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ABSTRACT
We propose a theoretical approach to estimate the permeability coefficients of substrates (permeants) for crossing membranes from donor (D)
phase to acceptor (A) phase by means of molecular dynamics (MD) simulation. A fundamental aspect of our approach involves reformulating
the returning probability (RP) theory, a rigorous bimolecular reaction theory, to describe permeation phenomena. This reformulation relies
on the parallelism between permeation and bimolecular reaction processes. In the present method, the permeability coefficient is represented
in terms of the thermodynamic and kinetic quantities for the reactive (R) phase that exists within the inner region of a membrane. One
can evaluate these quantities using multiple MD trajectories starting from phase R. We apply the RP theory to the permeation of ethanol
and methylamine at different concentrations (infinitely dilute and 1 mol % conditions of permeants). Under the 1 mol% condition, the
present method yields a larger permeability coefficient for ethanol (0.12 ± 0.01 cm s−1) than for methylamine (0.069 ± 0.006 cm s−1), while
the values of the permeability coefficient are satisfactorily close to those obtained from the brute-force MD simulations (0.18 ± 0.03 and
0.052 ± 0.005 cm s−1 for ethanol and methylamine, respectively). Moreover, upon analyzing the thermodynamic and kinetic contributions to
the permeability, we clarify that a higher concentration dependency of permeability for ethanol, as compared to methylamine, arises from the
sensitive nature of ethanol’s free-energy barrier within the inner region of the membrane against ethanol concentration.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0214401

I. INTRODUCTION

Permeation of substrates (permeants) through cell membranes
is a fundamental process for biological systems. Most permeants,
including drug molecules, enter a cell with passive permeation
driven by the concentration gradients of the permeants between the
donor and acceptor phases. Hence, the permeability coefficient that
characterizes the efficiency of passive permeation is a valuable indi-
cator for drug delivery. The permeability coefficient is experimen-
tally measured through different assays, such as the parallel artificial
membrane permeability assay (PAMPA)1–3 and the carcinoma col-
orectal cell-based (CaCo-2) assay.4,5 The sophisticated spectroscopy
techniques are also useful for quantitative and real-time analysis of
membrane permeation.6 Since the permeation process is governed
by such factors as the solubility and mobility of the permeants in a

membrane, the theoretical and computational approaches in the
atomistic detail have been recognized as promising for realizing
systematic analysis.7–10

Molecular dynamics (MD) simulation is the most popular
method to elucidate the detailed mechanisms of the permeation
process from a theoretical point of view. The inhomogeneous
solubility–diffusion (ISD) model11,12 incorporating MD simulations
has played a central role in analyzing the permeation processes.8,13

In this model, the permeability coefficient is expressed using the
free energy profile and position-dependent diffusion coefficient14,15

along the reaction coordinate for the permeation process. The ISD
model has prompted researchers to develop methodologies for effi-
ciently computing the position-dependent diffusion coefficient from
MD simulations.16–19 This model is based on the Smoluchowski
equation, realizing the simple treatment of permeation processes.

J. Chem. Phys. 161, 024108 (2024); doi: 10.1063/5.0214401 161, 024108-1

Published under an exclusive license by AIP Publishing

 19 August 2024 01:14:56

https://pubs.aip.org/aip/jcp
https://doi.org/10.1063/5.0214401
https://pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0214401
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0214401&domain=pdf&date_stamp=2024-July-10
https://doi.org/10.1063/5.0214401
https://orcid.org/0009-0006-3699-6817
https://orcid.org/0000-0003-1263-8995
https://orcid.org/0000-0002-3461-3660
https://orcid.org/0000-0002-9241-853X
https://orcid.org/0000-0001-7138-250X
https://orcid.org/0000-0001-7176-441X
mailto:kasahara@cheng.es.osaka-u.ac.jp
mailto:nobuyuki@cheng.es.osaka-u.ac.jp
https://doi.org/10.1063/5.0214401


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

However, the difficulty arises when the permeant shows the sub-
diffusive motion inside the membrane in the long-time limit.20,21

In such a case, employing the Smoluchowski equation is inap-
propriate. Recently, alternative MD-based approaches have been
developed. Thanks to the recent advances in computers, the method-
ologies based on the direct observation of the permeation events
are available for the permeants exhibiting the fast permeation
kinetics.8,22–24 The flux-based counting (FBC) and transition-based
counting (TBC) methods enable us to estimate the permeability
coefficient reliably without resorting to any theoretical models. Fur-
thermore, the kinetic models such as the Markov state model (MSM)
for permeation constructed with the enhanced sampling methods
yielded the permeability coefficients qualitatively correlated with the
experimental measurements.25–29 A methodology to calculate the
permeability coefficients without assuming the Markovianity of the
permeation dynamics was also developed using the equilibrium path
ensemble.30

The theoretical framework for molecular binding kinetics such
as protein–ligand binding could be useful for elucidating the per-
meation processes. Votapka and Amaro derived the theoretical
relationship between the permeability coefficient and mean first pas-
sage time (MFPT), which was related to the rate constant in the
protein–ligand binding31,32 and was defined in the context of perme-
ation as the average time for the permeant to arrive at the acceptor
phase from the donor phase for the first time.33 Since many kinetic
theories have been developed to compute the MFPT, the relationship
between the MFPT and permeability coefficient is useful to develop
new methodologies for elucidating the permeation processes. They
also derived the theoretical expression of the permeability coefficient
using crossing probability that is suitable for the milestoning-based
method.34,35

Recently, we developed an MD-based methodology for eluci-
dating molecular binding kinetics36,37 using the returning proba-
bility (RP) theory,38 a rigorous diffusion-influenced reaction (DIR)
theory. The RP theory is based on the Liouville equation of the phase
space densities with the reaction sink term that describes the reac-
tion (binding) probability on the reactive state existing in a binding
process between the dissociated and bound states. The perturbative
expansion of the reactant distribution yields the theoretical expres-
sion of the binding rate constants suitable for MD simulations. It
has been demonstrated that the RP theory gives the binding rate
constants for the inclusion36 and protein–ligand binding37 systems
consistent with those evaluated through the long-time MD simula-
tions. Thanks to the analytical nature of the RP theory, furthermore,
the binding kinetics is characterized in terms of the thermodynamic
and kinetic properties of the reactive state. Hence, applying this
theory gives physicochemical insights into the binding kinetics in
addition to the binding rate constants. Accordingly, establishing
the framework for analyzing the permeation processes with the RP
theory could be useful to unveil the detailed permeation mechanism.

In this study, we develop an MD-based methodology for quan-
tifying the permeability coefficient for a membrane system. We first
derive the exact relationship between the permeability coefficient
and the permeant distribution function at unsteady state which is
similar to that between the binding rate constant and reactant distri-
bution function for the inclusion and ligand-binding systems. Then,
by employing the perturbative expansion technique utilized in the
RP theory, the tractable expression of the permeability coefficient

at a steady state is derived. In this expression, the coefficient is
represented in terms of the thermodynamic and kinetic properties
of the permeants inside the membrane. Thus, by computing these
properties with MD simulations, the estimation of the permeability
coefficients is realized.

We apply the present method to the permeation processes
of ethanol and methylamine through the lipid bilayer com-
posed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholin (POPC).
Recently, Ghorbani et al. investigated ethanol permeation at dif-
ferent concentrations using the ISD model and counting-based
methods such as FBC and TBC methods.39 We also employ
the TBC method for both ethanol and methylamine under the
1 mol% condition to test the validity of the present method.

