

Title	Pathological mechanisms of kidney disease in ageing
Author(s)	Yamamoto, Takeshi; Isaka, Yoshitaka
Citation	Nature Reviews Nephrology. 2024, 20, p. 603-615
Version Type	AM
URL	https://hdl.handle.net/11094/97748
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Pathological mechanisms of kidney disease in aging

Takeshi Yamamoto¹ and Yoshitaka Isaka^{1†}

Department of Nephrology, Osaka University Graduate School of Medicine

†E-mail: isaka@kid.med.osaka-u.ac.jp

Abstract

The kidney is a metabolically active organ that requires energy to drive processes such as tubular reabsorption and secretion, and experiences a decline in function with advancing age. Various molecular mechanisms, including genomic instability, telomere attrition, inflammation, autophagy, mitochondrial function, and changes to Sirtuin and Klotho signaling pathways, are recognized regulators of individual lifespan and pivotal factors that govern kidney aging. Thus, mechanisms that contribute to aging not only dictate renal outcomes but also wield substantial influence over life expectancy. Conversely, kidney dysfunction, in the context of chronic kidney disease (CKD), precipitates an expedited aging trajectory in individuals, leading to premature aging and a disconnect between biological and chronological age. As CKD advances, age-related manifestations such as frailty become increasingly conspicuous. Hence, the pursuit of healthy aging necessitates not only the management of age-related complications but also a comprehensive understanding of the processes and markers that underlie systemic aging. Here, we examine the hallmarks of aging, focusing on the mechanisms by which they affect kidney health and contribute to premature organ aging. We also review diagnostic methodologies and interventions for premature aging, with special consideration given to the potential of emerging therapeutic avenues to target age-related kidney diseases.

[H1] Introduction

Human life expectancy has increased persistently due to advances in health care. The prevalence of age-related conditions and the average age of patients receiving medical care has risen concurrently — a trend that is particularly conspicuous in nephrology. Multiple studies have shown that the aging process markedly amplifies the risk of acute kidney injury (AKI) and chronic kidney disease (CKD), thereby imposing substantial societal and economic burden.¹⁻³ This heightened risk is clinically relevant, and implies a predisposition to unfavorable renal outcomes with age; however, the precise mechanisms underlying kidney dysfunction among elderly individuals remains unknown.

Over a decade ago, researchers described nine hallmarks of aging, encompassing genomic instability, telomere attrition, epigenetic modifications, disruption of proteostasis, dysregulated nutrient sensing, cellular senescence, stem cell exhaustion, altered intracellular communication and

mitochondrial dysfunction.⁴ More recently, the hallmarks of aging were updated to include disabled macroautophagy (hereafter autophagy), chronic inflammation, and dysbiosis.⁵ These hallmarks represent key biological processes that underlie the aging process and are often implicated in age-related diseases, including CKD. Although not all hallmarks may directly contribute to every aspect of CKD, several connections exist between these hallmarks and the development of kidney disease with age. For example, mitochondrial dysfunction and chronic inflammation are well recognized hallmarks of kidney aging. Autophagy, which maintains intracellular homeostasis by degrading cellular components in lysosomes,⁶ exerts a protective effect against various kidney pathologies.^{7,8} Emerging evidence indicates that autophagic activity declines with age and that upregulation of autophagy delays the aging process.^{9,10}

Conversely, aging of the kidney in itself accelerates systemic aging.¹¹ New findings have revealed that CKD is an important risk factor for the progressive aging of other organ systems, such as the brain and heart.¹² These findings highlight the need to separately consider biological and chronological age, and underscore the potential systemic benefits that might be achieved through the use of interventions that target kidney aging.

These insights highlight the need to comprehensively understand the underlying pathological mechanisms and the intricate interplay between aging and kidney diseases. In this Review, we describe hallmarks of aging that are relevant to age-related kidney diseases, and the pathological mechanisms of CKD in the context of premature aging. Finally, we explore diagnostic approaches and effective interventions for premature aging, focusing on the potential to target the hallmarks of aging to promote healthy aging and prevent age-related kidney diseases.

[H1] Pathological drivers of kidney aging

Kidney aging is a complex process characterized by structural and functional changes that occur with advancing age.¹³ The aging process is associated with a gradual loss of nephrons, leading to reduced renal mass. A progressive decline in renal blood flow and vascular function is associated with alterations in the structure and function of the renal microvasculature. These alterations are highly age-dependent and affect the development and progression of kidney disease. Consequently, age is an important risk factor for CKD.^{1,14,15}

Within the glomerulus, functions as the aging is associated with thickening of the glomerular basement membrane (GBM) and expansion of the mesangial compartment, which leads to glomerular enlargement and hyperfiltration. These changes, coupled with an accumulation of extracellular matrix contribute to progressive glomerulosclerosis,¹⁶ which can lead to a subsequent decline in glomerular filtration rate (GFR).¹⁷ Age-related changes in the glomerular vasculature, particularly in juxtaglomerular glomeruli, can result in the formation of an arteriovenous shunt between afferent and efferent arterioles, which may impair osmotic gradient formation and reduce the urine concentrating

ability of the kidney.¹⁸

To compensate for the reduction in GFR, glomeruli undergo further hypertrophy. However, studies in mice show that the number and density of podocytes — which act to maintain and support the GBM — decrease with age.¹⁶ The density of parietal epithelial cells (PECs) also decreases in aged mice; however, the proportion of CD44-positive, activated PECs was increased in aged kidneys. These activated PECs colocalized to phosphorylated ERK and were associated with elevated extracellular matrix proteins, suggestive of PEC transformation via epithelial-to-mesenchymal transition. These findings suggest that aging induces important alterations in PECs, reducing their regenerative capacity and inducing characteristics of pericytes and mesenchymal fibroblasts, which may contribute to glomerulosclerosis.¹⁶

Chronic hypoxia is another important factor that can contribute to kidney injury and influences several pathogenic pathways that can lead to kidney failure.^{19,20} The complex microvasculature and high oxygen demands of the kidneys renders them particularly susceptible to hypoxic injury. With aging, rarefaction of peritubular capillaries, increased oxygen demand by proximal tubule epithelial cells (PTECs), and anemia can aggravate hypoxia and in turn exacerbate the risk of kidney injury.^{19,20} Hypoxia triggers adaptive responses in the kidney, including the activation of hypoxia-inducible factors (HIFs), which regulate genes involved in angiogenesis, erythropoiesis, metabolism and cell survival. These adaptive responses might initially be protective, but hypoxia-induced expression of HIF-1 α in the aged kidney can lead to maladaptive changes and exacerbate CKD progression via the induction of oxidative stress, tubulointerstitial injury and inflammation.^{20,21} Conversely, the NAD-dependent histone deacetylase, sirtuin 1 (Sirt1), can mediate a range of cellular responses some of which are achieved through the deacetylation of lysine residues on HIF-1 α .²¹⁻²³ Decreased expression of Sirt1 in the kidneys of aged mice is associated with a decrease in stress-induced autophagy in response to hypoxia.^{22,24} SIRT1 also activates the transcription factor FOXO3a via its deacetylase activity, which induces the transcription of *Bnip3* — a gene involved in mitophagy.²⁵ In aged mice, decreased Sirt1 activity (decreased mRNA and protein expression levels of Sirt1) in the kidney was associated with an accumulation of abnormal mitochondria.²⁴ SIRT1 also seems to be important for podocyte morphology and function. Podocyte-specific deletion of *Sirt1* in mice exacerbated age-related glomerulosclerosis and albuminuria, which was accompanied by increased oxidative stress and impaired podocyte maturation.²⁶

Kidney fibrosis is another important and common manifestation of progressive kidney diseases. Studies from the past few years have identified a reduction in basement membrane components, such as laminins, type IV collagen and type XVIII collagen, and an increase in interstitial matrix proteins such as collagens I, III, VI, and XV, fibrinogens, and nephronectin as a common signature in kidney aging and disease.²⁷ Transforming growth factor- β (TGF- β) has an important role in the pathogenesis of fibrosis by up-regulating matrix protein synthesis, inhibiting matrix degradation, and altering cell–cell interactions,²⁸ although therapeutic targeting of TGF- β has met with limited success.

