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The main purpose of this note is to present tables of ^-invariant (or "com-
plex projective") homotopy of spheres through the stable 13-stem and unstable
6-stem. Randall [8] has previously computed these through the stable 6-stem,
while various cases in the unstable 1, 2 and 3-stems have been computed by
Rees [10], and Oshima [5]. It has recently come to our attention that Oshima
[6] has also computed the ^-invariant stable homotopy through the 13-stem
(by quite different methods) and obtained some partial results in higher stems.
His results, however, require substantial arithmetical work to reduce them to
the explicit form we give here. We use his results to settle one question con-
cerning the 3-primary part of the 11-stem which oαr methods did not cover.
In all common cases, after a good deal of calculation, our results and Oshima's can
be seen to agree.

Another purpose of this note is to attempt to introduce a consistent and
suggestive terminology for what has been referred to in the past as "symmetric,"
"projective," or "F-projective" homotopy. The more general notion of G-
invariant homotopy is defined in §1, and some basic properties are given. In
§2 the methods used for computing the stable stems are outlined, and in §3
the non-stable cases are dealt with. Tables summarzing the results appear in
§4. This work was part of a Master's Thesis by the first named author [4].

1. ^-invariant homotopy

Let G be a topological group acting on Sn such that the orbit space Y—
SnjG is a CFF-complex (necessarily of dimension less than or equal to ή). We
usually write Yr for the quotient Y/Y^'V, and γ for any of the quotient maps
Sn^>Y or Sn-»Yr.

DEFINITION. 1.1 A map Sn -» X is called strictly G-invariant if f=f{Y
for some frY-^X, and G-invariant if f—fιΎ for some fx\Y->X. A class

is called G-invariant if it is represented by a strictly G-invariant map

Sn -> X (in which case any representative of a is G-invariant).
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We write πG (X) for the subset of G-invariant homotopy classes of πn{X)
(or π%(X) in case the group action μ:GxSn->Sn is not obvious).

The following proposition gives the most elementary properties of G-
invaiiant homotopy, the proofs being trivial.

Proposition. 1.2. (a) πG(X) φ φ, indeed 0 <ΞπG(X).
(b) Ifg:X-+X'theng*πG(X)ciπG(X').
(c) IfHaG acts on Sn by restriction of the G-action, then πG(X)(Zπξ(X).

The cases G=Z2, S\ S3 acting in the standard way on spheres Sn, S2n+\ S4n+3

respectively, have been subjected to the most study and have been called real
projective, complex projective, and quaternionic projective respectively (also real
symmetric, etc.). In general πG(X) is not a subgroup, as we see in the next
example.

EXAMPLE 1.3. πi^(S2)= {k2v:

Proof. See [4], [5], or [10].

Proposition 1.4. // X is an H-space or n is in the stable range (i.e. n<2r— 1
and X is (r—l)-connected)f then Un(X) is a subgroup of πn(X).

Proof. See [4] or [11].

An alternative definition for π%(X) is:

[Sn,X] = nn{X)].

The following useful lemma is an easy consequence of the homotopy extension
property and cellular approximation.

Lemma 1.5. If X is (r— lyconnected then

πG

n(X) = M<y*: [Yr>X] -> πn(X)].

Proof. See [4].

2. Computation of stable ^-invariant homotopy

The following theorem can be used for computing any stable G-invariant
homotopy subgroup:

Theorem 2.1. Take X to be (r—\yconnected and n<2r—ί. Then

πG

n(X)~Ker[(DPΛΪU: % - 2 ( ^ - « " 2 A l ) - πM_2(D(Cy)ΛX)] ,

where M is sufficiently large, D=DM_1 is the Spanier-Whitehead (M-l)-dual, and
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Ύ
p: Cy->Sn+1 is the map induced by the cofibration sequence of Sn-> Yr.

