Let R be a ring with identity element and M be a unitary left R-module. M is called quasi-injective if every element in $\text{Hom}_R(N, M)$ for any R-module N in M is extended to an element in $\text{Hom}_R(M, M)$. M is an essential extension of N if $M' \cap N \neq (0)$ for any non-zero R-submodule M' of M and we call in this case that N is an essential submodule in M.

In Goldie [2] and Johnson, Wong [4] they have defined an R-submodule in M for R-submodule N as follows: $\text{cl}N = \{m \in M | (N ; m) \text{ is an essential left ideal in } R\}$. If $\text{cl}N = N$, then N is called closed. We call $\text{cl}(0)$ the singular submodule of M.

Johnson and Wong studied structures of closed submodules of a quasi-injective R-module with zero singular submodule and Goldie has also considered rings with zero singular ideal in [3], [4] and [2], respectively.

In this short note we shall prove the following theorem:

Let M be a quasi-injective R-module. Then M is a direct-sum of $Z_2(M) = \text{clcl}(0)$ and any maximal submodule M_0 with zero singular submodule: $M = M_0 \oplus Z_2(M)$. Furthermore, every closed submodule in M corresponds uniquely to a direct summand of M_0, which is closed in M_0.

From this result we know some results in [3], [4] are valid without assumption $\text{cl}(0) = (0)$.

In § 2 we shall study all types of quasi-injective modules in a case where either R is a Dedekind domain or an algebra over a field with finite dimension.

We always assume that R is a ring with identity and M a unitary left R-module.

1. Closed submodules.

We shall denote the singular submodule $\text{cl}(0)$ of M by $Z(M)$ and $\text{clcl}(0)$ by $Z_2(M)$ following to [2]. We also call $Z_2(M)$ the torsion submodule of M and M is torsion free if $Z_2(M) = (0)$. If R is a commutative integral domain, then they coincide with the usual torsion submodules.
and torsion-free modules.

We note that if M is an essential extension of N, then the left ideal $(N:_R m)$ is essential in R for any element m in M.

From [2], Lemma 2.2 we have

Lemma 1.1. $Z_2(M)$ is a closed submodule in M.

From the definition of closed module we have

Lemma 1.2. Every closed submodule of M contains $Z_2(M)$.

Lemma 1.3. For submodules N_1, N_2 of M we have

$$\text{cl}(N_1 \cap N_2) = \text{cl}N_1 \cap \text{cl}N_2.$$

Let N be a submodule of M. If a submodule B of M is a maximal one with property $N \cap B = (0)$, then we call B a complement of N in M. We denote it by N^c.

Lemma 1.4. Let N be a submodule of M and B a complement of N. Then M is an essential extension of $B \oplus N$. Hence, $\text{cl}(B \oplus N) = M$.

Proposition 1.5. Let M be a quasi-injective R-module. Then every closed submodule N is a direct summand of M, namely $M = N \oplus N^c$ (cf. [4], Proposition 1.5).

Proof. Let N be a closed submodule and B a complement of N in M. Put $M_0 = B \oplus N$. Let p be a projection of M_0 to N. Then there exists an element $g \in \text{Hom}_R(M, M)$ such that $g | M_0 = p$. Since $g^{-1}(0) \supseteq B$ and $g^{-1}(0) \cap N = (0)$, $g^{-1}(0) = B$. Furthermore, since $\text{cl}M_0 = M$ by Lemma 1.4, there exists an essential left ideal L for any element m in M such that $Lm \subseteq M_0$. Therefore, $Lg(m) = g(Lm) \subseteq N$. Since $\text{cl}N = N$, $g(m) \in N$. Hence, $g(M) = N$. Therefore, $M = g^{-1}(0) + g(M) = B \oplus N$.

Corollary. Let M be a quasi-injective. If N is closed, then N is quasi-injective (cf. [3], Theorem 1.6).

Proof. Since it is clear that a direct summand of a quasi-injective module is quasi-injective, we have the corollary from Proposition 1.5. If we consider R as a left R-module, we have from the definition

Lemma 1.6. Let $M \supseteq N$ be R-modules. Then 1) $Z(R)M \subseteq Z(M)$, 2) $Z_2(R)M \subseteq Z_2(M)$, 3) $Z(N) = N \cap Z(M)$ and 4) $Z_2(N) = N \cap Z_2(M)$.

