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1. Introduction

If n& N has the prime-number-decomposition n=_IfI i, we define w(n)=
é a;. If Irr(G) is furthermore the set of irreducible complex characters of the
i=1

finite group G, we define w(G)= max w(X(1)).

XEIrr(
Suppose first that w(G)=1, which means that all non-linear characters have
prime-number-degrees. By a theorem of M. Isaacs and D. Passman (cf. Isaacs
[6], 14.4), G must be solvable. But this conclusion does not hold, if o(G)=
2; for example cd(45)={1,3,4,5} and cd(4,)={1, 6, 10, 14, 15, 21, 35} (cf.
McKay [8]; cd=character degrees).
There seem to be many solvable groups G with w(G)=2. In a later paper
we shall consider these; in particular we shall show that they have derived length
at most 4.%%)
The class of non-solvable groups G with (G)=2 is quite small. It is com-
pletely described by the following theorem.

Theorem. Suppose that G is non-solvable. Then o(G)=2 if and only if
G is a direct product of an abelian group with a group H of the following type :
(1) H=A,.
(2) He A,
(3) H=NT, where N is a normal abelian 2-subgroup of H, T = A;, N=N,x 4,
where A is a the natural module for SL(2, 4)=<A; and [N, T1< 4.

H=NT
N AT
A

*> This paper is a contribution to the research project “Darstellungstheorie’” of the DFG.
** Arch. Math. 46 (1986), 387-392.
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(4) H has a normal subgroup M=Nx K of index 2, where K==A; and N is an
abelian 2-group. Further H{[N=S; and H|K is abelian.

H
NxK
N K

(9) H is a central product of SL(2, 5) with an abelian 2-group.
(6) H has a normal subgroup M of index 2. M 1is a central product of K=
SL(2,5) with an abelian 2-group N, where N<Z(G) and H|K ts abelian.

2. Proof of the Theorem

We start considering a simple group G, here we use the classification of
all finite simple groups.

Lemma 1. If G is simple, non-abelian with o(G)=2, then
G=A; or G=A,.

Proof. (I) By [10], G isn’t sporadic.
(2) Let G=4, (n=>5). We consider the Young-tableau, corresponding to the
partition (-3, 1, 1, 1).

no | n—4 | .. 2 1

3

2

1

As the hook-product H,_3,,, is ne(n—4)!+3+2, the

character X(,-3,,:E1rr(S,) has degree
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()| Hposnrn = (n—1) (n1—2) (n—3)/6  (cf. Muller [9] 6.36).

But for n=7 the partition (n—3, 1,1, 1) isn’t self-associated and we obtain
(n—3) (n—2) (n—1)/6cd(4,). The hypothesis »(G)=2 yields that one of
n—1, n—2 and n—3 divides 6 and consequently #<9. As 8=cd(4;), 20
cd(A4;) and 8= cd(4,) (cf. McKay [8]), we conclude G=A4; or G=4,.

(3) Suppose now that G is a Chevalley-group or a twisted type in characteristic
p, say. Then G has the Steinberg-character o of degree o(1)=p°, where p°
is the exact p-part of |G'|. An inspection of those Chevalley-type groups, whose
orders have p-parts at most p?, yields G==PSL(2, p) or G==PSL(2, p*). We set
g=p or g=p’. Now PSL(2, q) has character degrees ¢—1 and ¢-+1 and as
o(G)=2 and ¢>3, there exists a prime 7 such that g—1=2r. Therefore g+1=
2(r+1) and r+1 must also be a prime number, hence r=2. This yields g=5
and G=PSL(2,5)=<A;.

The composition structure of a group G, satisfying »(G)=2, is not too com-
plicated, namely

Lemma 2. If G is a non-solvable group with o(G)=2, then G has a solvable
normal subgroup N such that

GIN = A, or A; or S;.

Proof. Let M be the solvable residue of G and M/L a chief-factor of G.
By lemma 1, M/L=A4; or A,, We define N/L=Cy, (M|L). As Aut(4;)=S;
and Aut(A4,)=S,, G/N=A4;, S;, A, or S,. But S, can be ruled out, because
20=cd(S;) (cf. Kerber-James [7] page 350). Suppose that N is non-solvable,
then we obtain a chief-factor S/R=A; or A, with S<N. If C/R=C/;(S/R),
we have C/RX S/R<IG|R, where C/R involves a composition factor 45 or A4,.
This, however, yields w(C/RX S/R)>2, a contradiction.