Proof. Applying the functor {—,ΣX} to the cofibration sequence results

in an exact sequence:

Hence, πζ(X)=ίm 7***Ίm(I,y)*=Ker ft.
Next, consider the following diagram:

{SM~

Since the vertical maps are given respectively by (M— l)-duality, desuspension

and stability this diagram commutes and these maps are isomorphisms. Hence

In the case of ^-invariant homotopy, say π2r+2k_1(X) with X {2r—2) or

(2r-l)-connected, we have Y2r=Y2r_1=CPr

r

+k~\ where CPp

q=CP*lCP*-\

CP^CP^/CP9'1 as usual. Hence Cy=CPr

r

+k. Furthermore, taking M divisi-

ble by any sufficiently large power of 2, D2M_ιCPr

r"
rk=^Ί,CP^Zr

rz\.ι ([2]), and

AM-I(£) = Σ / where JiS^'^'^-^CP^ZlzUi is the inclusion into the

bottom cell. For X a sphere the theorem now gives:

Lemma 2.2. (a) For k<r— 1

(b) For k<r 2r~2k 2 ) -> τr2M_2r_3(CPM_r_k_1)] .

These lemmas refer to the entire groups but are also true when the groups

are replaced by their ^-primary components. In our computations we deal

with the 2, 3, 5 and 7-ρrimary components individually. All others are trivial

in the range being considered.
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For the 2-primary component Mosher's results [3] can be applied to Lemma

2.2 directly, giving π%lk(Sn) for &<11 (2-primary part) in the stable range.

However, at any prime p, the following method is applicable.

The first step is to compute the stable homotopy groups of CPm and S2m

through the appropriate stem. This is done by means of the Adams Spectral

Sequence. For any space X the E2 term can be computed by constructing a

minimal resolution {Ms} for H*(X) and using the equality

*(H*(X; Zp), Zp) = Hom'(Ms, Zp)

where A is the mod p Steenrod algebra. Let {Ms} and {Ns} represent minimal

resolutions of H*(CPm) and i7*(S2wί), respectively.

Having computed the E2 terms, it is routine to find

Ker[/ I f 2 : ΈxtA(H*(S*>»); Zp), Zp) -> ΈztA(H*(CPu; Zp), Zp)]

by the following procedure. Starting with / * : H*(CPm; Zp)-*H*(S2m\ Zp),

we can choose / * : {Ms} -* {Ns} to be an ^4-chain map which covers / * . J # 2

is defined to be Hom^/*, Zp).

At this point we must consider the effect of any possible Adams differentials

as well as those cases where an element in the kernel of ]%2 gives a homotopy

class which can map under / * to a non-zero class of higher filtration. Using

this information it is possible to compute/*.

There are many cases where no differentials can exist because of dimen-

sional reasons, and other places where their existence can be decided by natural-

ity. In certain cases the exact homotopy sequence of the cofibration

S2m ί CPm -* CPm+1

can also be used to help determine the existence of differentials.

DIAGRAMS 2.4. The Adams Spectral Sequences for the 2-ρrimary parts

of π*(S2m) and π*(CPm) are illustrated through total degree 2m+7 by the

diagrams below (for CPm not all relations are shown as it would be confusing).

The action of J* is indicated as follows. When elements eifj and fitj are re-

presented by disks it implies that J^,2{hj)=fij 7#,2 is z e r 0 o n those repre-

sented by circles. For example, in the m=ί(8) diagram, J^2{^2,B)—ίi,** ]%i

(ez 6)—0. All differentials are indicated (by a remark or an arrow \ ) , and if

any class is mapped to one of a higher filtration it is noted. The corresponding

diagrams at the primes 3, 5, 7 are generally much simpler and are not given

here.
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m=0(mod8)

0 2 4 6

t—s—2m

m=\ (mod 8)

*π2m+7{CPm)=Z8; m=l (mod 16)

Z16; m=10 (modlό)

**2m+i(CPM)=Za; m=2 (mod 16)

Z16;w=10(mόdl6)
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m=3 (mod 8)

*πiM+Ί{CPm)=Z2+Z2; m=3 (mod 16)

Z 2 +Z 4 ; m = l l (mod32)

Z 2+Z 8;m=27(mod64)

m=4,(mod 8)

m=S (mod 8)

I to ' I
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by cellular approximation.