Theorem 1.7. Let M be a quasi-injective R-module and M_0 a submodule which is a maximal one with $Z(M_0) = (0)$. Then $M = M_0 \oplus Z_2(M)$. A submodule N of M is closed if and only if N contains $Z_2(M)$ and $M_0 \cap N$ is a direct summand of M_0.

Proof. From Lemma 1.6 we obtain that $M_0 \cap Z(M) = (0)$ and M_0 is a complement of $Z(M)$. Hence, $M = M_0 \oplus Z(M)$ by Proposition 1.5, since $Z(M)$ is closed. If N is a closed submodule of M, then $N \supseteq Z(M)$ by Lemma 1.1 and $N = M_0 \cap N \oplus Z(M)$. Since $N \cap M_0$ is closed in M_0, $N \cap M_0$ is a direct summand of M_0 by Proposition 1.5. Conversely, we assume that $N \supseteq Z(M)$ and $N \cap M_0$ is a direct summand of M_0; $M_0 = N \cap M_o \oplus N_1$. Considering in M_0, $M_0 = \text{cl}(N \cap M_0)$ by Lemma 1.2, N is closed in M_0. Let $x \in \text{cl}(N)$, $x = m_o + y$, where $m_o \in M_0$, $y \in Z(M)$. Since $Lx \subseteq N$ for an essential left ideal L, $Lm_o \subseteq N \cap M_0$. Hence, $m_o \in N \cap M_0$. Therefore, $x \in N$.

Corollary. Let M be a quasi-injective. If N_1, N_2 are closed in M, then $N_1 + N_2$ is closed. Hence, $\text{cl}(N_1 + N_2) = \text{cl}(N_1) + \text{cl}(N_2)$ for any submodules S_1 and S_2 (cf. [3], Theorem 1.4 and [4], Theorem 1.2).

Proof. Since N_1 is closed, N_1 contains $Z(M)$. Hence, it is sufficient to show that $N_1 \cap M_0 + N_2 \cap M_0$ is a direct summand of M_0 by Theorem 1.7, where $M = M_0 \oplus Z(M)$. Thus, we may assume $Z(M) = (0)$. $N_1 \cap N_2$ is closed by Lemma 1.2. Hence, $M = N_1 \oplus (N_1 \cap N_2) \oplus M'$. Since $N_1 \cap (N_1 \cap M') = (0)$, there exists a submodule N_1' such that $N_1' \supseteq N_1 \cap M'$ and $M = N_1 \oplus N_1'$. Furthermore, $N_2' = (N_1 \cap M') \oplus N_2'$. Therefore, $M = N_1 \oplus (N_1 \cap M') \oplus N_1'$. On the other hand $N_1 = (N_1 \cap N_2) \oplus N_1 \cap M'$. Hence, $N_1 + N_2 = N_2 + (N_1 \cap M')$. Therefore, $M = (N_1 + N_2) \oplus N_1'$. The second half is clear from the first.

Proposition 1.8. Let M be quasi-injective. Then the set of closed submodules coincides with the set of complement submodules containing $Z(M)$. Especially, if we assume $Z(M) = (0)$, then every complement of a submodule N is isomorphic to each other and N^c containing N coincides with $\text{cl}(N)$.

Proof. Let $N = N_1 \supseteq Z(M)$. For any element $n \in N_1 \cap \text{cl}(N)$ we have $Ln \subseteq N_1 \cap N = (0)$, where L is an essential left ideal. Hence, $n \in Z(M) \cap N_1 = (0)$. Therefore, $\text{cl}(N) = N$. The converse is clear from Proposition 1.5. We assume $Z(M) = (0)$. In this case we note that $\text{cl}(N) = \text{cl}(N)$. By Lemmas 1.3 and 1.4 and Corollary to Theorem 1.7 we have $M = \text{cl}(N \oplus N^c) = \text{cl}(N \oplus N^c)$ for any submodule N. Hence, $N^c \approx M/\text{cl}(N)$. Furthermore, we obtain $M = N^c \oplus N^c \approx \text{cl}(N \oplus N^c)$ by Proposition 1.5. If $N^c \supseteq N$, then $N^c \supseteq \text{cl}(N)$. Hence, $N^c = \text{cl}(N)$.