[H1] Hallmarks of kidney aging

Growing evidence supports the notion that the above-described pathological drivers of kidney aging interact bidirectionally with several of the so-called hallmarks of aging (Figure 1).

[H2] Primary hallmarks and cellular senescence

[H3] Genomic instability, telomere attrition and epigenetic alterations

Genomic instability, telomere attrition and epigenetic alterations are categorized as “primary” hallmarks of aging, defined as hallmarks that progressively accumulate with time and unambiguously contribute to the aging process.⁵ Genomic instability is associated with an increased risk of DNA damage and mutations over time, resulting in an accumulation of genomic damage with aging.²⁹ DNA damage can trigger inflammatory responses and cell death pathways in the kidneys, contributing to CKD progression.³⁰ In men, age-related mosaic loss of the Y chromosome (mLOY) is associated with various pathologies. Use of single-cell RNA and ATAC sequencing in human kidneys revealed that LOY varies by nephron location, with PTECs being most affected.³¹ As described above, PTECs are particularly vulnerable to hypoxic injury, which can trigger cell dedifferentiation and may render them particularly susceptible to mLOY.³¹

Telomeres are protective caps at the ends of chromosomes that shorten with each cell division. Telomere shortening can trigger cellular senescence. It has been observed in aged kidneys and is associated with various degenerative and age-related diseases, including CKD.^{32,33} Notably, telomere shortening is linked to inflammation, low fetuin-A levels, and high mortality in prevalent hemodialysis patients.³⁴ Dysregulation of epigenetic mechanisms has also been implicated in the development and progression of CKD. For instance, altered DNA methylation patterns have been observed in kidney cells from individuals with CKD, which affect the expression of genes involved in kidney function and fibrosis.³⁵

[H3] Cellular senescence.

Cellular senescence refers to a state of irreversible cell cycle arrest that can arise in response to various stressors including DNA damage and telomere shortening. It is categorized as an “antagonistic” hallmark of aging, which means that it reflects responses to damage and has a more nuanced role in the aging process. Cellular senescence increases with age,³⁶ and has been implicated in kidney aging,³⁷⁻³⁹ in part, through the release of pro-inflammatory cytokines and the propagation of inflammation via the manifestation of a senescence-associated secretory phenotype (SASP). Aging-associated impairment of immune function may allow senescent cells to escape immune clearance. In the kidney, maladaptive tubular cell senescence, characterized by the upregulation of p16, p19,

and p21 expression, was associated with kidney dysfunction and injury in a model of chronic ischemia.⁴⁰ Podocyte senescence also has a central role in kidney aging. For example, podocyte-specific deletion of *CAAT enhancer-binding protein α (C/EBPα)* in aged mice exacerbates podocyte senescence, leading to glomerulosclerosis. Moreover, the ensuing albuminuria induces PTEC senescence.⁴¹ A 2022 study also reported that age-related overexpression and hyperactivation of glycogen synthase kinase 3 (GSK3β) drives podocyte senescence by inducing mediators of senescence signaling, such as p16 and p53.⁴² Another study revealed a key role for the immune checkpoint protein, programmed cell death protein-1 (PD-1), in podocyte aging and in SASP induction. Overexpression of *PD-1* in the podocytes of aged mice correlated with reduced GFR and with increased glomerulosclerosis and in the vascular arterial intima-to-lumen ratio. Blocking of PD-1 signaling with a neutralizing anti-PD-1 antibody reduced podocyte senescence and inflammatory signaling, and was associated with increased podocyte lifespan.⁴³ These studies highlight the importance of senescent podocytes and PTECs as potential targets in kidney aging.

The removal of senescent cells through senolysis may ameliorate age-related pathologies.^{36,39,44} Indeed, studies in transgenic mouse models show that the removal of senescent cells can prevent or delay tissue dysfunction and extend healthspan.^{45,46} Targeted elimination of senescent cells by small-molecule senolytic drugs; by disrupting key senescent events through the administration of senomorphic agents; or through the inhibition of processes that promote the accumulation of senescent cells may therefore represent promising therapeutic strategies for preventing or treating age-related diseases.^{36,47,48} For example, inhibition of glutaminolysis may represent one approach to target senescent cells. Glutamininase is induced in response to a reduction in the pH of senescent cells following damage to lysosomal membranes. The resulting glutaminolysis induces ammonia production, which neutralizes the pH and aids the survival of senescent cells. By contrast, inhibition of glutaminolysis in aged mice specifically eliminated senescent cells and ameliorated age-related dysfunction and fibrosis of the kidney.⁴⁹

[H2] Inflammaging

Chronic low-grade inflammation is considered to be an integrative hallmark of aging, defined as a feature that arises when the accumulated damage inflicted by the primary and antagonistic hallmarks can no longer be compensated for. Aging affects the composition and function of the immune system, leading to immunosenescence, which is characterized by defective immune responses and increased systemic inflammation (also known as inflammaging).⁵⁰ This maladaptive phenomenon results from various mechanisms, including aberrant inflammasome activation, microbial dysbiosis, the accumulation of senescent cells and primary dysregulation of immune cells.^{51,52}

Various mediators promote chronic inflammation in CKD, including oxidative stress and the adoption of a proinflammatory phenotype by resident kidney cells. The regulation of proinflammatory and anti-inflammatory mediators through NF-κB- and nuclear factor, erythroid 2-like 2 (NRF2)-mediated

gene transcription, respectively, also has a critical role in the glomerular and tubular cell response to kidney injury.⁵³ NRF2 protects against AKI and progression to CKD,^{54,55} and decreased NRF2 expression in aged kidneys may in part underlie the susceptibility of aged kidneys to injury and incomplete recovery after IRI.⁵⁶ Interestingly, one study that integrated GFR-associated loci with transcriptional data developed a molecular map of CKD, which revealed that all pathways aggregated into two main clusters that comprised inflammation- and metabolism-related pathways, with the NRF2-mediated oxidative stress response pathway serving as a hub between the two clusters.⁵⁷ Inflammasome activation is another pivotal mechanism that contributes to inflammaging. Nod-like receptor 3 (NLRP3) can be activated by many danger signals, including reactive oxygen species (ROS), cathepsin released from destabilized lysosomes and aggregated proteins, all of which evoke cellular stress and are involved in the aging process.⁵⁸ Chronic activation of the NLRP3 inflammasome induces the persistent production of pro-inflammatory cytokines such as IL-1 β and IL-18, creating a feedback loop of inflammation and tissue damage that accelerates the aging process.⁵⁹ Transcriptomic analyses have revealed that the podocytes of aged mice demonstrate an inflammatory phenotype, characterized by increased levels of the NLRP3 inflammasome, IL-6, TNF and IFN- γ . NLRP3 signaling in podocytes is further increased in aged mice following the experimental induction of focal segmental glomerulosclerosis. In human glomeruli, higher expression of NLRP3 was associated with reduced podocyte density, increased glomerular volume, and total glomerulosclerosis.⁶⁰