Lemma 3.4. For n>\ the Hopf map y:S*->S2 induces isomorphisms

V
Proof. Consider the Hopf fibration S1->S3-+S2. For w>l, this induces

the fibre mapping sequence:

... -> 0 = [CP\ S1] -> [CP\ S3] S. [CPn, S 2 ] .

Because of cup products, for n>\, any /: CPn->S2 is such that f*:H2(S2; Z)
->H2(CPtt; Z) is trivial, and hence 0=f*: H2{CPn; Z)->H2{S2; Z). By [1], p.
68, / lifts to S3 and η$ is therefore an epimorphism. Thus η$ is an isomorphism.
By the following commutative diagram

maps π |B

1

+ 1(53) = Im j l t isomorphically onto w| B

1

+ 1 (5 2 )=Im γ,.

Proposition 3.5. ^ 2

s

B

x

+ i(5 3 )=0c«- 5 (5 3 )=:Z 2 .

Proof. Consider the factorization

S5

en = s4

Since πf(Si) = 0 (from stable case), γ—0 and the result follows.

Corollary. πt(S2)=0 (by 3.4 and 3.5)

This result, along with previous non-stable computations by Oshima and

Rees, completes the nustable 1,2,3 stems. The next proposition gives the

results for the 4-stem.

Proposition 3.6. (a) πf(S5) = 0cπ9(S5)^Z2.
(b) ;r7

s l(S3) = πτ(S3)~Z2.

Proof, (a) πf(S5)CπliS5)=0 [7].
(b) π7(S3)=Z2[ζoV6\. Now VstΞπfXS*) (§2), so ζo-η6eπf(S3) by naturality.
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m=6 (mod 8)

m = 7 (mod 8)

oa

* / # takes the class of a to the class of a1. However, on the E2 level, J$(a)=Q.

3. Unstable computations

Calculating π%lk(Sn) in the unstable range k>n— 1 presents extra diffi-
culties since in general this is not a subgroup. Although no general technique
such as that of §2 is available, one useful method is to write

?y X] -> π2m+1(X)]

and then pick the truncation number r as large as possible (cf. Lemma 3.1 below).
A second method is to apply the stable computations of §2 when possible.

Lemma 3.1. For k>n—l

Proof. By cellular approximation, truncation at CPn

n*
k is possible. Let

ζn generate H2\CPTk\Z). Since k>n, ? 2 φ0. It follows that any map
/: CPn

n

+k-* S2n induces/*=0: H2n(S2n Z) ->H2n(CP^k Z), and therefore /factors
through CPlXl

REMARK 3.2. In the remaining non-stable case k=n— 1 the Hopf invariant
hiπ^^S^-^Z will yield useful information, at least on the infinite cyclic
subgroup of 7tAn_λ{S2n).

REMARK 3.3. In 7Γ2

s«1+2*+i(S'2n+1) truncation occurs automatically at CPlXl,
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Corollary. π7

s\S2)=π7{S2)^Z2 (by 3.4).

We now turn to the two remaining cases in the 5-stem.

Theorem 3.7. πi\S4)=0dπ9(S4)**Z2.

Proof. By Lemma 3.1 we must consider

The cofibration sequence S7^>S6== CPI -> CPI -> S 8 -%S7 -* gives rise to the
exact sequence

-[CP 3

4 ,5 4 ]-τr 8 (5 4 )

Now π71(S6)=Z2[η6] (§2), hence γ—y6 and Σγ—?77. It follows readily from
known facts about compositions in the homotopy of spheres [12] that 7* is
monic and (Σγ)* epic. Hence [CPI, S4]=0.