II. THEORY
A. Permeability coefficient

We briefly introduce the definition of the permeation coeffi-
cient. Let us consider a planar membrane system in which the donor
(D) and acceptor (A) solution phases for permeants are separated by
a lipid membrane (Fig. 1). The concentrations of the permeants for
phases D and A are defined as cD and 0, respectively. According to
Fick’s law, the flux across a membrane at the steady state, Jss, is pro-
portional to the concentration gradient of the permeant, Δc = cD, as
follows:

Jss = cD Pss, (1)

where Pss is the permeability coefficient and the subscript ss means
steady state. The generalization of Eq. (1) to the unsteady state is
possible by considering the time-dependent flux and permeability
coefficient as

J(t) = cD P(t), (2)

where J(t) is defined as the number of the permeants moving to
phase A per unit area and time. Thus, J(t) can be described by

J(t) = − 1
σ

d
dt

N(t), (3)

FIG. 1. Membrane permeation system. z-direction is normal to the membrane
surface and z = 0 coincides with the center of mass (CoM) for the membrane.
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where N(t) is the number of the permeants that are present in a
membrane or in phase D at time t, and σ is the cross-sectional area
of the membrane. Note that J(t) and P(t) at t →∞ coincide with
Jss and Pss, respectively.

B. Returning probability (RP) theory for membrane
permeation

The returning probability (RP) theory provides a theoreti-
cal fundament to elucidate host–guest binding phenomena, such
as protein–ligand binding, based on the Liouville equation of the
phase space density with the reaction sink term that describes the
insertion of the guest to a binding site of the host. The theoretical
expression of the binding rate constant derived by the RP theory
is applicable to the various types of binding processes.36,37 In this
subsection, we show that the RP theory for membrane permeation
can be constructed in a similar way as for host-guest binding. In
the RP treatment of host–guest systems, the binding proceeds from
the dissociated (initial) state through the reactive (intermediate)
state to the bound (final) state. For the membrane permeation,
phases D and A are the initial and final states, respectively, and
a “reactive phase” is introduced as the intermediate configurations
within the membrane which the permeant is to pass through.

We consider a membrane system that contains N0 permeant
molecules and is in equilibrium at time t ≤ 0. The center of mass
(CoM) for the ith permeant molecule at time t is defined as ri
= (xi(t), yi(t), zi(t)), where the z-direction is normal to the mem-
brane surface and z = 0 coincides with the CoM for the membrane.
Then, we assume that the permeation process of the ith permeant
molecule can be described using the reaction coordinates composed
of zi(t) and residual part, Λi(t). Λi(t) represents the orientation and
intramolecular degrees of freedom for the ith permeant molecule.
Let us define the phase space density, Ψi(Γ, t), that the ith perme-
ant molecule does not experience the transition to phase A and the
phase space coordinate of the system is Γ at time t. We also define
the reactive (R) phase located around the free energy barrier in the
membrane, Υ. The phase R is called so in analogy with the reactive
state in the host–guest binding process.37 We further assume that the
permeants in Υ move to phase A at a certain frequency represented
by the first-order rate constant, kR→A.

By introducing the following reaction sink function:

S(zi(t), Λi(t)) =
⎧⎪⎪⎨⎪⎪⎩

kR→A, (zi(t), Λi(t)) ∈ Υ,

0, (zi(t), Λi(t)) ∉ Υ,
(4)

the differential equation for Ψi(Γ, t) can be expressed as

∂

∂t
Ψi(Γ, t) = −LΨi(Γ, t) − S(zi(t), Λi(t))Ψi(Γ, t). (5)

Here, L is the Liouville operator of the system, and the second term
of the right-hand side of Eq. (5) represents the decrease in the prob-
ability densities due to the transition of the ith permeant molecule to
phase A. Ψi(Γ, t) is normalized as

N0

∑
i=1
∫ dΓ Ψi(Γ, t) = N(t). (6)

Thus, performing the integration of Eq. (5) over Γ and summation
against the permeant molecules leads to

d
dt

N(t) = ( d
dt

N(t))
NR
−

N0

∑
i=1
∫ dΓ S(zi(t), Λi(t))Ψi(Γ, t), (7)

where (dN(t)/dt)NR is the time derivative of N(t) for the hypo-
thetical non-permeable system, in which the transition events of the
permeants to phase A are absent. It is defined as

( d
dt

N(t))
NR
= −

N0

∑
i=1
∫ dΓ LΨi(Γ, t), (8)

and this term vanishes due to the conservation of the number of
molecules. We introduce the nonequilibrium distribution function
as

g(r, Λ, t) = 1
cD

N0

∑
i=1
∫ dΓ δ(r − ri(t))δ(Λ −Λi(t))Ψi(Γ, t). (9)

From Eqs. (7) and (9), the following equation is obtained:

d
dt

N(t) = −cD ∫ dr∫ dΛ S(z, Λ)g(r, Λ, t). (10)

Substitution of Eqs. (3) and (10) into Eq. (2) gives the theoretical
expression of P(t) as

P(t) = 1
σ ∫ dr∫ dΛ S(z, Λ)g(r, Λ, t). (11)

The above expression of P(t) is parallel to that of the rate coef-
ficient of molecular binding based on the RP theory.36,38 In the
RP theory for molecular binding, the rate coefficient of binding is
exactly expressed as the integration of the nonequilibrium distri-
bution function of guest molecules multiplied by the reaction sink
function over the reaction coordinate. The time dependence of the
nonequilibrium distribution is governed by the Liouville equation
with the reaction term leading to the time evolution of g(r, Λ, t)
[Eq. (9)]. Then, the perturbative–expansion technique employed in
the RP theory can be adopted to derive a tractable expression of
P(t) as the Laplace transform (t → s), P̂(s), from Eq. (11). The
derivation is found in Appendix A.

The resultant expression of P̂(s) is given by

s P̂(s) = 1
σ ∫ dr∫ dΛ S(z, Λ)geq(r, Λ)(1 + kR→AP̂ RET(s))

−1. (12)

Here, geq(r, Λ) is the equilibrium part of g(r, Λ, t), defined as

geq(r, Λ) = 1
cD

N0

∑
i=1
∫ dΓ δ(r − ri)δ(Λ −Λi)Ψeq(Γ), (13)

where Ψeq(Γ) is the phase space density at the equilibrium state.
P̂RET(s) is the Laplace transform of the returning probability,
PRET(t), defined as

PRET(t) =

N0

∑
i=1
⟨Θ(zi(t), Λi(t))Θ(zi(0), Λi(0))⟩

N0

∑
i=1
⟨Θ(zi(0), Λi(0))⟩

, (14)
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where Θ(zi(t), Λi(t)) is the characteristic function for phase R given
by

Θ(zi(t), Λi(t)) =
⎧⎪⎪⎨⎪⎪⎩

1, (zi(t), Λi(t)) ∈ Υ,

0, (zi(t), Λi(t)) ∉ Υ.
(15)

PRET(t) is the conditional probability of finding a permeant in Υ at
t = t when that molecule was in Υ at t = 0. Due to the final value
theorem of Laplace transform, s P̂(s) s→0ÐÐ→ Pss, one can obtain the
following expression of Pss from Eq. (12):

Pss =
kR→A

σ ∫
Υ

dr K(r)(1 + kR→A∫
∞

0
dt PRET(t))

−1
, (16)

since S(z, Λ) = kR→AΘ(z, Λ). Here, K(r) is defined as

K(r) = ∫ dΛ Θ(z, Λ)geq(r, Λ). (17)

By defining the concentration of the permeants in phase R at r as

cR(r) =
N0

∑
i=1
∫ dΛ Θ(z, Λ)∫ dΓ δ(r − ri)δ(Λ −Λi)Ψeq(Γ), (18)

K(r) is expressed using Eqs. (13), (17), and (18) as

K(r) = cR(r)
cD

. (19)

Equation (19) indicates that K(r) is the equilibrium constant
between the position r in phase R and phase D (donor solution
phase). Since the planar membrane is uniform along with the x- and
y-directions, the concentration of the permeants only depends on z,
i.e., cR(r) = cR(z) and K(r) = K(z). Hence, Eq. (16) can be rewritten
by performing the integration along the x- and y-directions as

Pss = kR→AK∗(1 + kR→A∫
∞

0
dt PRET(t))

−1
, (20)

where

K∗ = ∫
Υ

dz K(z). (21)

C. Theoretical expression of K(z) using solvation
free energies

In this subsection, we describe an efficient scheme of calcu-
lating K(z) based on the solvation free energies of the permeant
molecule (solute). The solvation free energies associated with the
solvation process of the solute in phase D and with the solvation
process at position z in phase R are denoted as ΔμD and ΔμR(z),
respectively. According to the equilibrium condition between the
two different phases, K(z) can be expressed as