2. Special cases.

First we consider some relations between a quasi-injective module M and its injective envelope $E(M)$.
Proposition 2.1. Let M be an R-module. Then $E(M) = E(Z_2(M)) \oplus E(B)$ and $Z_2(E(M)) = E(Z_2(M))$, where B is a maximal torsion-free submodule in M.

Proof. We assume $Z_2(M) = (0)$ and $E=E(M)$. Then $E=E_0 \oplus Z_2(E)$ by Theorem 1.7. Let p be a projection of E to E_0. If $p(m)=0$ for $m \in M$, then $m \in M \cap Z_2(E) = Z_2(M) = (0)$ by Lemma 1.6. Hence, M is monomorphic to E_0. Therefore, $Z_2(E) = (0)$. If $Z_2(M) \neq M$, then $M \subseteq E(M) \subseteq Z_2(E)$. Hence, $Z_2(E) = E$. Since M is an essential extension of $B \oplus Z_2(M)$, $E=E(B) \oplus E(Z_2(M))$.

Lemma 2.2. Let M be an R-module and $K=\text{Hom}_R(E(M), E(M))$. M is quasi-injective if and only if M is a K-module. (See [3], Theorem 1.1.)

Proposition 2.3. Let M be quasi-injective. If $E(M) = N_1 \oplus N_2$, then $M = M \cap N_1 \oplus M \cap N_2$, and $N_i = E(M \cap N_i)$.

Proof. Let p be a projection of $E(M)$ to N. Since $p \in K$, $p(M) \subseteq M$ by Lemma 2.2. Hence, $M = M \cap N_1 \oplus M \cap N_2$.

Corollary. Let R be a commutative integral domain. Then every injective module is a direct sum of the torsion submodule and a maximal torsion-free submodule. An injective envelope of torsion (resp. torsion-free) module is torsion (resp. torsion-free).

Proposition 2.4. Let M_1, M_2 be quasi-injective such that $E(M_1) \cong E(M_2)$. Then $M_1 \oplus M_2$ is quasi-injective if and only if $M_1 \cong M_2$.

Proof. $E(M_1 \oplus M_2) = E(M_1) \oplus E(M_2)$. If $M_1 \approx M_2$, $M = M_1 \oplus M_2$ is a $\text{Hom}_R(E(M), E(M))$-module, and hence M is quasi-injective by Lemma 2.2. Conversely, we assume that M is quasi-injective. Let f be an element in $K=\text{Hom}_R(E(M), E(M))$ such that $f|E(M_2) \equiv 0$, $f|E(M_1)$ induces the isomorphism φ. Then $f(M) = f(M_1) \subseteq M \cap E(M_2) = M_2$ by Proposition 2.3. If we consider the same argument on M_2 for φ^{-1}, we can find $g \in K$ such that $gf|E(M_1) \equiv \text{identity}|E(M_1)$. Hence, $M_1 = gf(M_1) \subseteq E(M_2) \subseteq M_1$. Therefore, $M_1 \approx M_2$.

Proposition 2.5. Let R be a left noetherian ring and M a quasi-injective R-module. Then M is a direct-sum of indecomposable quasi-injective R-modules. Furthermore, this decomposition is unique up to isomorphism, ([10], Theorem 4.5).

Proof. $E(M) = \Sigma \oplus M_\alpha$ by [6], Theorem 2.5, where M_α is an indecomposable injective R-module. Put $M_\alpha = M \cap \overline{M}_\alpha$. Then $M = \Sigma \oplus M_\alpha$ by Lemma 2.2. Since M_α is a direct summand of M, M_α is quasi-injective. It is clear that M_α is indecomposable. We assume $M = \Sigma \oplus M_\alpha'$.
is a second decomposition. Since R is left noetherian, $E(M) = \sum \oplus E(M_\alpha)$ and $E(M_\alpha)$ is indecomposable by Proposition 2.3. Then there exists an automorphism φ in K such that $\varphi : \tilde{M}_\alpha \approx E(M_{\rho(\alpha)}/\alpha)$ for all α by [5], Proposition 2.7, where ρ is a permutation of indices α. Since $\varphi(M) \subseteq M$, $\varphi(M_\alpha) = \varphi(M \cap \tilde{M}_\alpha) \subseteq M \cap E(M_{\rho(\alpha)}) = M_{\rho(\alpha)}$. Taking φ^{-1}, we obtain $M_\alpha \approx M_{\rho(\alpha)}$.