Lemma 3.8. [CPf, 5 6 ] « Z with generator [β] such that the composition

S6^CPi->S6 has degree 8 (note [CPf, S6] is a group by stability).

Proof. Consider the cofibration sequence

(1) S7 -I CPI = S6 ί CPI -> S*^S7 -* ... ,

where Ύ—y6 as in 3.7. This induces the exact sequence.

r 0 7 Cβl Γ Q6 C"6l ~, Γ / ^ P ^ Q6Ί Γ Q8 Q6Ί ΓC7 Q6Ί
I O j O J "* Î O , O J •* l U x 3, O J ^ I O j O I •* I O j O I ^— •**

8 8 8 ^ 8

Hence [CPί, S 6 ]«Z with generator [a] such that [αj]=/[α]=2*6.

Now look at the Puppe sequence

(2) S9-XcPί-tcPS-*S10-* .-.

In order to identify [y]£:π9(CPl) we consider the induced homotopy sequence,

which is stable and hence exact:

8
Z

CP!) - * 9 ( C P 3

5 )
8
^ 3

II
0

It follows from exactness that [γ] generates the Z4 summand.



612 S. GILBERT AND P. ZVENGROWSKI

From (1) we get the following exact sequence:

t π9(S') ]Λ π9(CPi)

8 8 8 8 ^ 8

Again, using exactness we find j*[v]=[Ύ] where v generates Z8, i.e. 7—jv.
From this and (2) we get:

J ± - [CPI, S*] t [CPξ, 56] <- ^10(,S6) = 0 - -
,i/ 8

V z

Therefore 7*[α]=^*/[α]=^*(2^6)=2^, which implies by exactness that

with generator [β] such that ί»[/8]=4[α]. Thus

Theorem 3.9. π£(S*)= {32k2w6: k(ΞZ}, where πn(S6)=Z[w6].

Proof. Consider any map a: CPl~>S6. By the lemma [α]=&[/3] for some

integer k. It also follows from the lemma that <χ*(u6)=8kv3, where u6 generates

# 6 ( S 6 ; Z ) « Z and v{ generates H2i{CPn

r\Z)^Z,r<i<n. Setting f=ay, there

is a homotopy commutative diagram of cofibration sequences

Su ^ CPI L CPI -* 512

V
QH •/ r»6 r̂ Z01 C12

O —*• O c—> \s f * O ,

for a suitable map φ.
Clearly /ί6(C/;Z)=Z[w] with j*(u)=u6, and i/12(Cy, Z)=Z[v] with ^*(ϋ)

=z;6. Since i* is an isomorphism in dimension 6, it is easy to see that φ*(u)

= 8kv3. Thus

tf) = (φ*(u))2 = 64k2vl =

u2 = 64k2v.

Letting h denote the Hopf invariant, this shows

h(f) = (Ak2 = h(32k2w6)y since h(w6) = 2 .

But k is monic here, so f~32k2w6.
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Theorem 3.10. π?ϊ(S5)=0(Zπn(S5)=Z2.

Proof. We must consider

S11

A /
By the usual cofibrations one readily finds

0=>»:[CPί,5 ϊ J-»>r β (5 ϊ ),

where /: S6<^,CP$. Letting j/Ί equal the composition Sβ^*

= 0 . Using this we can trucate to

Sn =• S 5

Λ /
CPt—S8VS10

Now we must identify [7]. From the Puppe sequence

S11 Z CPI Λ CPt -> 512 -* ...

and stability we get the following induced exact sequence:

") - Tπ(CP4) - *u(

11 s II
Z4 0

[7] generates K e r [ ^ : sru(CP4

5)-* ^U(CP4

6)] so [γ]=(5710, 2»Λ).
We know ^ 8 (5 5 )=Z 8 (^ 5 ) and πlo{S*)=Z2[β] with /3=^ 5o 1 7 l, [12], p. 44.