K(z) = e−βΔG(z), (22)

where β is the inverse temperature and ΔG(z) is the free energy
profile along the z-direction defined as

ΔG(z) = ΔμR(z) − ΔμD. (23)

Note that ΔG(z) is equivalent to the potential of mean force (PMF)
given by

ΔGPMF(z) = −
1
β

log
cR(z)

cD
. (24)

Both ΔμD and ΔμR(z) can be represented in terms of the
configurational integrals. In the case of phase D, the solute is sur-
rounded by only the solvent molecules (water). Let us define the
full coordinates of the solute and the set of full coordinates of
the water molecules as xU and XV, respectively. We also express
the intramolecular energy of the solute, the total potential of the
solvents, and the interaction between the solute and solvents as
UU(xU), UV(XV), and UUV(xU, XV), respectively. Then, ΔμD is
given by

ΔμD = −
1
β

log ∫dxU ∫dXV e−β V sol
D (xU ,XV)

∫dxU ∫dXV e−β Vref
D (xU ,XV)

, (25)

where Vref
D (xU, XV) and Vsol

D (xU, XV) are, respectively, the total
potentials of the reference solvent and solution systems defined as

Vref
D (xU, XV) = UU(xU) +UV(XV), (26)

Vsol
D (xU, XV) = UU(xU) +UUV(xU, XV) +UV(XV). (27)

In the reference solvent, the interaction between the solute and sol-
vent molecules is absent. As for phase R, both the solvent molecules
(water) and membrane are relevant with the solvation thermody-
namics of the solute. Even in the presence of the membrane, ΔμR(z)
can be expressed in a similar way by regarding the membrane as
part of the solvent mixture and considering the conditional ensem-
ble average using z and Λ. We denote the solvent mixture as V′, and
the set of full coordinates of the solvent molecules, total potential
of the solvents, and the interaction of the solute with the solvents
as XV′ , UV′(XV′), and UUV(xU, XV′), respectively. The total poten-
tials of the reference solvent and solution systems for phase R,
Vref′

R (xU, XV′) and Vsol′
R (xU, XV′) are, respectively, defined as the

right hand sides of Eqs. (26) and (27) in which V involved in the
subscripts is replaced with V′. The theoretical expression of ΔμR(z)
is given by

ΔμR(z) = −
1
β

log ∫dxU ∫dXV′ Φz(zU, ΛU)e−β V sol′
R (xU ,XV′)

∫dxU ∫dXV′ Φz(zU, ΛU)e−β Vref′
R (xU ,XV′)

, (28)

where zU and ΛU are the z-coordinate of the center of mass (CoM)
for the solute and residual part of the reaction coordinate, respec-
tively, and Φz(zU) is the characteristic function for the region
between z and z + Δz in phase R. At this point, the width along z
is set to be finite (but small) to formulate equations that are used in
numerical calculations in practice. By introducing

θz(zU) =
⎧⎪⎪⎨⎪⎪⎩

1, z ≤ zU < z + Δz,

0, otherwise,
(29)

Φz(zU, ΛU) can be expressed as

Φz(zU, ΛU) = Θ(zU, ΛU)θz(zU). (30)
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The methodologies of computing the free energy, such as the
free energy perturbation (FEP),40 thermodynamic integral (TI),41

and Bennett acceptance ratio (BAR),42 can be used to obtain ΔμD
and ΔμR(z). In the case of ΔμR(z), the free energy calculation is
required for each region defined with z. To avoid the repeated free
energy calculations, we adopt the scheme of calculating the profile of
ΔμR(z) using the local distribution of the solute and solvation free
energy for an arbitrarily defined state S, Δμ S.37 To simplify the nota-
tion, we introduce the ensemble averages in the reference solvent
and solution systems for phase R, respectively, as

⟨⋅ ⋅ ⋅ ⟩ref′ =
1

Zref′
∫ dxU ∫ dXV′ (⋅ ⋅ ⋅ )e

−β Vref′
R (xU ,XV′), (31)

⟨⋅ ⋅ ⋅ ⟩sol′ =
1

Zsol′
∫ dxU ∫ dXV′ (⋅ ⋅ ⋅ )e

−β V sol′
R (xU ,XV′), (32)

where Zref′ and Zsol′ are the configurational integrals for the
reference solvent and solution systems, respectively, defined as

Zref′ = ∫ dxU ∫ dXV′ e−β Vref′
R (xU ,XV′), (33)

Zsol′ = ∫ dxU ∫ dXV′ e−β V sol′
R (xU ,XV′). (34)

Then, Eq. (28) is rewritten as

ΔμR(z) = −
1
β

log
⟨Φz(zU, ΛU)⟩sol′

⟨Φz(zU, ΛU)⟩ref′

Zsol′

Zref′
. (35)

If we define the characteristic function corresponding to state S as
θ S(z, Λ), Δμ S is also expressed as

Δμ S = −
1
β

log
⟨θ S(zU, ΛU)⟩sol′

⟨θ S(zU, ΛU)⟩ref′

Zsol′

Zref′
. (36)

By subtracting Δμ S from ΔμR(z), the following equation is obtained:

ΔμR(z) = Δμ S −
1
β

log
⟨Φz(zU, ΛU)⟩sol′

⟨θ S(zU, ΛU)⟩sol′
+ 1

β
log
⟨Φz(zU, ΛU)⟩ref′

⟨θ S(zU, ΛU)⟩ref′
.

(37)

The arguments of the logarithms for the second and third terms,
respectively, stand for the population ratios between the region of
z to z + Δz in phase R and state S for the solution system and for
the reference solvent system. Furthermore, if we describe the perme-
ation process using only z and drop the Λ-dependence in the above
equation, one can obtain

ΔμR(z) = Δμ S + ΔG S→z(z) +
1
β

log
Δz
l S

, (38)

where

ΔG S→z(z) = −
1
β

log
⟨θz(zU)⟩sol′

⟨θ S(zU)⟩sol′
, (39)

and l S is the width of state S along the z-direction. Thus, once we
calculate Δμ S, the profile of ΔμR(z) can be evaluated without the

additional free energy calculations. From Eqs. (23) and (38), ΔG(z)
can be expressed as

ΔG(z) = ΔΔμ + ΔG S→z(z) +
1
β

log
Δz
l S

, (40)

where

ΔΔμ = ΔμS − ΔμD. (41)

III. COMPUTATIONAL METHODS
A. System setups

We investigated two different membrane permeation systems
composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholin
(POPC) lipid bilayer and small permeant species, ethanol and
methylamine. Both the infinitely dilute and finite (1 mol%) concen-
trations of the permeants were examined. The solvent was water,
and the system temperature was 298.15 K. The force fields for
POPC, permeants, and water were Chemistry at Harvard molecular
mechanics 36 (CHARMM36),43 CHARMM generalized force field
(CGenFF),44 and CHARMM-compatible TIP3P model,45 respec-
tively. The initial configurations of the membrane were prepared
with the CHARMM-GUI server.46–48 For all the systems involving
the bilayer described below, the numbers of POPC and water
were 100 per leaflet and 18 000, respectively. The number of the
permeants was unity for the dilute systems and 182 for the 1 mol%
concentration systems, respectively. The initial configurations for
water and permeants were prepared with Packmol.49

To compute the quantities required for the RP theory, we per-
formed the MD simulations of the membrane systems in which one
of the permeant molecules was initially located at the center of the
membrane. This permeant molecule was referred to as the tagged
permeant. As for the computation of ΔG(z) [Eq. (23)], the BAR
method was employed. In the case of the 1 mol% concentration
systems, we also performed the MD simulations of the membrane
systems in which all the permeants were randomly placed in the
solution phase for computing the permeability coefficient by means
of the transition-based counting (TBC) method.8,22,24 The equilibra-
tion scheme for the systems involving the membrane was described
in Sec. III B.