As lemma 2 indicates, there are two cases to consider, namely the case, where
A, is involved and where 4; is involved. We start with the first situation, which
turns out to be the simplest one. We remind the reader that by Huppert-Manz
[5] the group A, has the following subgroups U< 4, with (] 4;: U|)<2:

type index

PSL (2,7) | 3-5
A 7
S; 3.7
(A XZ)Z, | 57

Notice that A; has no subgroup of index 3? (cf. Huppert-Blackburn [4], XII
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10.12).

Lemma 3. Let o(G)=2, NG, N solvable and G|N=A4,.
Then G=N X E, where N'=1 and E=A,.

Proof. By a trivial induction argument, we may suppose that N is an
irreducible G-module.
(I) We may assume that N is faithful, because the Schur-extensions of 4, by Z,
and Z; have character degrees 20 and 24, respectively (cf. Humphreys [2]).
(2) Let 1#=a&Irr(N). Then T(A)/N must be one of those subgroups, listed
above (Huppert [3] 17.11).
(3) Suppose that T(\)/N==PSL(2,7), S5 or (4,X Z3)+Z,. We consider AT®=
e X, X; €Irr(T(N)). Then Xf €Irr(G), X;(1)=e¢; and X§(1)=e;+3-5 0r¢;+3+7

ore;+5-7. As w(G)=2, we conclude that ;=1 and X, is an extension of . Bya
theorem of Gallagher (cf. Isaacs [6] 6.17), we have {X;} = {X,@|p&Irr(T(\)/N}.
But this contradicts the fact that in each case T'(A)/N has non-linear characters.
(4) It remains to investigate the situation, where all T'(\)/N=A4,;. As the
subgroups of type 4 are conjugate under the action of 4, we can define p’=
| Creewy(U) |, where U=<4; and |N|=p". A double counting yields

7+(p°'—1) =1{(\, U)|1F=nEItr(N), U=4;, U=T(\)/N} |=p"—1

and consequently 7=1+p°+---4p®/~Vs. This, however, yields a faithful 4;-
module of type (2,2,2), a contradiction.

It remains to deal with the case that 4 is involved. For this purpose we list
the subgroups U<<4; with o([4s: U |)<2:

type index
A4, 5
Dlu 2 . 3
D, 2.5
22 X Z2 3 * 5

Lemma 4. Let o(G)=2, MG and M an irreducible non-trivial module
for GIM of type (p, ---, p). Furthermore let G|M=<A; or G|M=SL(2, 5), which

means there is a central subgroup L|M of G|M of order at most 2. Then we have
p=2 and n=4.

Proof. (I) Of course w(|G: T(\)|)<2 for all 1s=r&Irr (M). In par-
ticular 2| | T(\)/M|, if G/M==SL(2,5). As SL(2,5) has only one involution,

we have L T(\).
(2) T(\)/L2D,; and 2 Ds:
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If not, A would be extendible to errr(T(x), because the Sylow-subgroups of
T(\)/M are cyclic (Isaacs [6] 11.31). This, however, means AT® =X<p—|—--- with
p<EIr(T(A)/M), ¢(1)=2 and (X¢)G(1): |G: T(\)|+2, in both cases a con-
tradiction.

(3) By (2), T(\)/L contains just one subgroup of type Z,x Z,, hence T(\)/M
one Sylow-subgroup of G/M. Therefore

|SyL(GIM)| (| Crezan(Q) | —1) =
H, Q) 1A ELrr(M), QESyL(GIM), O<T(\)/M} | =
[Irr(M) | —1 = p"—1.

If we put p’=|Crun(Q)|, we obtain 5+(p*—1)=p"—1. This yields s|n, 5=
1+4p*+ -4 p®<1° and consequently p=2, s=2 and n=4.

The lemma above handles the case that A5 acts on an irreducible module. We
suppose now that A; acts on an arbitrary solvable group.

Lemma 5. Let o(G)=2, G=G' and NG with G|[N=A;. Then there
is an abelian 2-group A, such that AN, A<G and either N=A or G[A=
SL(2, 5).