Tertiary lymphoid tissues (TLTs) have also garnered attention for their role in the pathophysiological response to aging.⁵² The formation of TLTs within the kidneys of aged mouse models of AKI prolongs inflammation and impedes repair processes, thereby exacerbating kidney injury.⁶¹ TLTs in non-lymphoid organs act as inflammatory niches to initiate acquired immunity, involving the activation and proliferation of T cells and B cells. Of note, aging-induced TLTs have been observed in the bladder and liver, as well as the kidney, suggesting that TLT formation is a systemic effect of aging.^{62,63} In the kidneys, TLTs tend to form beneath the renal capsule, around blood vessels, and adjacent to glomeruli.⁶⁴ Estimates suggest that they are present in approximately half of elderly human kidneys, and that they mature through three stages, with more advanced TLT stages forming in the presence of underlying kidney inflammation or injury.⁶⁵ The immunosuppressive drug, dexamethasone, has demonstrated efficacy in preventing and reducing TLTs in the mouse kidney,^{61,65} although it is associated with adverse effects and is not specific to TLTs. The expansion of TLTs relies on CD153–CD30 signaling between senescence-associated T cells and age-associated B cells, which emerge with aging. Blocking this signal suppresses TLT formation and improved kidney function in aged kidney injury models.⁶⁶ TLTs have also been linked to pathologic conditions independent of aging. Analyses of protocol kidney biopsy samples after transplantation revealed the presence of TLTs in about 50% of cases after one month; stage II TLTs (that is, the stage at which follicular dendritic cells develop) were present in approximately 20% of cases after one year, and

correlated with poorer renal outcomes 5 years post-transplantation.⁶⁷ TLT formation has also been reported in patients with various kidney diseases, including IgA nephropathy and ANCA-associated vasculitis, suggesting potential as a disease-agnostic prognostic indicator and therapeutic target.⁵² Further findings indicate that TLTs confer an inflammatory phenotype on PTECs and renal fibroblasts to impair repair capacity; conversely, inflammatory parenchymal cells facilitate leukocyte trafficking and survival and thereby contribute to TLT expansion.⁶⁸

[H2] Mitochondrial dysfunction and oxidative stress

Mitochondria are the cellular powerhouses that are responsible for producing energy in the form of ATP, which is critical for the reabsorptive capacity of the proximal tubule. The citric acid cycle in the mitochondrial matrix generates ATP by consuming acetyl-CoA and water, reducing NAD⁺ to NADH, and releasing carbon dioxide and water. In the aged kidney, low NAD levels and NAD-dependent mitochondrial sirtuin activity are associated with impaired mitochondrial respiration, energy deficiency and ROS accumulation.⁶⁹ An NAD⁺ precursor, nicotinamide mononucleotide, rescued age-related susceptibility to AKI in a SIRT1-dependent manner in mice.⁷⁰

Mitochondrial dysfunction, characterized by impaired oxidative phosphorylation and increased production of ROS, is considered to be an antagonistic hallmark of aging, and has been observed in aged kidneys and in various kidney diseases.^{71,72} Mitochondrial dysfunction can compromise the utilization of cellular oxygen and exacerbate tissue hypoxia in the aged kidney, leading to increased oxidative stress. Increased oxidative stress, characterized by an imbalance between ROS production and antioxidant defense mechanisms, can trigger cell death through apoptosis and ferroptosis. These effects, in turn, induce the release of inflammatory cytokines and contribute to kidney aging and CKD pathogenesis.^{69,73,74}

Fibroblast growth factor 21 (FGF21) is a hormone-like member of FGF family that controls metabolic multiorgan crosstalk by enhancing energy expenditure. It acts as a stress hormone induced by endoplasmic reticulum (ER) stress and mitochondrial dysfunction in several tissues.⁷⁵ Studies from the past decade have revealed that FGF21 counteracts kidney disease progression during aging and obesity by maintaining mitochondrial homeostasis and decreasing oxidative damage in mice.^{71,76}

[H2] Defective lipid metabolism

Although the kidney comprises only 0.5% of the total body weight, it uses approximately 10% of the oxygen consumed by the body. Mitochondrial β -oxidation of nonesterified free fatty acids represents a major source of renal ATP, particularly in PTECs, which have a particularly high energy demand and relatively little glycolytic capacity.⁷⁷⁻⁸² Although not strictly considered a hallmark of aging, emerging evidence suggests that lipids have crucial roles in regulating aging and longevity, and that lipid metabolic enzymes undergo substantial changes during aging.⁸³ Omics studies have identified alterations in lipid metabolism, including defective fatty acid oxidation (FAO) by PTECs, in aged

mouse kidneys.⁸⁴ Importantly, defective FAO and the intracellular deposition of lipids in PTECs has been linked to the development of fibrosis in mouse and human kidneys.⁸⁵ Multiple studies have now highlighted the contributory role of defective lipid metabolism, particularly dysregulated fatty acid metabolism, in CKD progression.^{69,82}

Several transcription factors, including ESRR α ,⁸⁶ PPAR α ⁸⁷ as well as the transcriptional coactivator PGC1 α ,⁸⁸ regulate fatty acid oxidation in PTECs. Reduced expression of ESRR α , PPAR α , and PGC1 α has been observed in both AKI and CKD in mouse and human kidneys, associated with impaired FAO, reduced ATP levels, an accumulation of lipids and loss of PTEC integrity.^{25,69}

[H2] Klotho, phosphate toxicity and calciprotein particles

Klotho is expressed in the kidney, especially in the distal tubule, and functions as the co-receptor for FGF23, a bone-derived hormone that induces phosphate excretion into urine. *Klotho* deficiency leads to premature aging and shortened life expectancy in mice; mice lacking Klotho also develop complications similar to those of patients with kidney failure, including atherosclerosis, ectopic calcification, osteoporosis, skin atrophy and gonadal dysfunction. These effects are mitigated by a low phosphate diet, indicating that they are caused by phosphate overload. Furthermore, expression of the gene that encodes Klotho decreases with CKD progression.^{89,90} In addition, Klotho mitigates the progression of AKI to CKD in mice through the activation of autophagy,⁹¹ and dysregulation of lipid homeostasis induced by *Klotho* deficiency promotes AKI to CKD transition.⁹² Therefore, a decline in systemic and renal Klotho levels may be considered a novel hallmark of kidney, although it should be noted that Klotho and clinical outcomes in a large, diverse, well-characterized cohort of patients with CKD. Moreover, Klotho deficiency did not confound the association of FGF23 with mortality or heart failure hospitalization in that study.⁹³

Hyperphosphatemia contributes to the pathophysiology of CKD; it is also independently implicated in cardiovascular and all-cause mortality in patients with CKD, attributed to endothelial dysfunction and vascular calcification.^{11,94,95} Inorganic phosphate activates the AKT–mTOR pathway and shortens the lifespan of *Klotho*-deficient mice.⁹⁶ Phosphate may also accelerate kidney aging in humans.⁹⁷ Although the adverse effects of phosphate overconsumption are largely overlooked, contemporary dietary habits often involve the consumption of phosphate-rich foods such as red meat and dairy products, along with the widespread use of phosphate-containing food additives in processed foods.^{98,99,100}