All the MD simulations were performed using GENESIS
2.0.50–52 We employed a Bussi thermostat for the temperature con-
trol in NVT/NPT ensembles and a Bussi barostat for the pressure
control in the NPT ensemble.53 We employed the NVT ensem-
ble only for the early stages of the equilibration (Table S1 of the
supplementary material and Sec. III B). The velocity Verlet integra-
tor (VVER)54 and reversible reference system propagator algorithm
(r-RESPA)55 were utilized. In the case of the VVER integrator, the
time interval was 2 fs except for the early stages of the equilibra-
tion for the membrane systems (Table S1 in the supplementary
material). The time interval was 2.5 fs for the r-RESPA integra-
tor. The Lennard-Jones (LJ) interaction was truncated by applying
the switching function, with the switching range of 10–12 Å. We
employed the smooth particle mesh Ewald (SPME) method for com-
puting the electrostatic interactions.56,57 The number of grids for
the SPME method was automatically determined in GENESIS so
that the grid spacing was shorter than 1.2 Å. All bonds involving
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hydrogen atoms were constrained by means of the SHAKE/RATTLE
algorithms,58,59 and water molecules were kept rigid using the
SETTLE algorithm.60

B. Equilibration of membrane systems
The scheme of equilibration for the membrane systems is

described in this subsection. We equilibrated the systems with the
NVT/NPT MD simulations (1.875 ns in total) with the VVER
integrator according to the GENESIS input files created in the
CHARMM-GUI server. In this scheme, the z-coordinates of all
the phosphorus atoms in the membrane were restrained using the
harmonic potential with respect to their initial positions. The har-
monic potentials for the inversion angle of the glycerol group and
the dihedral angle involving a double bond in acyl chains (Sec. S1
and Fig. S1 in the supplementary material) were imposed to keep
the stereoisomeric structure and cis form, respectively. The force
constants of these potentials were gradually decreased during the
equilibration. The detail of the equilibration is found in Table S1
in the supplementary material. As for the simulations used for com-
puting PRET(t) and kR→A, the harmonic potential was imposed on
the z-component of the CoM for the tagged permeant to locate it
around the membrane center (z = 0). Only the heavy atoms were
considered in the calculation of the CoM, and the force constant for
the harmonic potential was set to 1 kcal mol−1 Å−2.

C. MD simulations for computing PRET(t) and k R→A

We conducted the MD simulations with r-RESPA integrator
for the membrane systems with the tagged permeant to compute
PRET(t) and kR→A. See Sec. III F for the schemes to determine
PRET(t) and kR→A. From the final snapshots obtained from the
equilibration (Sec. III B), 350 ns MD (r-RESPA) simulation was per-
formed, while imposing the following flat-bottom (FB) potential on
the z-component of the CoM for the tagged permeant (zU),

UFB(zU) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

k(zU − z1)2, zU ≤ z1,

0, z1 < zU ≤ z2,

k(zU − z2)2, z2 < zU,

(42)

where k, z1, and z2 were set to 10 kcal mol−1 Å−2, 0 Å, and 7 Å,
respectively. Then, we computed 300 different MD (50 ns) simu-
lations with the FB potential [Eq. (42)], where the random seeds
for the thermostat and barostat were different among the different
runs. The final snapshots were used for the simulations to compute
PRET(t) and kR→A described below.

For the calculation of PRET(t), we conducted 20 ns MD
simulations with the half flat-bottom (HFB) potential defined as

URET
HFB(zU) =

⎧⎪⎪⎨⎪⎪⎩

k(zU − z1)2, zU ≤ z1,

0, z1 < zU,
(43)

where k and z1 were set to 10 kcal mol−1 Å−2 and 0 Å, respec-
tively. In the case of kR→A, 50 and 30 ns MD simulations were

performed for the ethanol and methylamine systems, respectively,
in the presence of the following HFB potential:

UR→A
HFB (zU) =

⎧⎪⎪⎨⎪⎪⎩

0, zU ≤ z2,

k(zU − z2)2, z2 < zU,
(44)

where k and z2 were 10 kcal mol−1 Å−2 and 7 Å, respectively.

D. MD simulations for computing ΔG(z)
We performed the BAR method with Hamiltonian replica-

exchange MD (BAR/H-REMD) simulations61 implemented in
GENESIS62,63 to compute ΔΔμ = Δμ S − ΔμD [Eq. (41)]. The integra-
tor for the BAR/H-REMD simulations was r-RESPA. Five configura-
tions were randomly sampled from 300 configurations prepared for
the MD simulations for PRET(t) and kR→A described in Sec. III C.
As well as in Sec. III C, one permeant molecule located near the
membrane center was treated as the tagged permeant. The definition
of state S was set to 0 ≤ zU/Å < 3. After 5 ns MD (r-RESPA) sim-
ulation for each run while imposing the FB potential [Eq. (42)]
with k = 10 kcal mol−1, z1 = 0 Å, and z2 = 3 Å, we conducted
the 5 ns BAR/H-REMD simulation with 24 replicas. During the
BAR/H-REMD simulation, the same FB potential was also imposed
on the tagged permeant for all the replicas. The potential energy
function used in the BAR/H-REMD simulations and the scheme
of computing ΔΔμ were described in Sec. S2 and Fig. S2 in the
supplementary material. As for state D, we adopted the different
schemes for the dilute and 1 mol% concentration systems. In the
case of the dilute systems, the aqueous solutions containing a per-
meant molecule were prepared. The number of water molecules was
set to 5000. We performed the 1 ns MD (VVER, NPT) simulation
for equilibration, followed by the 5 ns BAR/H-REMD simulation.
Regarding the 1 mol% concentration systems, we used the five ini-
tial configurations that were the same as those used for state S, and
one of the permeants existing at 45 ≤ z/Å < 55 was treated as the
tagged permeant for each initial configuration. Then, we performed
the 5 ns BAR/H-REMD simulation while imposing the FB potential
[Eq. (42)] with k = 10 kcal mol−1, z1 = 45 Å, and z2 = 55 Å.

In order to calculate ΔG S→z(z) [Eq. (39)], 50 and 25 ns
MD (r-RESPA) simulations were conducted for the ethanol
and methylamine systems while imposing the FB potential with
k = 10 kcal mol−1, z1 = 0 Å, and z2 = 7 Å. The number of runs was 5
for both the systems and the initial configurations were the same as
those used in the BAR/H-REMD simulations.

E. MD simulations for transition-based counting (TBC)
After the equilibration of the membrane systems that contain

1 mol% permeants (Sec. III B), we performed the 350 ns MD simula-
tions without any restraints. From the final snapshot, we conducted
10 MD (50 ns for each) simulations for further equilibration. These
runs were made distinct by assigning the different random seeds for
the thermostat and barostat. Then, we performed 200 ns MD simu-
lation for each run as production. The r-RESPA integrator was used
for the simulations described in this subsection.
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F. Computation of thermodynamic and kinetic
quantities for RP theory

In this study, we assumed that the permeation process could be
described only using zU without introducing other degrees of free-
dom Λ. Then, the range of zU for state S was set to 0 ≤ zU/Å ≤ 3.
From the BAR/H-REMD simulations for state S and phase D, we
computed the difference of the solvation free energy, ΔΔμ [Eq. (41)].
The configurations in the BAR/H-REMD simulations for state S
that satisfies 0 ≤ zU/Å < 3 were used for computing ΔΔμ.

To calculate the profile of ΔG(z) from Eq. (40), we computed
ΔG S→z(z) [Eq. (39)] from the trajectories of the solution system
composed of the membrane, one permeant molecule, and water
molecules with 181 permeant molecules for the 1 mol% systems.
The standard error of ΔG S→z(z) was estimated using the Monte-
Carlo (MC) bootstrap method.64 The number of bootstrap samples
generated by selecting the trajectories was 1000.