Proof. a) We first show that N is a 2-group. Put L=0%) and sup-
pose L==1. We choose a chief factor L/M; then L/M is of type (p, ---, p) for
an odd prime p. We can assume further on that M=1.

b (0o 2.

(1) As w(N)<2, we have cd(N)<= {1, 2, 4}.
(2) cd(N)<{1,2}: Suppose there is r€Irr(N) with 7(1)=4. Then 7 is fixed
under the action of G and consequently 7¢=3] ¢; X;, where X;EIrr(G) and (X;)y

=e; 7. Now w(G)=2 forces ¢,=1 and 7 is extendible to G. By Gallagher’s
theorem, 7(1)-decd(G) for all decd(4;), a contradiction.
(3) cd(N)={1,2}: Suppose N'=1, which means N=.Sx L with S& Syl,(N).
If we consider G/S, lemma 4 implies the trivial action of G/N==A4; on L, a con-
tradiction to G=G".
(4) By Isaacs [6] 12.11, we have one of the following assertions:
(?) N has a characteristic abelian subgroup U of index 2. As G=G’, we
have G/U=SL(2, 5) and we obtain the same contradiction as in (3), using
lemma 4.
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(@) |N|Z(N)|=2? or 23. But as 4; has no irreducible GF(2)-module of
dimension 2 or 3, N/Z(N) is central in G/Z(N), a contradiction to G=G",
because the Schur-multiplier of A5 has order 2.

Altogether we have shown that NV is a 2-group.

5) It remains to show that N has a characteristic abelian subgroup 4 of index

at most 2.

(I) cd(N)={1,2}: Use the arguments of a) (1) and (2).

(2) By Isaacs [6] 12.11, we have to rule out | N/Z(NN)|=2? or 2. But this is

done as in a) (4) (7).

For our later arguments we need the knowledge of those extensions G of 45 by
an irreducible GF(2)-module which have o(G)=2.

ExampLE 6. The group A; has three irreducible modules over GF(2),
namely the trivial module M, the augmentated permutation module M, and
the module M, belonging to the representation 4;==SL(2,4). Let M<JG, GIM
=~4; and M an irreducible GF(2)4;-module.

a) M=M,: If the extension is non-splitting, we have G=SL(2,5). As
cd(SL(2, 5))=1{1, 2, 3,4, 5, 6} (cf. Dornhoff [1], page 228), w(G)=2 holds.

by M=M,: In this case we have M= {i k; v;|k;eGF(2), Eﬁ k;=0}, where
é GF(2)v; is the permutation module for A;.  Obviously, the stabilizer of v+ v,

in Ag is isomorphic to S;. As M==M, is self-dual, we have M=Irr(M) and
therefore there is A& Irr(M), such that T(\)/M==S;. Asin lemma 4 (2), \ is
extendible to T'(A) and we obtain 2:|G: T(\)|=2%-5€cd(G). This shows
o(G)>2.

¢) M=DM,: Now SL(2,4) acts transitively on M\1. Therefore |G: T(\)|=
15 for all 1=x&Irr(M), because M=}, is self-dual. Remark that T'(\)/M is
a Kleinian four-group. By Prince [11], G must split over M; hence the linear
characters A are extendible to iEIrr( T(\)), So we have

ATO= SV g(1)an, where (an)°EIrr(G) has degree (an)(1)-|G: T(\)| =

a€Irr(T AN/ XD

15. From this we conclude cd(G)={l, 3, 4, 5, 15}, hence o(G)=2.

The notation M, M,, M, for the irreducible modules of A; over GF(2) will be
used from now on.

Lemma 7. Suppose o(G)=2, G=G' and G|A=SL(2,5). Then A=1.

Proof. By lemma 5, 4 is an abelian 2-group. Suppose A=1. Let A/B
be a chief-factor of G. We can assume B=1. As SL(2,5) has trivial Schur-
multiplier, A=M,. Define NJA=Z(G|A), then N centralizes A, hence N is
abelian. Moreover A, considered as an G/N-module, is one of the modules
M, and M,,.
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(1) A=M,. A Sylow-5-subgroup S of A has fixed points on N/4, but not
on A==M,. Hence N is elementary abelian. As M, is of defect 0, N=APC,
where C=M, as As-modules. But by example 6 b), we have the contradiction
o(G[C)>2.