Mechanistically, dietary phosphate induces an increase in circulating FGF23, which acts on the Klotho receptor in kidney tubules to inhibit phosphate reabsorption and thereby increase urinary phosphate excretion.⁹⁸ If the concentration of phosphate in the tubule fluid surpasses its solubility threshold, it forms calcium phosphate precipitates, ultimately forming colloidal particles known as calciprotein particles (CPPs). These CPPs can cause direct injury to PTECs and induce inflammation through the binding and activation of Toll-like receptors.⁹⁸ The decline in nephron numbers with age

or injury places a greater phosphate burden on each remaining nephron, leading to further elevations in FGF23 levels and thereby perpetuating a vicious cycle.⁹⁸ We have shown that autophagy in PTECs acts as a mechanism to protect the kidney from phosphate overload-induced injury in mice.⁹⁴

Magnesium is an essential ion that regulates numerous physiological and pathological processes. Magnesium deficiency is very common in old age,¹⁰¹ and hypomagnesemia predicts mortality and CKD progression in individuals with diabetic kidney disease (DKD).¹⁰² A cross-sectional study that compared the prevalence of electrolyte abnormalities in 5,126 patients with CKD who were not on dialysis, found that hypomagnesemia was the most common electrolyte abnormality (14.7%) with similar prevalence across stages of CKD. Proteinuria was a risk factor for hypomagnesemia — an effect that may be mediated by renal magnesium wasting.¹⁰³

Emerging data also supports an association between the consumption of ultra-processed food and the risk of incident CKD.^{104,105} One potential mechanism for this association may be the toxicity of inorganic phosphate in food additives. Alternatively, the association may be driven by a lower intake of magnesium. Indeed, a population-based cohort study reported an association between lower dietary intake of magnesium and decline in kidney function.¹⁰⁶ The importance of dietary magnesium is recognized particularly in the context of phosphate toxicity. In hemi-nephrectomized mice, a low-magnesium diet exacerbates kidney injury induced by high-phosphate diet, associated with a marked downregulation of Klotho expression in the kidney.¹⁰⁷ Dietary magnesium may also inhibit intestinal phosphate absorption.¹⁰⁸ Moreover, magnesium might prevent phosphate-induced mitochondrial dysfunction by attenuating phosphate-induced mitochondrial permeability transition, cell death and PTEC inflammation.¹⁰⁹ Additionally, findings in dolphins suggest that CPP-induced kidney injury is attenuated by magnesium.¹¹⁰ In a cohort study of patients with CKD, higher serum phosphate levels were associated with an increased risk of kidney failure only when serum magnesium levels were low.¹⁰⁹ These findings suggest that the hazardous nature of ultra-processed food attributable to phosphate may be amplified by magnesium deficiency.

The consumption of ultra-processed food by patients with CKD may also predispose individuals to, and/or exacerbate uremic metabolic derangements, such as insulin resistance, metabolic acidosis, hypertension and gut dysbiosis.¹⁰⁰ Trimethylamine N-oxide (TMAO) is a gut microbiota-derived metabolite of dietary phosphatidylcholine and carnitine and betaine, which are commonly found in red meat, eggs, and certain fish; in experimental models, causes kidney injury and tubulointerstitial fibrosis.¹¹¹ A 2024 study of community-based adults in the USA reported that higher plasma TMAO levels were associated with a higher risk of incident CKD and a greater rate of kidney function decline.¹¹² Thus, the role of high phosphate and TMAO in red meat and food additives in processed food may be an underestimated contributor to the kidney aging process and should be considered in the context of therapeutic interventions.

[H2] Dysregulation of autophagy

Defective autophagy has a crucial role in the pathogenesis of age-related diseases by exacerbating tissue damage and impairing the regenerative capacity of organs. Emerging evidence suggests that although basal autophagic activity increases with aging due to the increased presence of pathological aging stressors, the capacity of autophagy to upregulate further in response to additional stressors accelerates kidney aging and may be associated with age-related kidney diseases (Figure 2a).⁷¹

In the aged kidney, the cumulative effect of autophagy impairment is thought to accelerate the decline in kidney function. This hypothesis is supported by the finding that aged (24-month-old) mice with deficiency of autophagy specifically in PTECs exhibited a significant deterioration in kidney function and fibrosis, concomitant with mitochondrial dysfunction, mitochondrial DNA abnormalities and nuclear DNA damage.⁷¹ High-fat diet (HFD)-fed obese mice at 12 month of age exhibit similar hallmark features of kidney aging along with evidence of dysfunctional autophagy, supporting the notion that dysregulation of autophagy can accelerates kidney aging.⁷⁷

Interestingly, the mitigation of disease progression by Klotho may be partly mediated through the induction of autophagy.⁹¹ This hypothesis is supported by the finding that dysregulation of autophagy not only promotes CKD but also increases AKI vulnerability,^{71,77,113,114} likely by reducing the ability of kidneys to respond to stressors.

[H3] Lysosomal dysfunction

Lysosomes are catabolic organelles that degrade intracellular constituents through autophagy and extracellular components through endocytosis, phagocytosis and macropinocytosis.¹¹⁵ Lysosomal functions are tightly regulated by the transcription factors TFEB and TFE3.¹¹⁵ The high endocytic activity of the kidney places a high burden on PTEC lysosomes.^{116,117}, highlighting their role as central organelles in PTEC homeostasis, metabolic regulation and in the response to environmental changes, including nutrient stressors, ER stress and defects in proteostasis.¹¹⁵ Indeed, lysosomal dysfunction is a common feature of senescent cells,⁴⁹ and giant autolysosomes containing undigested material have been observed in atrophic PTECs,⁷⁶ suggesting that lysosomal dysfunction in PTECs is - at least in part - responsible for the age-dependent dysregulation of autophagy. Moreover, a 2024 study showed that HKDC1, a target of TFEB, prevents cellular senescence by maintaining both mitochondrial and lysosomal homeostasis.¹¹⁸

Lysosome dysfunction has been linked to a variety of diseases, including autoimmune, metabolic and kidney diseases.¹¹⁹ HFD-induced obesity in mice triggers lysosomal dysfunction and defective autophagy, which exacerbates renal lipotoxicity.⁷⁷ Although lipid overload induces autophagy to repair organelle membranes and maintain PTEC integrity, overloading of lysosomes leads to the stagnation of autophagy, which in the context of lipotoxicity manifests as an accumulation of phospholipids in lysosomes.¹²⁰ Interestingly, an accumulation of phospholipids was observed in tubular lysosomes in renal biopsy samples from elderly and obese patients with CKD.^{77,116,121} The induction of TFEB-mediated lysosomal exocytosis has therefore emerged as a potential approach to

alleviate lipotoxicity by expelling accumulated phospholipids.¹²¹

[H3] Abnormal maturation or biogenesis of autophagosome

Available evidence suggests that age-dependent dysregulation of autophagy is induced by lysosomal dysfunction and/or abnormal autophagosome maturation rather than decreased autophagosome biogenesis (Figure 2b). Rubicon is a negative regulator of autophagosome maturation.¹²² Levels of RUBICON increase in the kidney of aged mice; and knockout of *Rubicon* in aged mice is associated with improved autophagosome maturation and decreased kidney fibrosis.¹²³ The glucose-responsive transcription factor, MondoA, directly suppresses *Rubicon* expression and inhibits cellular senescence, in part by activating autophagy.¹²⁴ Notably, MONDOA expression is downregulated in renal biopsy samples from elderly individuals and patients with CKD.^{124,125}

Nutrient sensing pathways, such as the AMPK and mTOR pathways, are positive and negative regulators of autophagosome biogenesis, respectively,¹²⁶ and have been implicated in the pathogenesis of CKD.¹²⁷ Levels of AMPK and mTOR are decreased and increased, respectively, in aged kidneys, whereas drug-induced AMPK activation and mTOR inhibition suppress CKD progression in mice.¹¹⁷ The oxidative stress response factor, NRF2, also interacts bidirectionally with autophagy processes. Specifically, NRF2 activation enhances autophagy to mitigate oxidative stress and cellular damage, and conversely, the induction of autophagy can promote NRF2 activation.¹²⁸ Dysregulation of NRF2 or autophagy — which commonly occurs in aged kidneys — may disrupt this crosstalk and accelerate kidney aging.⁷¹

[H1] CKD and premature aging

A growing body of literature demonstrates that CKD is an important risk factor for the aging of other organ systems in human.^{12,129,130} This link may underlie the association of CKD with frailty in elderly patients.