By using the trajectories of the MD simulations with URET
HFB(zU)

and with UR→A
HFB (zU) described in Sec. III C, we computed PRET(t)

and kR→A, respectively. Let us define the time series of the character-
istic function for phase R for the αth trajectory as Θ(α)(t). Then, we
discretize time t as tk = kΔt (k = 0, 1, . . . , Nstep − 1), where Δt is the
time interval. In this study, Δt was set to 0.25 ps. Nstep is the num-
ber of time steps in a trajectory. PRET(tk) was computed with the
following equation:

PRET(tk) =
Nstep

Nstep − k

Ntraj

∑
α=1

Nstep−k−1

∑
l=0

Θ(α)(tk + tl)Θ(α)(tl)
Ntraj

∑
α=1

Nstep−1

∑
l=0

Θ(α)(tl)
. (45)

We computed kR→A based on the frequency of the transition
from R to A as

kR→A =

Ntraj

∑
α=1

δ(α)R→A

Ntraj

∑
α=1

N(α)
step−1

∑
l=0

Θ(α)(tl)Δt

, (46)

where δ(α)R→A is a characteristic function for transition, which is unity
when the transition event is observed in the αth trajectory and van-
ishes otherwise. N(α)step is the number of time steps until the transition
event is observed for the first time in the αth trajectory. The entry of
the permeant into region z ≤ −25 Å was regarded as the transition.
We employed the MC bootstrap method for the error estimations of
PRET(t) and kR→A. The number of the bootstrap samples generated
by selecting the trajectories was 1000.

G. Transition-based counting (TBC) method
According to the transition-based counting (TBC) method,8,22

the permeability coefficient is given by

PTBC
ss = r

2cw
, (47)

where r is the rate of the permeants for passing through the
membrane per unit area and time, cw is the average concentra-
tion of the permeants outside the membrane, the superscript TBC

signifies transition-based counting. For the computation of r and cw,
the membrane region was defined as ∣z∣ < 20 Å. The definition of the
membrane region was the same as that used in the previous study.39

We performed the error analysis of PTB
ss by means of the MC boot-

strap method. The number of the bootstrap samples generated by
selecting the trajectories was 1000.

IV. RESULTS AND DISCUSSION
A. Free energy profiles

We first examine the free energy profile inside the membrane
along the z-direction, ΔG(z), using Eq. (40) (Fig. 2). In the case
of the dilute ethanol system [Fig. 2(a)], the free energy barrier
with respect to phase D (corresponding to z =∞) is located at
the membrane center (z = 0). The observed location of the barrier
is typical for the hydrophilic permeants because the inner region
(∣z∣ ≤ 10 Å) composed of the hydrophobic acyl chains of POPC is
energetically unfavorable for such a permeant.8,65 The barrier height
is ∼3.1 kcal mol−1. In the presence of 1 mol% ethanol, it is found
that the height is slightly lowered to ∼3.0 kcal mol−1. The PMF,
ΔGPMF(z), obtained using the MD simulations for transition-based
counting (Sec. III E) gives a similar height for the 1 mol% ethanol
system [Fig. S3(a) in the supplementary material]. A previous MD
study also reported a decrease in the height with increasing ethanol
concentration in the range from 1 to 18 mol%.39 Regarding the dilute
methylamine system [Fig. 2(b)], ΔG(z) exhibits a shallow minimum
around z = 0 with the height of ∼3.3 kcal mol−1 and the barrier
located at z ∼ 4.5 Å. The similar behavior was also reported by Bem-
porad et al.65 The barrier height is found to be hardly changed
even for the 1 mol% methylamine system. As well as in the case
of the 1 mol% ethanol system, ΔG(z) is almost the same as that
from ΔGPMF(z) within the range of 0 ≤ z/Å ≤ 7 [Fig. S3(b) in the
supplementary material], indicating the validity of the scheme of
computing the free energy profile through Eq. (40).

For further analysis, we decompose ΔG(z). According to the
classical density functional theory,66 the solvation free energies can
be exactly decomposed as follows:

ΔμD = ⟨UD⟩ + ΔμD,res, (48)

FIG. 2. Free energy profile along the z-direction, ΔG(z), near the membrane cen-
ter (z = 0) for (a) ethanol and (b) methylamine. The colored regions indicate the
statistical uncertainty (standard error).
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ΔμR(z) = ⟨UR(z)⟩ + ΔμR,res(z), (49)

where U i and Δμi,res (i = D or R) are, respectively, the interaction
energy of a permeant with the surrounding environment and the
residual part of Δμi that is composed of the pair entropy and many-
body terms. Δμi,res corresponds to the free energy penalty due to
the structural changes of the surrounding environment upon sol-
vation. ΔG(z) can be decomposed into the contributions from the
interaction energy and residual part as

ΔG(z) = Δ⟨U(z)⟩ + ΔGres(z), (50)

where Δ⟨U(z)⟩ = ⟨UR(z)⟩ − ⟨UD⟩ and ΔGres(z) = ΔμR,res(z)
− ΔμD,res. The profiles of ΔG(z), Δ⟨U(z)⟩, and ΔGres(z) are shown
in Fig. 3. For both the ethanol and methylamine systems, Δ⟨U(z)⟩
and ΔGres(z), respectively, demonstrate positive and negative
contributions to ΔG(z) within the inner region, regardless of the
permeant concentration. Given the hydrophilic nature of these
permeants, the positive value of Δ⟨U(z)⟩ evidently arises from
the dehydration penalty. The negative value of ΔGres(z) inside
the membrane indicates that the free-energy penalty brought by
the structural change of the membrane is smaller than that of the
solvent water at phase D. As shown by Cardenas and Elber26 as well
as by Chipot and Comer21 through the MD simulations, the voids
in the inner region are highly populated compared with the bulk

FIG. 3. Profiles of ΔG(z) and its decomposition into the interaction energy part
(Δ⟨U(z)⟩) and residual part [ΔGres(z)] based on Eq. (50) for (a) ethanol
(dilute), (b) ethanol (1 mol%), (c) methylamine (dilute), and (d) methylamine
(1 mol%). The colored regions indicate the statistical uncertainty (standard error).

solvent. The presence of voids in the inner region could mitigate the
structural change of the membrane upon solvation of the permeant,
leading to a decrease in ΔGres(z). For both the concentrations, the
value of Δ⟨U(z)⟩ at z = 0 for ethanol is larger than for methylamine,
reflecting the higher hydrophilicity of ethanol. The smaller value
of ΔGres(z) at z = 0 for ethanol compared to methylamine may
be attributed to ethanol’s larger molecular size. As the permeant
concentration increases, Δ⟨U(z)⟩ and ΔGres(z) at z = 0 respectively
decrease and increase for ethanol, while there is little change in
these quantities for methylamine.

B. Kinetics of returning and crossing processes
In this subsection, we discuss the kinetic property of the

permeants at phase R. We define the z-range of phase R (Υ) as

Υ = {z ∣ 0 ≤ z/Å ≤ 3}, (51)

for both the ethanol and methylamine systems. The lower bound is
fixed to z = 0, corresponding to the membrane center, and the upper
bound is decided so that the permeability coefficients are hardly
changed by the variation in the upper bound, as will be discussed
in Sec. IV C.

The returning probability PRET(t) and its running integral
defined as

τr(t) = ∫
t

0
ds PRET(s) (52)

are plotted in Fig. 4. Note that τr(∞) is the dissociation time con-
stant from phase R.36 For the dilute ethanol system, PRET(t) is

FIG. 4. Returning probability PRET(t) and its running integral τr(t) for (a) ethanol
and (b) methylamine systems. The z-range of phase R is set to 3 Å.
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FIG. 5. Time constant of the dissociation, τr , and that of the transition from phase
R to A (crossing), τR→A. τr is defined as τr = τr(∞). The error bars are provided
at the standard error.

observed to converge to zero at ∼5 ns, followed by a subsequent
redistribution occurring at ∼11 ns. τr(t) is converged after ∼15 ns.
The first decay of PRET(t) becomes faster for the 1 mol% ethanol sys-
tem. In addition, the redistributive behavior observed for the dilute
system is weakened, resulting in the faster convergence of τr(t).
It is well-known that a stable state for ethanol exists between the
membrane center and phase D,67 and the stability of this state is sup-
pressed with increasing ethanol concentration.39 Thus, the return
of ethanol to phase R could be facilitated by the trap of ethanol
at the stable state within the membrane, emphasized under con-
ditions where the stability of this state is high. In the cases of the
dilute and 1 mol% methylamine systems, it is seen that PRET(t) con-
verges to zero at ∼7 ns. Unlike ethanol, methylamine does not show
the redistributive behavior. As shown in the profile of ΔGPMF(z)
for the 1 mol% system [Fig. S3(b) in the supplementary material],
the stable state is present inside the membrane, but the stabil-
ity is lower than that for the ethanol. This can be reason why
the redistributive behavior is not observed for the methylamine
systems.