(2) Now we assume A=<M, We proceed as in example 6 ¢). Again, 45 oper-
ates transitively on A\1 and also on Irr(4)\1. If 1=x&Irr(4), then |G: T(N)]
=15. As before A"M=3]¢; X;, X;(1)=e;, X €Irr(G) and Xf(1)=15-¢;. As

o(G)=2, all e;,=1. Hence X, is an extension of A to T'(\) and

AMN=x >3 @(l)p. Butas T'(\)/4 now is a quaternion group of order
eEIrr(TM)/ 4>

8, it has an irreducible character @ of degree 2. Then (X,p)¢ is irreducible and
has degree 30.

Lemma 8. Let o(G)=2, G=G' and G|N=A;. If N=*1, then either
G==SL(2,5) or G is the splitting extension of As with M,.

Proof. If G has a factor group isomorphic SL(2,5), then by lemma 7
G==SL(2,5). Hence by lemma 5, we have G/4=<4;, A an abelian 2-group, and
every chief factor 4/B is not isomorphic to M,. By example 6 b), also 4/B=¢
M, so A/|B=M,. 'To prove B=1 we can assume that B is an irreducible A4;-

module.
We claim T'(M)<G for all 1#=x&1Irr(A4): This follows from the fact that

Irr(A4) has no submodule isomorphic to M, because 4 has no factor module
isomorphic to M,.
Let 1=aE1rr(4). As o(|G: T(N)|)<2, the arguments of lemma 4 show that
T (\)/A contains exactly one Sylow-2-subgroup of G/A. Again, a double count-
ing yields
5 '( I CIrr(A)(Q) l - 1) =
H\ Q)] 1A Elrr(4), QE8yL(G/4), Q< T(\)/A} | =
[Irr(4)| —1. We put 2° = | Crr(Q)|. Then
28—1 if BXM,
5.(2°—1) =
( ) { 2°—1 if B=M,
Lemma 9. Let o(G)=2 and suppose that As is involved. Then G has
the following normal series :

} , a contradiction.

G
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where
(?) K|A=A4;, |G/M|<2 and G|[N=S; in case of |G|M |=
(&) (N/A)'=1.
(ir) A=1; or A=M, and K==SL(2,5); or A=M, and K splits over A.

Proof. Let K be the solvable residue of G. If K/4 is a chief-factor, then
K|A=A4; (by lemma 2). We put N/A=Cy/4(K/A). Then M|A:=N|AXK|A
is a normal subgroup of G/4 of index at most 2, where in case of |G/M|=
we have G/N=S;. As w(M|A)=2, we conclude that N/A is abelian. The
application of lemma 8 to K finally yields (z%).

We shall use the notation of lemma 9.

Lemma 10. The case |G/M|=2 and A==M, does not occur.

Proof. As K[A=<A; acts transitively on M,, we have |G: T(\)|=15 for
all 1&=xeIrr(4); in particular T(\)/4 contains a Sylow-2-subgroup of G/A.
As the Sylow-2-subgroups of S; are isomorphic to D, T(\)/A is non-abelian.
Let A"®W= 3} ¢; X; with X,€Irr(T(X)). Then Xf lrr(G), X¢ (1)=15-X; (1);

hence w(G)=2 does imply X;(1)=1. Therefore X, extends A and {X;} ={X,@]|
pe&lr T(\)/A}. As T(\)/A4 is non-abelian, we obtain a contradiction to X,(1)
=1.

Lemma 11. Now we assume that o(G)=2 and that the solvable residue K
of G is the splitting extension of A=~M, by A;. We also assume that G=M.

G=NT
N K=AT
A

Then N is abelian and N=N,x A. Neglecting abelian direct factors of G, we can
assume that N is a 2-group.

