we have \(L_n \cap N = (0) \), where \(L \) is an essential left ideal. Hence, \(n \in Z(M) \cap N_i = (0) \). Therefore, \(\text{cl}N = N \). The converse is clear from Proposition 1.5. We assume \(Z(M) = (0) \). In this case we note that \(\text{cl}N = \text{cl}N \). By Lemmas 1.3 and 1.4 and Corollary to Theorem 1.7 we have \(M = \text{cl}(N \oplus N^c) = \text{cl}N \oplus N^c \) for any submodule \(N \). Hence, \(N^c \approx M \text{cl}N \). Furthermore, we obtain \(M = N^c \oplus N^c = \text{cl}(N \oplus N^c) \) by Proposition 1.5. If \(N^c \supseteq N \), then \(N^c \supseteq \text{cl}N \). Hence, \(N^c = \text{cl}N \).

2. Special cases.

First we consider some relations between a quasi-injective module \(M \) and its injective envelope \(E(M) \).
Proposition 2.1. Let M be an R-module. Then $E(M) = E(Z_2(M)) \oplus E(B)$ and $Z_2(E(M)) = E(Z_2(M))$, where B is a maximal torsion-free submodule in M.

Proof. We assume $Z_2(M) = (0)$ and $E = E(M)$. Then $E = E_0 \oplus Z_2(E)$ by Theorem 1.7. Let p be a projection of E to E_0. If $p(m) = 0$ for $m \in M$, then $m \in M \cap Z_2(E) = Z_2(M) = (0)$ by Lemma 1.6. Hence, M is monomorphic to E_0. Therefore, $Z_2(E) = (0)$. If $Z_2(M) \neq M$, then $M \subset E(M) \subseteq Z_2(E)$. Hence, $Z_2(E) = E$. Since M is an essential extension of $B \oplus Z_2(M)$, $E = E(B) \oplus E(Z_2(M))$.

Lemma 2.2. Let M be an R-module and $K = \text{Hom}_R(E(M), E(M))$. M is quasi-injective if and only if M is a K-module. (See [3], Theorem 1.1.)

Proposition 2.3. Let M be quasi-injective. If $E(M) = N_1 \oplus N_2$, then $M = M \cap N_1 \oplus M \cap N_2$, and $N_i = E(M \cap N_i)$.

Proof. Let p be a projection of $E(M)$ to N. Since $p \in K$, $p(M) \subseteq M$ by Lemma 2.2. Hence, $M = M \cap N_1 \oplus M \cap N_2$.

Corollary. Let R be a commutative integral domain. Then every injective module is a direct sum of the torsion submodule and a maximal torsion-free submodule. An injective envelope of torsion (resp. torsion-free) module is torsion (resp. torsion-free).

Proposition 2.4. Let M_1, M_2 be quasi-injective such that $E(M_1) \cong E(M_2)$. Then $M_1 \oplus M_2$ is quasi-injective if and only if $M_1 \cong M_2$.

Proof. $E(M_1 \oplus M_2) = E(M_1) \oplus E(M_2)$. If $M_1 \cong M_2$, $M = M_1 \oplus M_2$ is a $\text{Hom}_R(E(M), E(M))$-module, and hence M is quasi-injective by Lemma 2.2. Conversely, we assume that M is quasi-injective. Let f be an element in $K = \text{Hom}_R(E(M), E(M))$ such that $f|E(M_2) \equiv 0$, $f|E(M_1)$ induces the isomorphism φ. Then $f(M) = f(M_1) \subseteq M \cap E(M_2) = M_2$ by Proposition 2.3. If we consider the same argument on M_2 for φ^{-1}, we can find $g \in K$ such that $gf|E(M_1) \equiv \text{identity}|E(M_1)$. Hence, $M_1 = gf(M_1) \subseteq M_2 \subseteq M_1$. Therefore, $M_1 \cong M_2$.

Proposition 2.5. Let R be a left noetherian ring and M a quasi-injective R-module. Then M is a direct-sum of indecomposable quasi-injective R-modules. Furthermore, this decomposition is unique up to isomorphism, ([10], Theorem 4.5).

Proof. $E(M) = \sum \oplus M_\alpha$ by [6], Theorem 2.5, where M_α is an indecomposable injective R-module. Put $M_\alpha = M \cap M_\alpha$. Then $M = \sum \oplus M_\alpha$ by Lemma 2.2. Since M_α is a direct summand of M, M_α is quasi-injective. It is clear that M_α is indecomposable. We assume $M = \sum \oplus M_\alpha'$.
is a second decomposition. Since R is left noetherian, $E(M) = \bigoplus E(M_{\alpha})$ and $E(M_{\alpha})$ is indecomposable by Proposition 2.3. Then there exists an automorphism φ in K such that $\varphi: \tilde{M}_{\alpha} \approx E(M_{\rho_{\alpha}})$ for all α by [5], Proposition 2.7, where ρ is a permutation of indices α. Since $\varphi(M) \subseteq M$, $\varphi(M) \cap \tilde{M}_{\alpha} \subseteq M \cap E(M_{\rho_{\alpha}}) = M_{\rho_{\alpha}}$. Taking φ^{-1}, we obtain $M_{\alpha} \approx M_{\rho_{\alpha}}$.