The time constant of the dissociation, τr , and that of the tran-
sition from phase R to A (crossing), τR→A, are shown in Fig. 5.
Here, we define τr and τR→A as τr = τr(∞) and τR→A = 1/kR→A,
respectively. For the dilute ethanol system, τr is smaller than τR→A,
indicating that dissociation from phase R preferentially occurs
over crossing. This trend reflects the downhill profile of ΔG(z)
around z = 0 [Fig. 2(a)]. In the presence of 1 mol% ethanol, a
reduction in τr is discernible as also shown in Fig. 4, while τR→A
remains largely unchanged from that in the dilute system. As for
the methylamine systems, the difference between τr and τR→A is
small under the dilute condition. Furthermore, both τr and τR→A
hardly change with increasing concentration, consistent with the
fact that the profile of ΔG(z) is not dependent on the concentration
[Fig. 2(b)].

C. Permeability coefficient
In order to calculate the permeability coefficients at steady state,

Pss, through the RP theory [Eq. (20)], the definition of phase R (Υ)

FIG. 6. Dependency of the permeability coefficients (Pss) obtained from the RP
theory [Eq. (20)] on the choice of state R (Υ = {z ∣ 0 ≤ z ≤ zR}) for (a) ethanol
and (b) methylamine. The colored regions indicate the statistical uncertainty
(standard error).

is required. Then, we investigate the dependency of Pss on the choice
of the z-range of Υ. Let us express Υ as follows:

Υ = {z ∣ 0 ≤ z ≤ zR}. (53)

Figure 6 plots Pss as a function of zR. In the case of the ethanol sys-
tems, it is observed that Pss exhibits a slight dependency on zR when
zR < 1.5 and zR > 3.5 Å both under the dilute and 1 mol% conditions.
Pss for the methylamine systems remains constant at 1.5 < zR < 5 Å
irrespective of the concentration. Although the theoretical analysis
using the Smoluchowski equation claims that the RP theory becomes
accurate when Υ is sufficiently narrow,38 the zR-dependency of Pss
is discernible at too small zR values (e.g., zR = 0.5 Å). This obser-
vation suggests that the local equilibrium within Υ assumed in the
RP theory might be violated for such a condition (Appendix A).
The contraction of the multiple state-to-state transitions involved
in the crossing process (R→ A) to a two-state transition, as rep-
resented by kR→A, appears to cause the zR-dependency. However,
from the analysis of the permeability corresponding to the arrival of
a permeant at the metastable state within the membrane (z ∼ −15 Å)
from phase D, we confirm that the presence of the multiple states is
not relevant with the zR-dependency of Pss (Sec. S3 and Fig. S4 in
the supplementary material). In a previous study on protein–ligand
binding with the RP theory,37 the appropriate Υ was determined
so that the binding rate constants are hardly affected by the vari-
ation in Υ. Similarly, we set zR to 3 Å, at which the profiles of
Pss along zR are almost flat for both the ethanol and methylamine
systems.

The values of Pss using the aforementioned definition of Υ
are summarized in Table I, together with those obtained from
the transition-based counting (TBC) method for the 1 mol% sys-
tems. For the 1 mol% systems, the RP theory predicts a larger
Pss for ethanol (0.12 ± 0.01 cm s−1) than for methylamine (0.069
± 0.006 cm s−1), consistent with the TBC method. Furthermore,
the values for Pss are satisfactorily close to those obtained from the
TBC method (0.18 ± 0.03 and 0.052 ± 0.005 cm s−1 for ethanol and
methylamine, respectively), revealing the validity of the RP theory.
To realize the further agreement of Pss between the RP and the TBC,
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TABLE I. Permeability coefficients (Pss) computed from the RP theory and from the transition-based counting (TBC)
method. The thermodynamic (K∗) and kinetic (χ) contributions are also shown. The errors are provided at the standard
error, and the errors for K∗ are not shown since they are smaller than 0.001 Å.

Pss (cm s−1)

RP TBC K∗ (Å) χ (ns−1)

Ethanol Dilute 0.079 ± 0.009 ⋅ ⋅ ⋅ 0.016 0.50 ± 0.05
1 mol% 0.12 ± 0.01 0.18 ± 0.03 0.021 0.56 ± 0.04

Methylamine Dilute 0.063 ± 0.005 ⋅ ⋅ ⋅ 0.011 0.58 ± 0.05
1 mol% 0.069 ± 0.006 0.052 ± 0.005 0.011 0.64 ± 0.05

employing an improved expression of Pss that accounts for the non-
Markovianity partly, derived through the perturbative expansion,
could be a promising approach [Eq. (B5) in Appendix B].38 The dif-
ference in Pss between the RP and the TBC, observed for the 1 mol%
ethanol system, may arise from the inadequacy of describing the
underlying dynamics in phase R solely with the z-coordinate. Using
such an inadequate coordinate as the reaction coordinate brings
the non-Markovianity of the dynamics. Thus, the improved expres-
sion of Pss [Eq. (B5)] could overcome this challenge. The improved
expression involves a multiple-time correlation function, indicating
the necessity of developing an efficient computational method for
evaluating such a function when utilizing this expression.

We examine the concentration dependence of Pss. An increase
in Pss is observed for the ethanol systems as ethanol concentra-
tion increases, while such a change is hardly discernible for the
methylamine systems. This trend is consistent with the experimen-
tal observation that ethanol enhances the membrane permeability of
drug compounds.68 It is well known that ethanol strongly affects the
properties of lipid membranes. For instance, an increase in ethanol
concentration leads to the expansion of the area per lipid (APL) and
the reduction of the lipid ordering,69–71 bringing to the enhanced
membrane permeability. We confirm that the APL becomes larger
with increasing ethanol concentration, while the effect of the
1 mol% methylamine on the APL is hardly observed (Fig. S5 in the
supplementary material). To further analyze the dependence of the
permeability on the permeant concentration, we conduct a system-
atic examination based on the theoretical expression of Pss provided
by the RP theory [Eq. (20)]. By defining

χ = (τR→A + τr)−1, (54)

Eq. (20) can be rewritten as

Pss = χK∗. (55)

The above expression indicates that K∗ and χ represent the ther-
modynamic and kinetic contributions to Pss, respectively. The com-
puted values for these quantities are listed in Table I. In the case of
the ethanol systems, it is found that the increase in K∗ predomi-
nantly contributes to enhancing ethanol permeability with increas-
ing ethanol concentration. Regarding the methylamine systems, on
the other hand, the dependence of both K∗ and χ on methylamine
concentration is negligibly small, resulting in the insensitivity of Pss
to changes in concentration.

V. CONCLUSION
In this study, we proposed an MD-based methodology to com-

pute the permeability coefficients at steady state, Pss, using the
returning probability (RP) theory. The permeability coefficients rep-
resent the efficiency of the permeation processes from the donor
(D) phase to acceptor (A) phase. Starting from the Liouville equa-
tion with the reaction sink term describing the local motion toward
phase A in the reactive (R) phase located inside the membrane, we
derived a formally exact expression of the permeability coefficient
at an unsteady state, which is mathematically parallel to that of the
unsteady rate coefficient for molecular binding in the RP theory.
This parallelism enabled us to employ the perturbative-expansion
technique in the RP theory to yield the tractable expression of the
permeability coefficient at steady state. The resultant expression is
composed of the thermodynamic and kinetic properties of phase R
that can be evaluated through the MD simulations.