[H2] Biological versus chronological age

Chronological age alone does not fully capture the complexity of the aging process on organ function, which is also influenced by a multitude of genetic and environmental factors. Biological age, which reflects the physiological state of an individual, can be accelerated by various lifestyle choices and environmental exposures. These influences can lead to a disconnect between chronological and biological age, known as the "age gap," which serves as a valuable complementary measure in assessments of organ aging (Figure 3).¹³¹ Consequently, efforts to promote healthy aging necessitate a deeper understanding of biological age and the molecular mechanisms that influence biological age. The exposome refers to the cumulative impact of environmental exposures throughout an individual's lifetime, and includes lifestyle factors, diet, pollutants and stressors. These exposures interact with,

and modify various physiological processes, affecting various aspects that are relevant to the health of the individual and contributing to the aging process.¹³² For example, numerous stressors can activate inflammatory responses, disrupt the microbiota balance, induce oxidative stress, and impair mitochondrial function, thereby increasing the risk of lifestyle-related diseases that accumulate with age.¹³³ Emerging environmental factors such as global warming, deforestation, and pollution may exacerbate these effects.¹³³

[H2] The role of CKD in the aging process

CKD is associated with accelerated or premature aging to the extent that the biological age of patients with CKD is approximately five years older than their chronological age. Moreover, and as mentioned previously, CKD is an important risk factor for the progressive aging of other organ systems such as the brain and heart (Figure 4).¹²

The higher biological age of the kidney in patients with CKD relative to chronological age is may be mediated by pathophysiological mechanisms that are common to both aging pathways and CKD.^{11,134} For example, hormonal imbalances, glycation stress, nitrogenous metabolites, as well as the above-described hallmarks of aging that contribute to CKD progression, such as inflammation and oxidative stress, contribute to premature aging in the kidney, but also contributes to the aging of other systems, particularly the vessels and muscles. This accelerated aging phenotype manifests as an increased burden of age-related conditions and comorbidities, such as cardiovascular disease, cognitive impairment, sarcopenia, and frailty.^{11,134,135} These effects culminate in a high risk of cardiovascular events and sarcopenia, contributing to impaired health status, reduced quality of life, and premature mortality in CKD.^{134,136}

[H2] Frailty in patients with CKD

Frailty is a multidimensional concept that encompasses various aspects of health, independence and quality of life, typically in elderly patients.¹³⁷ It refers to a systemic state of increased vulnerability to stressors due to age-related declines in physiological reserves and functional capacity. Frailty is characterized by diminished strength, endurance, balance and cognitive function, as well as increased susceptibility to adverse health outcomes such as disability, falls, hospitalization and mortality.¹³⁷

In elderly CKD patients, frailty is particularly relevant due to the overlapping risk factors and pathophysiological mechanisms shared between frailty and CKD (Figure 4). These include chronic inflammation, sarcopenia, protein energy wasting, comorbidities, and polypharmacy. Moreover, frailty may exacerbate CKD progression and increase the risk of adverse events.¹³⁸ Collectively, these findings underscore the systemic benefits that can be achieved through interventions targeting kidney aging and disease.

[H1] Diagnostic implications

Current diagnostic methods for kidney diseases involve a combination of clinical evaluation, blood and urine tests, imaging studies, and in some cases, kidney biopsy. A number of emerging technologies and biomarkers hold promise for improving the early detection, diagnosis and management of age-related diseases, including kidney disease.^{131,139-142}

[H2] Emerging technologies and biomarkers

Advances in single-cell transcriptomics have markedly enhanced our understanding of cellular heterogeneity and the molecular processes underlying kidney injury and aging.^{131,139,141,142} For instance, use of single-cell RNA sequencing (scRNA-seq) facilitated the characterization of a dedifferentiated VCAM1+ population of PTECs and revealed its broad relevance in kidney injury and fibrosis.^{141,143} In addition, scRNA-seq of freshly dissociated cells from healthy and stenotic mouse kidneys enabled the identification of stenotic-kidney epithelial cells undergoing both mesenchymal transition and senescence.⁴⁰ Single-nucleus RNA sequencing (snRNA-seq) on aged mouse kidneys with TLTs identified proinflammatory and profibrotic VCAM1+ injured PTECs with activation of NF-κB and IFN-inducible transcription factors.⁶⁸ Profiling studies have also led to the identification of biomarkers of aging, which have potential to aid the identification of individuals who may be frail and/or at risk of multimorbidity, or to define the most suitable therapeutic targets in a given patient or disease setting. Of note, longitudinal and deep multiomics profiling of 106 healthy individuals aged between 29 and 75 years of age revealed correlations of ‘omic’ measurements, including transcripts, proteins, metabolites, cytokines, microbes and clinical laboratory values, with age.¹⁴⁴ For example, components related to acute-phase response signaling, inflammation such as HMGB1 and Toll-like receptor signaling pathways and the coagulation pathway increased with age. Moreover, the study confirmed the positive age association of HbA1c level and apolipoprotein A-IV protein (ApoA4).

As described earlier, senescence is considered to be an important cellular mechanism that underlies kidney aging and susceptibility to injury.³⁶ SA-β-Gal, p21 and p16, pro-inflammatory cytokines, and markers of oxidative stress, including malondialdehyde and 8-OHdG are indicative of cellular senescence.⁷⁴

Lipidomics technologies have also provided insights into the pathophysiological changes that underlie kidney disease and aging at the cellular and molecular level.¹⁴⁵ For instance, urinary levels of various phospholipids, such as bis(monoacylglycerol) phosphate (BMP) — a lysosomal phospholipid the tissue levels of which are increased in patients with phospholipidosis — are increased in obese mice.¹²¹ A 2024 study that performed untargeted lipidomics on samples from mice of different ages identified a number of molecules from different lipid classes that exhibited common and tissue-specific changes.¹⁴⁶ For example, levels of BMP containing polyunsaturated fatty acids were increased in the kidney in aged mice.¹⁴⁶

A growing body of evidence suggests that mitochondria may represent a promising diagnostic and therapeutic target for age-related kidney diseases. Mitokines are signaling molecules that enable communication of local mitochondrial stress to other mitochondria in distant cells and tissues. Among those molecules are FGF21 and growth differentiation factor 15 (GDF15).¹⁴⁷ Interestingly, deficiency of autophagy specifically in the skeletal muscle of mice induced the secretion of FGF21 from skeletal muscle, which protected against diet-induced obesity and insulin resistance.¹⁴⁸ FGF21 is also robustly induced by disturbances in autophagy in PTECs and protects against CKD progression in mice.⁷⁶ These data imply that FGF21 could act as a compensation mechanism for autophagy stagnation and mitochondrial dysfunction during kidney aging.¹⁴⁷