Now we assume that R is a commutative noetherian ring. Then we know by [6], Proposition 3.1 that every indecomposable injective R-module is isomorphic to $E(R/P)$, where P is a prime ideal in R.

Proposition 2.6. Let M be an indecomposable quasi-injective R-module. If M is torsion-free, then M is injective.

Proof. Since $E(M) = E(R/P)$ is torsion-free by Proposition 2.1, $Z(R/P) = (0)$. Hence, P is not essential in R. There exists a non-zero ideal Q such that $P \cap Q = (0)$. Therefore, P is minimal prime and $(0)_{P} = PR_{P}$. From [6], Theorem 3.6 $E(R/P)$ is R_{P}-injective. Since R_{P} is the quotient field of R/P, $E(M) = Km$. Furthermore, $K \subseteq \text{Hom}_{R}(E(R/P), E(R/P))$. Hence, $M = KM = E(M)$.

Corollary. Let R be a Dedekind domain and M a quasi-injective R-module. Then M is either injective or a direct-sum of R-modules $E(R/P_{i})$ and R/S_{j}. Conversely, such a module is quasi-injective, where $\{P_{i}, S_{j}\}$ is a set of non-zero distinct primes in R.

Proof. $M = M_{0} \oplus Z_{A}(M)$. If $M_{0} \neq (0)$, then $M_{0} \approx \bigoplus Q$ by Propositions 2.5 and 2.6, where Q is the quotient field of R. Since $Z_{A}(M)$ is torsion, $Z_{A}(M) = \bigoplus \oplus (E(R/P_{i}))^{*} \oplus \bigoplus (R/(S_{j}))^{*}$. Theorem 10. However if $M_{0} = (0)$ then there exist natural epimorphisms of M_{0} to $E(R/S_{j})$. Hence, $J = \phi$ by Lemma 2.2, which means M is injective. If $M_{0} = (0)$, then $M = \bigoplus \oplus E(R/P_{i})^{*} \oplus \bigoplus (R/(S_{j}))^{*}$. The set of non-zero distinct primes by Proposition 2.4. The converse is clear.

Next, we consider a case of algebra A over a field K with finite dimension. Then we know from [7] that every indecomposable A-injective module M is isomorphic to $(eA)^{*} = \text{Hom}_{K}(eA, K)$, where e is a primitive idempotent in A. Hence, there exists a non-degenerated bilinear mapping $(,)$ of $eA \otimes M$ to K with respect to A. It is clear that the adjoint elements of $\text{Hom}_{A}(M, M) = B$ is equal to eAe. Hence for an A-submodule N of M, ann $N = \{x | (x, N) = 0\}$ is an eAe-module if and only if N is a B-module. Thus from Lemma 2.2 we have

1) M^{*} means a direcsum of α-copies of M.

Proposition 2.7. Let A be an algebra over a field K such that $[A : K] < \infty$. Then every quasi-injective A-module is a direct-sum of modules $(e_iA/e_iR_i)^*$, where e_i is a primitive idempotents and R_i is a right ideal in A such that $e_iAe_i \subseteq R_i$.

Corollary. Let A be as above. If A is a generalized uniserial ring, then every sub-module of indecomposable injective module is quasi-injective.

Remark. The converse of Proposition 2.7 is, in general, not true. Finally, we consider the singular ideal of quasi-Frobenius ring.

Proposition 2.8. Let R be quasi-Frobenius. Then $Z(R)$ is equal to the radical N of R and R is a direct sum of semi-simple subring and a quasi-Frobenius ring R_1 such that $Z_2(R_1) = R_1$.

Proof. Let S be a left socle of R, namely the sum of minimal left ideals in R. Then S is a unique minimal essential left ideal of R. Hence, $Z(R) = S$ of S in R. Since $N_1 = N_2$ by [8] and $S = N_1 = N_2 = N_1 = N_2$ by [8]. Furthermore, R is left R-injective by [1]. Hence, $R = L \oplus Z_2(R)$ as a left R-module by Theorem 1.7. Since $Z_2(R) \supseteq N$, $NL \subseteq N_1 \subseteq L = (0)$. Hence, $L \subseteq S$. $S = S \cap N \oplus L'$, where $L' \supseteq L$ is a direct-sum of non-nilpotent minimal left ideals. Since $SN = (0)$, $S' = L'$. It is clear that $Z_2(R) = (S')_r$. Therefore, $L'Z_2(R) = (0)$, which means that L is a two-sided ideal. Since L is completely reducible, L is semi-simple.

References