Proof. a) Let T be a complement of 4 in K. Then obviously T also is
a complement of N in G. Certainly, Hom (4, A)=GF(4). Hence N/Cy(4)
has order 1 or 3. We assume at first that | N/Cy(4)| =3. Suppose S/4E Syl;
(N/A) and | S/A|=3". We consider the normal subgroup R=SK=ST of G.
Obviously w(R)=2. As T operates transitively on the characters (1) of 4, we
have |R: Tr(\)| =15 for every 1#nr&lrr(4). Tx(\) splits over A, for the
Sylow- 2-subgroup of Tr(\) does so (Gaschiitz’s theorem). Hence there exists
an extension A of A to Tix(\), and we obtain Af= (ZK\}rj(l) V)R (P €

Irr( Tx(M)/4)). Also (Mp)RETrr(R). As w(R)=2 and (Mr,)¥(1)=|R: To(\)yr,(1)
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=15+),(1), this forces,(1)=1. Hence T(1)/4 is abelian. We write H=HA|A

for any H<R. 'Then | Te(A\)NK|=| Tx(r)| =4 and thus | Tx(A)-K | =| Tz(\)|
-|K| | | TR(M)NK|=3"-60=|R|. Thisshows TxA)ECx(A)-K<R. Hence
there exists an element 5+2€ Tx()), where 5&S5\Cx(4), k€K and the order of
5+k a power of 3. As S/Cs(A) operates fixedpointfreely on A (namely by mul-
tiplication with an element=1 of GF(4)), 5§ does not stabilize any character=1
of A. Hence k=1, so k*=1 and % does not centralize any Sylow-2-subgroup of
K. As Tx()) contains 5-% and a Sylow-2-subgroup of K, Tx()) is not abelian,
a contradiction. This shows finally Cy(4)=N.

b) We can assume that N is an abelian 2-group and N=N,x A4 for some
subgroup N, of N:

As N'<A<Z(N) (a) and lemma 9), N is nilpotent. Neglecting abelian direct
factors of G, we hence can assume that NV is a 2-group. As N<IG, we have N'<
G and N'<A4. But N'=4 is impossible, for then a 5-element of T would oper-
ate trivially on N/N’, but non-trivially on N’. By the same argument, 4 £ ®(N),
hence AN®(N)=1. This implies N=N, x A for some N,.

Now we show that all the groups described in lemma 11 have indeed »(G)=2.
Lemma 12. Suppose G has the structure described in lemma 11, namely
G=NT
N K=AT
A

with an abelian 2-group N. Then G has the character degrees 1,3, 4,5, 15, so
o(G)=2.

Proof. a) Let S be a Sylow-2-subgroup of 7. We can assume that S
operates on A=GF(4)® by matrices of the form

k1
This shows that for any 1#=s&.S
Cu(S) = Cy(s) =<a'|aEA).

If feZ\(T, A), then f(s)-f(s)’=f(¥)=f(1)=L1.

Hence f(s)eC(s)=C4(S).

b) Let n&Irr(N). As N=N,x A4, we can write A=v «, where y&Irr(NN,)
and acIrr(4). As T'(\)splits over N, there exists an extension x of A to T
and

(1 0) (ke GF(4)).
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A= (DA (D)) (W ETx(TMN)).

If =1, then T'(A)=G and we obtain only irreducible characters x Yr; of G of
degrees 1, 3, 4, 5.

Suppose a=#1. Then | T'(a)/N|=4. We show that for any s&€ T'(«) also A=
A:  Obviously, for ac 4

A(a) = Ma') = a'(a) = aa) = NMa) .

If neN, and n’=n-f(s) with f(s)€ 4, then A (n)=\(n")=9(n) a(f(s)). Buta’
=qa implies by a) that f(s)eC,(S)=<a!|acA>=Ker a. So N'(n)=v(n)=
- Mn). This shows | T(A)/N'|=4. Then (7A\ ¥))(N)=|G: T(\)|=15.

The lemmas 10-12 complete our proof for the case A=, There remain by
lemma 9 the cases A=1 or A=M, (=trivial module).

Lemma 13. We suppose the conditions of lemma 9 with A=1 or A=M,.
Then G/K is abelian and N< Z(G).

Proof. a) We show that G/K is abelian: As N/A4 is abelian (lemma 9),
we may assume that 4=1 and |G/M|=2.

G
M
N K.