Now (0,i>5)o(i710,2ι>8)=2i>5θj/8=0eZ2 and (^>0)o(i710,2i'g)=^oi710=i;5o57loi710=i'5θi7|
=z/5o(4i'8)=4(i'|)=0eZ2. Since these classes generate any classes of πn(S5) it

follows that 1

Theorem 3.11. π$\S3)=0^π9{S3)**Z3.

Proof. £9 > £3

Λ /
CP\
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Consider the mod 3 Postnikov system for S3

i * x
K(Z3, 6) ^X6^K(Z3,10)

where i*(x1^=

We have the fibre mapping exact sequence:

[CP|, K(Z, 2)] - [CPI, K(Z3,6)] * [CPI, X6] - [CP\, K(Z, 3)1

I I I
0 H«(CPlZ3) = Z3[ζ3] 0

For any f\CP\-^X% there is an extension to some/:CPf-»-X'6. The map/ will

lift to CPI->X9 if and only iff*(xio)=0. But

Therefore, / lifts to g:CP5

2->X9. The map g lifts to CPl^S3 since all other
obstructions are in dimensions >11 so they they vanish. Therefore, any map
/: CP%->S3 will factor through the inclusion μ as

CPi ~^->^S3

\ A
CPI

Ύ IL

Since S9 -> CP\ -^ CP\ represents two stages of a cofibration sequence it follows

Proposition 3.12. πϊl(SΊ)=ϋ^πιz{SΊ)^Z2.

PrOOf. £13 > £7

\ /

CPI
Ύ

Consider S13->CP£->CPJ-»S14->•••. By stability this induces the exact se-
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quence

—. / C13\ 2? _• //^D6\ ^ __ I/^Ό7\ ί O14\ (\
7 Γ 2 3 ^ O j — > ^ 1 3 \ 4y — ^ 1 3 V 4 / — ^ ^ 1 3 \ * ^ / = = " — ^ " * * >

hence [γ] generates Ker[πi3(CPl)-+πi3(CPl)]. By computing the 2-primary
components of these groups we see that [γ] = 0 (mod C2), hence πn(S7)=0.

REMARK. In [9] Randall shows that the Whitehead square wn is ^-invariant
only if n = 2m— 1 for some m. From the results in this section we see that w3y

w7 (also to1 trivially) are ^-invariant. It seems plausible to conjecture that
wn is otherwise never ^-invariant.

4. Tables

Tables I and II below give the 2- and 3-primary subgroups of the S1-
invariant homotopy of spheres through the stable 13-stem. In this range all
other ^-primary parts are trivial, with the exceptions πj;l7(Sn)=Z5 when n^O
(mod 5) and π2ln(SM) = Z7 when n ΐ O (mod 7). Table III gives the unstable
^-invariant subsets through the 6-stem.

Table I. πf+k(Sn), k<n—l, 2-primary part

(A, B,... explained in Table la)

n modulo 16

1

2

4

5

6

7

8

9

10

11

12

13

0

/

0

/
/

z?

/
0

/
A7

/

z2.
ηV

/

/

An

/

0

1.

0

/
/

z2
t

/
0

/

z2V2

/

/

0

z2
ημ

/

/

0.

/

2

/

z2

/
/
z2Av

/

0

/
/

B7

/

/

BS

/

Bn

/

0

3

0

/

0

/
/

0

/

z2
V2

/

/

z2

V,ηa

/

0

/

0

/

4

/

0

/

2
V

/

0.

/

c7

/
/

0

/

Cπ.

/

0

5

o.

/

z2η2

/

/

0

/

0

/
/

0

/

z2ημ

/

/

0

/

6

/

z2
V

/

/

Z\
2v

/

0

/

0

/

/

/
/

A i .

/

0

.7

0.