As described earlier, CPPs can cause direct injury to PTECs and induce inflammation. We have shown that serum levels of a fetuin-A mineral complex, composed of fetuin-A, fibrinogen, fibronectin-1, and calcium, correlates with extraosseous calcification stress in patients on hemodialysis.¹⁴⁹ These findings are supported by a more recent study, which showed that circulating levels of CPPs correlate with inflammation and vascular calcification or stiffness in patients CKD.¹⁵⁰ Quantification of circulating CPP levels in that study were achieved using a fluorescent probe that bound to calcium-phosphate crystals, which may also prove useful for the evaluation of cardiovascular risk in patients with CKD. Another potential tool for the evaluation of cardiovascular risk is skin autofluorescence — a measure of advanced glycation end-products (AGEs) in skin collagen. AGEs can be obtained through dietary sources or produced endogenously, and are associated with oxidative stress and inflammation. SAF could therefore be considered as a potential surrogate marker of aging.^{151,152}

[H2] Assessment of premature aging in elderly patients with CKD

The susceptibility of the kidney to premature aging and the association of CKD with age highlights the potential utility of an objective measure of biological (as opposed to chronological) age. An epigenetic aging clock, based on epigenetic marks at specific genomic loci, may represent one approach to estimate biological age. Interestingly, a 2024 study that estimated biological age based on blood biomarkers, skin autofluorescence and three separate DNA methylation-based epigenetic clocks revealed that kidney transplantation, but not dialysis, partially reduces the acceleration of biological in patients with advanced CKD.¹⁵³

[H1] Therapeutic implications

Improved understanding of the molecular mechanisms underlying age-related kidney diseases and premature aging has led to the discovery of novel molecular targets that may decelerate the aging process and/or protect the kidney from aging-associated factors.^{154,155}

Of note, although anti-aging drugs hold great potential, their current status is one of promise rather than proven efficacy and safety in the context of human aging. As research in this field progresses, a strategic, evidence-based approach to their use will be essential. This approach should prioritize high-risk individuals initially, incorporate principles of personalized medicine based on biomarker and genomic insights, and integrate comprehensive and appropriately supported modifications to lifestyle. It will also be important to address ethical, social and public health implications that may arise from the development of anti-aging drugs to ensure that such therapeutic advances benefit society as a whole.

The long-term safety of anti-aging drugs is a critical concern. Continuous monitoring of patients will be essential, with regular assessment of biomarkers and health outcomes to adapt treatment plans and ensure ongoing effectiveness and safety.

[H2] Approaches to target pathological mechanisms of kidney aging

A variety of strategies have been investigated to target the pathological mechanisms of aging, including those that targeting cellular senescence, inflammatory pathways, mitochondrial dysfunction, and the Klotho-phosphate-FGF23 axis.¹³⁴ As described earlier, targeted elimination of senescent cells through the use of senolytic drugs has been proposed therapeutic strategy for preventing or treating age-related diseases. In one study, intermittent oral administration of senolytics to naturally aged mice or to mice transplanted with senescent cells alleviated physical dysfunction and increased survival.¹⁵⁶ Some senolytic agents, notably dasatinib and quercetin (D+Q) and fisetin have progressed to clinical testing, including for conditions such as DKD (NCT02848131, NCT04313634, and NCT04733534).^{157,158} Early results demonstrated that treating DKD patients with a 3-day oral course of D+Q resulted in a reduction of senescent cells in adipose and skin biopsies as well as SASP factors in blood samples, suggesting that senolytics can reduce senescent cell burden and alleviate symptoms associated with age-related diseases.¹⁵⁸ Additionally, a 2024 study revealed that SGLT2 inhibitors has an indirect senolytic effect by modulating senescence immune surveillance by downregulating PD-L1 expression on senescent cells in mice.¹⁵⁹

Of note, continuous or acute elimination of senescent vascular endothelial cells, particularly in liver sinusoids, disrupts blood-tissue barriers and leads to fibrosis, as these cells are not replaced after removal and have important structural and functional roles.¹⁶⁰ Other concerns include a potential increased risk of thrombocytopenia and neutropenia.⁴⁷ On the other hand, the induction of senolysis through inhibition of glutaminolysis⁴⁹ may more specifically eliminate senescent PTECs where glutaminolysis is active,¹⁶¹ highlighting the importance of a strategic approach in the development of senolytic therapies.

Targeting of mitochondrial function is another potential approach to ameliorate age-related diseases. Mitochonic acid 5 (MA-5) is a mitochondrial-targeted drug that has shown potential in preclinical models of kidney disease.¹⁵⁴ Mechanistically, MA-5 seems to attenuate oxidative stress-induced

expression of the cytokine, GDF-15, facilitate mitochondrial ATP production and reduce levels of ROS, suggesting that MA-5 may have potential as a drug for the treatment of several mitochondrial diseases.¹⁵⁵

Therapeutic interventions that target autophagy pathways, such as mTOR inhibitors and autophagy enhancers, are also under investigation as potential strategies to promote kidney health.¹¹⁷ Of note, the activation of autophagy may place strain on the lysosomal system, highlighting a need to also maintain lysosomal homeostasis. We have shown that supplementation with the polyunsaturated fatty acid, eicosapentaenoic acid — which attenuates the palmitic acid-induced redistribution of phospholipids from cellular membranes into lysosomes — reduces several hallmarks of kidney aging in HFD-fed obese mice, including dysfunctional autophagy, lysosomal and mitochondrial dysfunction, inflammation and fibrosis.⁷⁸

Mounting evidence also suggests that FGF21 can alleviate age-related metabolic disorders, such as atherosclerosis, obesity, diabetes and some cardiovascular diseases by maintaining mitochondrial homeostasis and preventing stagnation of autophagy.⁷⁶ These findings are supported by the observation that transgenic mice that overexpress *Fgf21* have an extended lifespan.^{75,162} Notably, randomized controlled trials have demonstrated positive outcomes of FGF21 analogues in patients with severe hypertriglyceridemia and nonalcoholic steatohepatitis,^{163,164} suggesting these agents may also demonstrate benefits in patients with CKD.

[H2] Approaches to target the gut-kidney axis

Gut dysbiosis, defined as an imbalance in the microbial composition of the gut, can lead to a loss of beneficial bacteria, the overgrowth of pathogenic bacteria and reduced microbial diversity.^{165, 166} Gut dysbiosis can be influenced by various factors including diet, use of antibiotics, infections and chronic diseases, and has been linked to numerous health conditions, including kidney disease.⁹⁹ The ‘gut-kidney axis’ refers to multidirectional interactions between gut microbiota, gut microbiota-derived metabolites such as TMAO and the kidney that can contribute to progression of CKD.¹⁶⁵ As described earlier, TMAO has been associated with inflammation, oxidative stress and vascular dysfunction, with elevated levels associated with increased cardiovascular risk and kidney impairment.^{51,167} Importantly, gut dysbiosis can increase the abundance of bacteria that convert dietary nutrients into TMA, which is subsequently oxidized to TMAO.¹⁶⁶