The present method was applied to the permeation of ethanol
and methylamine through the lipid bilayer composed of POPC.
The dilute and 1 mol% permeant systems were examined. The
thermodynamic stability analysis showed that both ethanol and
methylamine were destabilized around phase R (membrane center)
compared with phase D (solution phase), reflecting the hydrophilic
nature of these permeants. The free energy barrier was observed to
decrease with increasing ethanol concentration for ethanol, while
this effect was barely discernible for methylamine. Regarding the
kinetic properties, the dissociation of ethanol from phase R was pro-
moted in the presence of 1 mol% ethanol. In contrast, the kinetics
of methylamine around phase R remained unchanged due to the
change in methylamine concentration. The present method yielded
a larger value of Pss for ethanol than for methylamine under the
1 mol% condition, consistent with the prediction from the
transition-based counting (TBC) method. Furthermore, by decom-
posing Pss into the thermodynamic and kinetic contributions, we
clarified that a concentration dependency of Pss observed for the
ethanol systems was attributed to the sensitivity of the free energy
barrier against the concentration within the inner region of the
membrane.

Since no assumption was imposed on the condition of the
solution (donor and acceptor) phases in the present method, the
inhomogeneous donor and acceptor phases such as crowded solu-
tions72 can be treated by means of the present method. The unstirred
water layer (UWL), which is an inhomogeneous region proximal to
biomembranes in gastrointestinal environments and exerts a signifi-
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cant influence on the permeation of small molecules, can be another
target of investigation of the RP method.73–75

To extend the applicability of the present method to long-
timescale permeation phenomena, refining the method is essential.
In this study, the computation of the returning probability [PRET(t)]
and the rate constant for the transition from phase R to A (kR→A)
was performed using a number of short MD trajectories starting
from phase R. When the kinetics around phase R is slow, the
required length of time for each trajectory becomes longer, leading
to an increase in computational costs. Recently, the methodologies
of efficiently computing the time correlation functions for the state-
to-state transitions from short MD trajectories have been proposed
based on the generalized Langevin equation (GLE).76–78 Incorporat-
ing such methodologies could overcome the challenge in the present
method. We believe that the present method and its extension would
offer a promising route to unveil the detailed mechanisms of perme-
ation phenomena in complex biological systems, such as cellular and
intestinal membranes.

SUPPLEMENTARY MATERIAL

The supplementary material contains the simulation protocols,
the scheme of the Bennett acceptance ratio (BAR) method, the struc-
ture of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholin (POPC),
the set of coupling parameters used in the BAR method, the per-
meability coefficient corresponding to the arrival of a permeant at
the metastable state, the potentials of mean force (PMF) along the
z-direction, and the distributions of area per lipid (APL).
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APPENDIX A: DERIVATION OF THEORETICAL
EXPRESSION OF Pss

In this appendix, we derive a theoretical expression of the per-
meability coefficient, Pss, by utilizing the mathematical techniques
employed in the RP theory.36,38

Since the system is in equilibrium at t = 0, Ψi(Γ, 0) is equiva-
lent to the equilibrium phase space density, Ψeq(Γ). Thus, the formal
solution of Eq. (5) is given by

Ψi(Γ, t) = e−(L+S)tΨeq(Γ). (A1)

Using the operator identity,

e−(L+S)t = e−Lt − ∫
t

0
dτ e−(L+S)τSe−L(t−τ), (A2)

Equation (A1) is rewritten as

Ψi(Γ, t) = Ψeq(Γ) − ∫
t

0
dτ e−(L+S)τSΨeq(Γ), (A3)

where we have used the relationship given by LΨeq(Γ) = 0. The
above equation enables us to decompose the nonequilibrium dis-
tribution function of the permeants, g(r, Λ, t) [Eq. (9)], into the
equilibrium [geq(r, Λ)] and nonequilibrium [Δg(r, Λ, t)] parts as

g(r, Λ, t) = geq(r, Λ) + Δg(r, Λ, t), (A4)

geq(r, Λ) = ⟨⟨δ(r − ri)δ(Λ −Λi)⟩⟩, (A5)

Δg(r, Λ, t) = −∫
t

0
dτ ⟨⟨δ(r − ri)δ(Λ −Λi)e−(L+S)τS⟩⟩. (A6)
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Here, we have introduced the following notation:

⟨⟨⋅ ⋅ ⋅ ⟩⟩ = 1
cD

N0

∑
i=1
∫ dΓ (⋅ ⋅ ⋅ )Ψeq(Γ). (A7)

Substitution of Eqs. (A4)–(A6) into Eq. (11) leads to

P(t) = Peq(1 − ∫
t

0
dτ h(τ)), (A8)

where Peq is the equilibrium permeability coefficient defined as

Peq =
1
σ ∫ dr∫ dΛ S(z, Λ)geq(r, Λ)

= 1
σ
⟨⟨S⟩⟩, (A9)

and h(t) is defined as

h(t) =
⟨⟨Se−(L+S)tS⟩⟩
⟨⟨S⟩⟩ . (A10)

The Laplace transform (t → s) of P(t), P̂(s), is represented as

s P̂(s) = Peq(1 − ĥ(s)), (A11)

where ĥ(s) is the Laplace transform of h(t) given as

ĥ(s) =
⟨⟨S(s + L + S)−1S⟩⟩

⟨⟨S⟩⟩ . (A12)

The mathematical form of Eq. (A11) is parallel to that of the
Noyes expression for the rate coefficient of bimolecular reactions.79

It is known that the Noyes expression for bimolecular reactions
can be expressed as a series expansion using the operator algebraic
method.36,38 As well as in the case of bimolecular reactions, a series
expansion for P̂(s) [Eq. (A12)] can be derived as described below.
The Laplace transform of Eq. (A2) is

(s + L + S)−1 = (s + L)−1 − (s + L + S)−1S(s + L)−1. (A13)

The following identity is obtained by iteratively utilizing Eq. (A13):

(s + L + S)−1S = −
∞
∑
n=1
(−1)n[(s + L)−1S]n. (A14)

By substituting Eq. (A14) into Eq. (A12), one can obtain

ĥ(s) = −
∞
∑
n=1
(−1)nN̂n(s), (A15)

where N̂n(s) is a multiple sink correlation function defined as

N̂n(s) =
⟨⟨S[(s + L)−1S]n⟩⟩

⟨⟨S⟩⟩ . (A16)

As described in Refs. 36 and 38, the inverse Laplace transform
of N̂n(s), Nn(t), represents the contribution of the permeants
repeatedly visiting phase R (Υ) to the permeability coefficient.

Lee et al. derived an alternative type of series expansion that
is useful to systematically improve the approximation.38 To utilize
their approach, we rewrite Eq. (A11) as

s P̂(s) = Peq(1 + ĥ(s)
1 − ĥ(s)

)
−1

. (A17)

Then, by employing the Maclaurin series,

x
1 − x

=
∞
∑
n=1

xn, (A18)

one can obtain

s P̂(s) = Peq{1 +
∞
∑
n=1
(ĥ(s))

n
}
−1

. (A19)

Substituting Eq. (A15) into∑∞n=1 (ĥ(s))n yields

∞
∑
n=1
(ĥ(s))

n
=
∞
∑
m=1
{
∞
∑
n=1
(−1)n+1N̂n(s)}

m

=
∞
∑
n=1
(−1)n+1Ŷn(s), (A20)

where {Ŷn(s)} is defined recursively as

Ŷ1(s) = N̂1(s), (A21)

Ŷ2(s) = N̂2(s) − N̂1(s)Ŷ1(s), (A22)

Ŷ3(s) = N̂3(s) − N̂2(s)Ŷ1(s) − N̂1(s)Ŷ2(s), (A23)

⋅ ⋅ ⋅

Ŷn(s) = N̂n(s) −
n−1

∑
m=1

N̂m(s)Ŷn−m(s). (A24)

Thus, Eq. (A19) can be expressed as

s P̂(s) = Peq{1 +
∞
∑
n=1
(−1)n+1Ŷn(s)}

−1

. (A25)

Introducing an approximation to N̂n(s) gives the tractable
expression of P̂(s) from Eq. (A25). For notational simplicity, we let
ζ i be (zi, Λi). Then, N1(t) is expressed as