Let 1=x&Irr(N) and X €Irr(K), such that X(1)=4. If T(\)=M, then T(AX)
=M, so AWX)°€Irr(G) and (AX)°(1)=8, a contradiction. Hence G fixes all
characters of NN, so also the elements of N. Therefore N<Z(G) and so G/K is
abelian. From now on we may also assume A=<, hence K==SL(2,5).

b) We show at first that [N, K]=1: If x€K and nEN, then n*-n'€4.
Hence the automorphism induced by x on N has at most order 2. As K==SI,(2,5)
has no non-trivial 2-factor-group, K centralizes N. Hence M=NK is an
epimorphic image of N'x K.

¢) Suppose now that N is non-abelian, hence N'=4. As K==SI,(2,5), K has
an irreducible character X with X(1)=4 and X(a)=—4 for 1fa=A4. On the
other hand, N has an irreducible character ¢ with @(1)>1 and @(a)=—¢(1),
because A=N'<Z(N). Now pXe&Irr(Nx K) and pX((a, a))=@X(1). Hence
the kernel {(a, a))> of the epimorphism of Nx K onto NK lies in the kernel of
@X. SopXe&lrr(NK)and pX(1)=4-¢(1). This contradicts o(NK)<w(G)=2.
d) Suppose NEZ(G), hence |G/M|=2. Let G=M<t>. There exists an
A€ Irr(N) such that A==\ and then AgKer A. Also, K=<SI,(2,5) has an ir-
reducible character X with X(1)=4, A< Ker X. Hence AX is a character of
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NK=M. Astpermutes at most the two classes of elements of K of order 5
resp. 10 and X takes on these classes the values 1,1 resp. —1, —1, so X=X (cf.
Dornhoff [1] page 228). Also (AX)'=A\*X=+=2AX. This shows that T'(AX)=M.
Hence (\X)°EIrr(G) and (AX)¢(1)=8, contradicting »(G)=2.

Lemma 14. We again suppose the conditions of lemma 9 and A=1 or
A=M,. Neglecting abelian direct factors, we have one of the following cases :
(1) A=1, |GIM|=1: Then G=A4;.

(2) A=1, |G/M|=2: Then GIN==S; and G|K is an abelian 2-group.
(3) A=M,, |G/M|=1: Now G is a central product of K==SL(2,5) with the

abelian 2-group N.

4) A=M,, |G/M|=2: Now M is a central product of K==SL(2,5) with an
abelian 2-group N and G|K is abelian. Also N<Z(G).

Proof. (I) If A=1 and |G/M|=1, then G=NxX K, where N is abelian
and K=4;.
(2) Let A=1 and |G/M|=2. By lemma 13, N is central in G. Hence the
2-complement of N is a direct summand of G. As N=C(K), G/N is a group
of automorphisms of K, hence G/N=S;.
(3) Suppose A=M, and |G/M|=1. Then G is a central product of K=<
SL(2,5) (lemma 9) with the abelian group N (lemma 13). Obviously, we can
assume that N is a 2-group.
(4) Finally suppose A=M, and |G/M|=2. Then M=NK has the structure
described in (3), and by lemma 13, G/K is abelian and N< Z(G).

Lemma 15. All the groups G described in lemma 14 have o(G)=2.

Proof. (I) Clearly, w(As)=2.
(2) Now N is central in G (lemma 13). Let AX€Irr(IV X K), where AEIrr(N)
and X€Irr(K). The behaviour of the irreducible characters of K== A4; under the
automorphism induced by G/N=S; shows that T(X)=G, if X(1)=4. In this
case X\ has an extension to G, as G/M is cyclic. In the other cases w(X(1))<1,
hence the irreducible components yJ» of (AX)® have w(y(1))<2.
(3) As N is abelian and K==SL(2,5), we have o(NXK)=w(K)=2. (By
Dornhoff [1] page 228, the character degrees of SL(2,5) are 1, 2, 3, 4, 5, 6, without
multiplicities.) As G=NK is an epimorphic image of N x K, so also w(G)=2.
(4) As M=NK is a central product, any character of M is of the form AX,
where A€ Irr(N) and XEIrr(K). As N<Z(G), so TA)=G. If X(1)=4 or
6, then inspection of the character table of SL(2,5) shows that X is stable under
any automorphism of SL(2,5). Hence T (AWX)=G in this case and AX can be
extended to G. Otherwise, X(1)e{l, 2, 3,5} and then all irreducible com-
ponents yr of (AX)¢ have w(y+(1))<2.
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