In patients with CKD, the reduced ability to excrete TMAO contributes to higher circulating levels, which exacerbates kidney damage. Dysbiosis-related inflammation can also affect kidney function, through the release of inflammatory cytokines and endotoxins.^{165,168} Interventions to manage TMAO and dysbiosis include reduced intake of red meat and choline-rich foods, increased fiber intake, and use of probiotics and prebiotics to support a healthy gut microbiota, although the evidence supporting the efficacy of these interventions is weak. Interestingly, a 2022 study reported that high levels of 3-carboxy-4-methyl-5-propyl-2-furanpropionate (CMPF), a biomarker of fish intake, conferred health

benefits independently of TMAO and other clinically relevant confounders, prompting the researchers to suggest that fish intake might counteract the unfavorable actions of TMAO.¹⁶⁹ Pharmacological approaches to target TMAO, such as inhibitors of TMA formation and TMAO scavengers, are also being explored.¹¹¹

[H2] Dietary interventions for patients with CKD

In the absence of pharmacologic therapies, behavioural approaches, such as caloric restriction, regular exercise and certain anti-inflammatory medications, currently represent the most promising strategies to promote healthy aging.¹⁷⁰

Protein restriction may reduce the risk of CKD progression, but might increase the risk of sarcopenia. A 2024 study suggested that a low-protein diet that is prescribed and monitored is safe in older adults with CKD approaching kidney failure.¹⁷¹

Current evidence suggests that adopting plant-based diets has few risks but potential benefits for preventing and delaying the progression of CKD.^{172,173} The potential mechanisms underlying these benefits are manifold. Plant phosphorus has a lower bioavailability than animal phosphorus and might therefore enable better control of hyperphosphataemia. The consumption of plant foods might increase levels of micronutrients such as magnesium, which may lower the cardiovascular risk associated with hyperphosphatemia.¹⁷⁴ Furthermore, plant-based diets might also help to manage and prevent some of the symptoms and metabolic complications of CKD.^{172,173} Of interest, sulforaphane, a natural compound derived from broccoli and broccoli sprouts not only ameliorates obesity-related kidney disease by enhancing autophagy, but also ameliorates age-related mitochondrial dysfunction and renal impairment via activation of NRF2.^{175,176} Dietary bioactive compounds, such as phenolics, flavonoids and carotenoids are non-nutrient natural compounds found in various fruits, vegetables and other plant-based foods that may help maintain cellular homeostasis and promote health through the regulation of autophagy and epigenetic marks, and the reduction of senescence and oxidative stress.¹⁷⁷

[H1] Conclusions and future perspectives

CKD is associated with accelerated biological aging, as evidenced by cellular senescence, inflammation, mitochondrial dysfunction, oxidative stress and defective autophagy. Improved understanding of the pathological mechanisms underlying this premature aging phenotype in CKD could unveil novel therapeutic avenues for preventing age-related complications and improving outcomes for affected patients. Kidney aging is not solely determined by genetic factors but can also be influenced by lifestyle, environment and concurrent illnesses. Therefore, assessments of CKD risk for early preventive measures should focus on biological age rather than chronological age. Despite the existence of numerous markers of biological age, their correlations with each other are often lower

than anticipated,^{131,178} indicating that various markers may capture distinct facets of the aging process. Further research is therefore needed to validate and refine existing aging biomarkers while also identifying more accurate and robust indicators of kidney aging. By pinpointing factors and diseases that affect the pace of kidney aging, several anti-aging strategies have been proposed to promote healthy kidney aging and delay the development of age-related kidney diseases. Improved understanding of the intricate interplay between the hallmarks of kidney aging and susceptibility to age-related pathologies holds promise for the development of clinical interventions aimed at fostering long-term kidney health and improving overall health outcomes.

Acknowledgements

The authors' work is supported by Japan Society for the Promotion of Science (21K16163, 23K07671 to T.Y. and 21H02935 to Y.I.), Japan Agency for Medical Research and Development (JP23ek0310022 to T.Y. and JP22gm1410014 to Y.I.), the Astellas Foundation for Research on Metabolic Disorders, Naito Foundation, Kato Memorial Bioscience Foundation, Salt Science Research Foundation, Sumitomo Insurance Welfare Foundation, G-7 Scholarship Foundation, and Takeda Medical Research Foundation (to T. Y.).

Author contributions

Both authors made substantial contributions to discussions of the content and wrote, reviewed and/or edited the manuscript before submission.

Competing Interests

The authors declare no competing interests.

Peer review information

TBC

Key points

- The kidney is a metabolically active organ that requires energy for processes such as tubular reabsorption and secretion; however, the function of the kidney declines with age.
- Various molecular mechanisms, including cellular senescence, inflammation, mitochondrial function, changes to Sirtuin and Klotho signaling pathways, and the autophagy-lysosome system, are

recognized as regulators of individual lifespan and are important factors that govern kidney aging.

- Chronic kidney disease (CKD) and premature aging share several common features and pathophysiological mechanisms; CKD is therefore considered a disease associated with accelerated or premature aging,
- The accelerated aging phenotype of the kidney in the context of CKD results in a disconnect between the biological age of the kidney and the chronological age of the individual, known as the ‘age gap’.
- Emerging technologies and biomarkers hold promise for improving the early detection, diagnosis, and management of age-related kidney diseases and premature aging.
- Targeting the pathways associated with inflammation, mitochondrial function, oxidative stress, senescence and the autophagy-lysosome system holds promise for developing therapeutic interventions to prevent, delay or attenuate age-related kidney diseases and promote healthy aging.

Figure 1 The hallmarks of kidney aging

Several hallmarks of aging have been linked to pathogenic processes underlying the development of kidney disease. These hallmarks, along with other processes lead to manifestations that commonly present in patients with chronic kidney disease, including glomerulosclerosis, tubulointerstitial injury and fibrosis, and can therefore be considered hallmarks of kidney aging.

Figure 2 Molecular mechanisms of autophagy dysregulation in aging

In tubular epithelial cells (PTECs) from young mice, autophagy increases in response to cellular stress as an adaptive mechanism. By contrast, PTECs from aged mice demonstrate higher basal autophagy due to persistent aging stress. However, the ability of aged cells to increase autophagic activity in response to additional stressors is impeded. The x-axis represents time (hours to days), and the y-axis represents autophagic activity. b | Age-dependent dysregulation of autophagy is induced by lysosomal dysfunction and/or abnormal autophagosome maturation rather than decreased autophagosome biogenesis during kidney aging. Specifically, increased levels of mTOR in aged kidneys in response to decreases in α Klotho and AMPK inhibits the induction of autophagy. Downregulation of the glucose-responsive transcription factor, MondoA, with age, leads to increased expression of Rubicon — a negative regulator of autophagosome maturation. Moreover, lysosomal dysfunction in PTECs may also contribute to the age-dependent dysregulation of autophagy.

A similar (but more complicated) figure was used in our previous review article: Minami S, et

al. Autophagy and kidney aging. *Prog Biophys Mol Biol.* 2023;179:10-15 (Ref 117 in this manuscript).

Figure 3 | The concept of biological age versus chronological age

Biological aging refers to the decline in tissue or organismal function, whereas chronological aging simply indicates the time passed since birth. In individuals who age 'normally', chronological age equates to biological age. The difference between biological and chronological age is denoted as an "age gap" and serves as a complementary indicator of aging. Chronic kidney disease (CKD) accelerates the biological age of the kidney and promotes premature aging via a multiorgan disease network.