N1(t) =
⟨⟨Se−LtS⟩⟩
⟨⟨S⟩⟩

= ∫dξ1 ∫dξ0 S(ξ1)S(ξ0)⟨⟨δ(ξ1 − ζ i(t))δ(ξ0 − ζ i)⟩⟩
∫dξ0 S(ξ0)⟨⟨δ(ξ0 − ζ i)⟩⟩

, (A26)

where we have used the relationship given by S(ζ i)e−Lt = S(ζ i(t)).
Substituting Eq. (4) into Eq. (A26) yields

N1(t) = kR→APRET(t). (A27)

J. Chem. Phys. 161, 024108 (2024); doi: 10.1063/5.0214401 161, 024108-12

Published under an exclusive license by AIP Publishing

 19 August 2024 01:14:56

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

Here, PRET(t) is the returning probability defined as

PRET(t) = ∫Υ dξ1∫Υ dξ0 ⟨⟨δ(ξ1 − ζ i(t))δ(ξ0 − ζ i)⟩⟩
∫Υ dξ0 ⟨⟨δ(ξ0 − ζ i)⟩⟩

. (A28)

PRET(t) is the conditional probability of finding a permeant in Υ at
t = t when that molecule was in Υ at t = 0. Note that Eq. (A28) is
equivalent to Eq. (14). Let us introduce

G(2)(ξ1, t∣ξ0, 0) = ⟨⟨δ(ξ1 − ζ1(t))δ(ξ0 − ζ i)⟩⟩
geq(ξ0)

, (A29)

where geq(ξ) is the equilibrium distribution function on ξ = (r, Λ) as
defined in Eq. (A5). G(2)(ξ1, t∣ξ0, 0)dξ1dξ0 is the conditional prob-
ability of finding a permeant whose coordinate on ξ-space is ξ1 in

element dξ1 at t = t, given that the coordinate was ξ0 in dξ0 at t = 0.
Equation (A28) can be rewritten as

PRET(t) = ∫Υ dξ1∫Υ dξ0 G(2)(ξ1, t∣ξ0, 0)geq(ξ0)
∫Υ dξ0 geq(ξ0)

. (A30)

Similar to N1(t), Nn(t) is expressed from Eq. (A16) as

Nn(t) =
1
⟨⟨S⟩⟩∫

t

0
dτn−1∫

τn−1

0
dτn−2 ⋅ ⋅ ⋅

× ∫
τ2

0
dτ1 ⟨⟨Se−LtSe−Lτn−1 S ⋅ ⋅ ⋅ Se−Lτ1 S⟩⟩. (A31)

From Eq. (4), the above equation can be rewritten as

Nn(t)
kn

R→A
=
∫Υ dξn∫Υ dξ0 ⟨⟨δ(ξn − ζ i(t))[

n−1
∏
k=1
∫ τk+1

0 dτk∫Υ dξk δ(ξk − ζ i(τk))]δ(ξ0 − ζ i)⟩⟩

∫Υ dξ0 geq(ξ0)
, (A32)

where τn = t. Nn(t) can be interpreted as the probability for a per-
meant to repeatedly visit Υ. By assuming the Markovianity that a
visiting event to Υ is independent of the previous events, one can
obtain

Nn(t)
kn

R→A
≈ 1

∫Υ dξ0 geq(ξ0)∫
t

0
dτn−1∫

τn−1

0
dτn−2 ⋅ ⋅ ⋅

× ∫
τ2

0
dτ1∫

Υ
dξn ⋅ ⋅ ⋅∫

Υ
dξ0

× [
n−1

∏
k=0

G(2)(ξk+1, τk+1∣ξk, τk)]geq(ξ0). (A33)

Note that each visiting event is represented with a G(2)-function
in this approximation. Since the G(2)-function depends on time
in the form of τk+1 − τk, Eq. (A33) also assumes the local equilib-
rium within Υ. The integration over ξk (k = 1, 2, . . . , n) in Eq. (A33)
involves the two successive G(2)-functions. Then, we introduce a
mean-field type approximation expressed as

∫ dξk G(2)(ξk+1, τk+1∣ζk, τk)G(2)(ξk, τk∣ζk−1, τk−1)

≈ ∫Υ dξk G(2)(ξk+1, τk+1∣ξk, τk)geq(ξk)
∫Υ dξk geq(ξk)

× ∫
Υ

dξk G(2)(ξk, τk∣ξk−1, τk−1). (A34)

Adopting this approximation to Eq. (A33) yields

Nn(t)
kn

R→A
= ∫

t

0
dτn−1∫

τn−1

0
dτn−2 ⋅ ⋅ ⋅∫

τ2

0
dτ1

× [
n−1

∏
k=0

∫Υ dξk+1∫Υ dξk G(2)(ξk+1, τk+1∣ξk, τk)geq(ξk)
∫Υ dξk geq(ξk)

]

= ∫
t

0
dτn−1∫

τn−1

0
dτn−2 ⋅ ⋅ ⋅∫

τ2

0
dτ1

1
kn

R→A

× [
n−1

∏
k=0

N1(τk+1 − τk)]. (A35)

Note that Eq. (A35) is equivalent to the Wilemski–Fixman decou-
pling approximation80 described as

N̂n(s) ≈ (N̂ 1(s))
n. (A36)

Under this approximation, {Ŷn(s)} [Eq. (A24)] reduces to zero for
n ≥ 2. Accordingly, one can obtain the tractable expression of P̂(s)
from Eqs. (A21) and (A25) as

s P̂(s) = Peq(1 + kR→AP̂ RET(s))
−1, (A37)

where P̂RET(s) is the Laplace transform of PRET(t). The final value
theorem of the Laplace transform, s P̂(s) s→0ÐÐ→ Pss, gives

Pss = Peq(1 + kR→A∫
∞

0
dt PRET(t))

−1
. (A38)

According to the theoretical analysis using the Smoluchowski equa-
tion, the decoupling approximation [Eq. (A36)] becomes accurate
with sufficiently narrow Υ when the underlying dynamics obeys the
Smoluchowski equation.38 On the other hand, the estimated value of
kinetic properties, such as binding rate constant using too narrow Υ
is found to be strongly affected by the variation in Υ.37 This suggests
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that the inertial effect of molecular motions that is present in real-
istic systems might violate the local-equilibrium condition within Υ
assumed in Eq. (A33) in the case of too narrow Υ. Accordingly, the
appropriate Υ should be determined so that the kinetic properties
are hardly affected by the variation in Υ.

APPENDIX B: IMPROVED EXPRESSION OF Pss

Equation (A38) is derived by assuming the Markovianity that
the repeated vising events of a permeant to Υ are uncorrelated with
each other. The perturbative expansion of P̂(s) [Eq. (A25)] provides
us a route to include the non-Markovianity partly by treating Ŷn-
terms up to n = 2 as

s P̂(s) = Peq(1 + kR→AP̂ RET(s) − Ŷ 2(s))
−1, (B1)

where we have used Eqs. (A21) and (A27). By substituting Eqs. (A21)
and (A27) into Eq. (A22), Ŷ2(s) is expressed as

Ŷ2(s) = N̂2(s) − k2
R→A(P̂ RET(s))

2. (B2)

From Eq. (A32), N2(t) is given by

N2(t) = k2
R→A∫

t

0
dτ P(2)RET(t, τ), (B3)

where

P(2)RET(t, τ) = 1

∫Υdζ0 geq(ξ0)∫Υ
dζ2∫

Υ
dζ1∫

Υ
dζ0

× ⟨⟨δ(ζ2 − ζ i(t))δ(ζ1 − ζ i(τ))δ(ζ0 − ζ i)⟩⟩. (B4)

P(2)RET(t, τ) is the conditional probability of finding a permeant in Υ at
t = τ and t when that molecule was in Υ at t = 0. Therefore, adopting
the final value theorem to Eq. (B1) with Eqs. (B2) and (B3) gives the
following expression of Pss:

Pss = Peq

⎡⎢⎢⎢⎢⎣
1 + kR→A∫

∞

0
dt PRET(t) − k2

R→A

× {∫
∞

0
dt∫

∞

0
dτ P(2)RET(t, τ) − (∫

∞

0
dt PRET(t))

2
}
⎤⎥⎥⎥⎥⎦

−1

.

(B5)
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