0

/
/

0

/

0

y
y
z\

Vtηa

/

0

y
y

0

/

δ

0

y
z42v

/

0

yy
z82σ

/

y
ηV

y
/z24C

/

0

9

0.

y
yz2.

y
y0

/

\ z?

V2

y
y

0

A
z2
ημ

y
/0.

10.

/

z2V

y
/0

/

0

yy
z82σ

/

yzι
Vrfσ,
y
z24C

/

0

.11
0.

y
y0

y
/

0

z2
V2

y
yzi
v,ησ

Y
0

y
/0

/

.12

/

0.

y
z8

V

/

0

y
z44σ
/

/

0

y
/z8

c
/

0

13
0

y
yz2

Ψ

y
y

0

0

y
y

0

/ψ
z2
ημ

y
/0

14.

/

z271

y
/z42v

/

0

yy
z2δσ

/

/

z\
vyη

2σ,

y
/Z\

2ζ

/

0

15
0.

y
y0

y
y0

o

y
y
z2.
ησ

Y
0

yy0

/
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Table la

0 n==0 (mod 128)

Z2[8σ];w=64(modl28)

Z4[4<7];w=32(mod64)

Z8[2σ]; otherwise

ίO n=\ (mod 32)

jz2L8σ];n=20(mod32)

B7 =

A7 =

C 7 =

w=2 (mod 64)

B9=\z2[ηV]+Z2[7]2σ]+Z2[μ]; w=18 (mod 32)

\Z2[ηV]+Z2[η2σ]+Z2[β]; «=34 (mod 64)

_ (Z2[ηV]+Z2[η2σ] n=22 (mod 32) |
9 ~ lZ2[J7P]+Z2[372σ]+Z2|>]; n=6 (mod 32) J

0 n=2 (mod 32)

Z2[8σ];wΞl8(mod32)

1

p [ 4 C ] wΞO (mod 256) λ

z4[2C]; otherwise J

(Z2[4C]; w=100 (mod 128) \

Cn= ]z4[2C]; w=36 (mod 128) [

Zβ[C] otherwise

Table II

π?+k(Sn), k<n-l

(3-primary part)

j

Z2[4f];Λs2(mod64)

0 othersiwise

0 ;w=38(mod64)

; « = 6 (mod 64)

Z8[C] otherswise

n =0(9)

^=0

1

2

3

4

5

6

7

8

9

10

11

12

13

0

0

0

0

0

0

0

0

0

0

0

•Pii

0

z
3

.1

0

-0

0

z
3

0

0

0

z
3

0

0

z
3

z
3

0

z
3

2

0

0

0

z
3

0

0

0

0

0

0

0

Qll

0

0

3

0

0

0

0

0

0

0

z
3

0

0

0

z
9

0

z
3

4

0

0

0

z
3

0

0

0

z
3

0

0

z
3

0

0

z
3

5.

0

0

0

z
3

0

0

0

0

0

0

0

z
9

0

0

6

0

0

0

0

0

0

0

z
3

0

0

0

z
9

0

z
3

7

0

0

0

z
3

0

0

0

z
3

0

0

z
3

z
3

0

z
3

8

0

0

0

z
3

0

0

0

0

0

0

0

z
9

0

0

n=0 (mod 81)
«Ξ27, 54 (mod 81)

«Ξ9, 18 (mod 27)

n=2 (mod 27) \
n=ll (mod27)[
n=20 (mod 27))
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Table III

π»+k\b ) , k^n — 1

n=2 3 4 5 6 7

k=l

2

3

4

5

6

0

/

z2

0

/

z2

/

0

—

—

A,

/

0

—

—

—

0

/

0

—

—

— •

—

As

/

—

—

—

—

—

0

t=Of λ J.
A5={32k2ω6: k<=Z}

In Table I the subgroups are given with their corresponding generators,

as these are not always obvious. In all other cases the subsets automatically

determine the generators.

[3]

[4]
[5]
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