Now we assume that R is a commutative noetherian ring. Then we know by [6], Proposition 3.1 that every indecomposable injective R-module is isomorphic to $E(R/P)$, where P is a prime ideal in R.

Proposition 2.6. Let M be an indecomposable quasi-injective R-module. If M is torsion-free, then M is injective.

Proof. Since $E(M) = E(R/P)$ is torsion-free by Proposition 2.1, $Z(R/P) = (0)$. Hence, P is not essential in R. There exists a non-zero ideal Q such that $P \cap Q = (0)$. Therefore, P is minimal prime and $(0)_P = PR_P$. From [6], Theorem 3.6 $E(R/P)$ is R_P-injective. Since R_P is the quotient field K of R/P, $E(M) = Kn$. Furthermore, $K \cong Hom_R(E(R/P), E(R/P))$. Hence, $M = KM = E(M)$.

Corollary. Let R be a Dedekind domain and M a quasi-injective R-module. Then M is either injective or a direct-sum of R-modules $E(R/P)$ and R/S_j. Conversely, such a module is quasi-injective, where $\{P_i, S_j\}$ is a set of non-zero distinct primes in R.

Proof. $M = M_0 \oplus Z(M)$. If $M_0 \cong 0$, then $M_0 \cong \sum \oplus Q$ by Propositions 2.5 and 2.6, where Q is the quotient field of R. Since $Z(M)$ is torsion, $Z(M) = \sum \oplus (E(R/P_i))^{*} \oplus \sum (R/(S_j))^{y_j}$ by Proposition 2.5 and [5], Theorem 10. However if $M_0 \neq 0$ then there exist natural epimorphisms of M_0 to $E(R/S_j)$. Hence, $f = \phi$ by Lemma 2.2, which means M is injective. If $M_0 = 0$, then $M = \sum \oplus E(R/P_i)^{*} \oplus \sum (R/(S_j))^{y_j}$ and $\{P_i, S_j\}$ is a set of non-zero distinct primes by Proposition 2.4. The converse is clear.

Next, we consider a case of algebra A over a field K with finite dimension. Then we know from [7] that every indecomposable A-injective module M is isomorphic to $(eA)^* = Hom_K(eA, K)$, where e is a primitive idempotent in A. Hence, there exists a non-degenerated bilinear mapping $(,)$ of $eA \otimes M$ to K with respect to A. It is clear that the adjoint elements of $Hom_A(M, M) = B$ is equal to eAe. Hence for an A-submodule N of M, ann $N = \{x \in eA, (x, N) = 0\}$ is an eAe-module if and only if N is a B-module. Thus from Lemma 2.2 we have

1) M^* means a directsum of α-copies of M.

1) M^* means a direct sum of α-copies of M.

Proposition 2.7. Let A be an algebra over a field K such that $[A:K]<\infty$. Then every quasi-injective A-module is a direct-sum of modules $(e_iA/e_iR_i)^*$, where e_i is a primitive idempotents and R_i is a right ideal in A such that $e_iAe_iR_i\subseteq R_i$.

Corollary. Let A be as above. If A is a generalized uniserial ring, then every sub-module of indecomposable injective module is quasi-injective.

Remark. The converse of Proposition 2.7 is, in general, not true. Finally, we consider the singular ideal of quasi-Frobenius ring.

Proposition 2.8. Let R be quasi-Frobenius. Then $Z(R)$ is equal to the radical N of R and R is a direct sum of semi-simple subring and a quasi-Frobenius ring R_1 such that $Z_2(R)=R_1$.

Proof. Let S be a left socle of R, namely the sum of minimal left ideals in R. Then S is a unique minimal essential left ideal of R. Hence, $Z(R)$ is the right annihilator S_r of S in R. Since $N_r=Z_r$ by [8] and $S=N_r$, $Z(R)=S_r=N_r=N_r$ by [8]. Furthermore, R is left R-injective by [1]. Hence, $R=L\oplus Z(R)$ as a left R-module by Theorem 1.7. Since $Z_2(R)$ is a direct-sum of non-nilpotent minimal left ideals. Since $SN=(0)$, $S'=L'$. It is clear that $Z_2(R)=(S')$. Therefore, $L'Z_2(R)=(0)$, which means that L is a two-sided ideal. Since L is completely reducible, L is semi-simple.

OSAKA CITY UNIVERSITY

References