Figure 4 Interactions between premature aging, frailty and CKD

Susceptibility to chronic kidney disease (CKD), acute kidney disease (AKI) and CKD progression is influenced by a variety of pathologic mechanisms that overlap with the classic hallmarks of aging. CKD is associated with a higher biological age – indicative of accelerated or premature aging – and is a risk factor for the aging of other organ systems in humans via a multiorgan disease network. This accelerated aging phenotype manifests as an increased burden of age-related conditions and comorbidities, such as cardiovascular disease, cognitive impairment and sarcopenia, and is associated with an increased risk of frailty. Frailty and premature aging in turn may exacerbate the pathologies of kidney aging and disease. The exposome, defined as the cumulative impact of environmental exposures throughout an individual's lifetime, may exacerbates this cycle, further deteriorating kidney health and contributing to the overall aging processes.

References

- 1 Ishani, A. *et al.* Acute kidney injury increases risk of ESRD among elderly. *J Am Soc Nephrol* **20**, 223-228 (2009).
- 2 Ferenbach, D. A. & Bonventre, J. V. Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. *Nat Rev Nephrol* **11**, 264-276 (2015).
- 3 Wang, X., Bonventre, J. V. & Parrish, A. R. The aging kidney: increased susceptibility to nephrotoxicity. *Int J Mol Sci* **15**, 15358-15376 (2014).
- 4 Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. *Cell* **153**, 1194-1217 (2013).
- 5 Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G.

Hallmarks of aging: An expanding universe. *Cell* **186**, 243-278 (2023).

6 Mizushima, N. & Levine, B. Autophagy in Human Diseases. *N Engl J Med* **383**, 1564-1576 (2020).

7 Takabatake, Y., Kimura, T., Takahashi, A. & Isaka, Y. Autophagy and the kidney: health and disease. *Nephrol Dial Transplant* **29**, 1639-1647 (2014).

8 Tang, C., Livingston, M. J., Liu, Z. & Dong, Z. Autophagy in kidney homeostasis and disease. *Nat Rev Nephrol* **16**, 489-508 (2020).

9 Kaushik, S. *et al.* Autophagy and the hallmarks of aging. *Ageing Res Rev* **72**, 101468 (2021).

10 Aman, Y. *et al.* Autophagy in healthy aging and disease. *Nat Aging* **1**, 634-650 (2021).

11 Kooman, J. P., Kotanko, P., Schols, A. M., Shiels, P. G. & Stenvinkel, P. Chronic kidney disease and premature ageing. *Nat Rev Nephrol* **10**, 732-742 (2014).

12 Tian, Y. E. *et al.* Heterogeneous aging across multiple organ systems and prediction of chronic disease and mortality. *Nat Med* **29**, 1221-1231 (2023).

13 Hommos, M. S., Glasscock, R. J. & Rule, A. D. Structural and Functional Changes in Human Kidneys with Healthy Aging. *J Am Soc Nephrol* **28**, 2838-2844 (2017).

14 Tan, J. C. *et al.* Effects of aging on glomerular function and number in living kidney donors. *Kidney Int* **78**, 686-692 (2010).

15 Glasscock, R. J. & Rule, A. D. The implications of anatomical and functional changes of the aging kidney: with an emphasis on the glomeruli. *Kidney Int* **82**, 270-277 (2012).

16 Roeder, S. S. *et al.* Changes in glomerular parietal epithelial cells in mouse kidneys with advanced age. *Am J Physiol Renal Physiol* **309**, F164-178 (2015).

17 Wiggins, J. E. Aging in the glomerulus. *J Gerontol A Biol Sci Med Sci* **67**, 1358-1364 (2012).

18 Goligorsky, M. S. Emerging Insights into Glomerular Vascular Pole and Microcirculation. *J Am Soc Nephrol* **33**, 1641-1648 (2022).

19 Nangaku, M. Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. *J Am Soc Nephrol* **17**, 17-25 (2006).

20 Tanaka, T. *et al.* Hypoxia and expression of hypoxia-inducible factor in the aging kidney. *J Gerontol A Biol Sci Med Sci* **61**, 795-805 (2006).

21 Ryu, D. R. *et al.* Sirt1-hypoxia-inducible factor-1alpha interaction is a key mediator of tubulointerstitial damage in the aged kidney. *Aging Cell* **18**, e12904 (2019).

22 Perico, L., Remuzzi, G. & Benigni, A. Sirtuins in kidney health and disease. *Nat Rev Nephrol* (2024).

23 Semenza, G. L. Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning. *Biochim Biophys Acta* **1813**, 1263-1268 (2011).

24 Kume, S. *et al.* Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. *J Clin Invest* **120**, 1043-1055 (2010).

25 Mohandes, S. *et al.* Molecular pathways that drive diabetic kidney disease. *J Clin Invest* **133** (2023).

26 Chuang, P. Y. *et al.* Reduction in podocyte SIRT1 accelerates kidney injury in aging mice. *Am J Physiol Renal Physiol* **313**, F621-F628 (2017).

27 Randles, M. J. *et al.* Identification of an Altered Matrix Signature in Kidney Aging and Disease. *J Am Soc Nephrol* **32**, 1713-1732 (2021).

28 Isaka, Y. Targeting TGF-beta Signaling in Kidney Fibrosis. *Int J Mol Sci* **19** (2018).

29 Schumacher, B., Pothof, J., Vijg, J. & Hoeijmakers, J. H. J. The central role of DNA damage in the ageing process. *Nature* **592**, 695-703 (2021).

30 Garaycoechea, J. I., Quinlan, C. & Luijsterburg, M. S. Pathological consequences of DNA damage in the kidney. *Nat Rev Nephrol* **19**, 229-243 (2023).

31 Wilson, P. C. *et al.* Mosaic loss of Y chromosome is associated with aging and epithelial injury in chronic kidney disease. *Genome Biol* **25**, 36 (2024).

32 Melk, A. *et al.* Telomere shortening in kidneys with age. *J Am Soc Nephrol* **11**, 444-453 (2000).

33 Park, S. *et al.* A Mendelian randomization study found causal linkage between telomere attrition and chronic kidney disease. *Kidney Int* **100**, 1063-1070 (2021).

34 Carrero, J. J. *et al.* Telomere attrition is associated with inflammation, low fetuin-A levels and high mortality in prevalent haemodialysis patients. *J Intern Med* **263**, 302-312 (2008).

35 Shiels, P. G., McGuinness, D., Eriksson, M., Kooman, J. P. & Stenvinkel, P. The role of epigenetics in renal ageing. *Nat Rev Nephrol* **13**, 471-482 (2017).

36 Di Micco, R., Krizhanovsky, V., Baker, D. & d'Adda di Fagagna, F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. *Nat Rev Mol Cell Biol* **22**, 75-95 (2021).

37 Docherty, M. H., O'Sullivan, E. D., Bonventre, J. V. & Ferenbach, D. A. Cellular Senescence in the Kidney. *J Am Soc Nephrol* **30**, 726-736 (2019).

38 Sturmlechner, I., Durik, M., Sieben, C. J., Baker, D. J. & van Deursen, J. M. Cellular senescence in renal ageing and disease. *Nat Rev Nephrol* **13**, 77-89 (2017).

39 Huang, W., Hickson, L. J., Eirin, A., Kirkland, J. L. & Lerman, L. O. Cellular senescence: the good, the bad and the unknown. *Nat Rev Nephrol* **18**, 611-627 (2022).

40 Kim, S. R. *et al.* Progressive Cellular Senescence Mediates Renal Dysfunction in Ischemic Nephropathy. *J Am Soc Nephrol* **32**, 1987-2004 (2021).

41 Zhang, L. *et al.* C/EBPalpha deficiency in podocytes aggravates podocyte senescence and kidney injury in aging mice. *Cell Death Dis* **10**, 684 (2019).

42 Fang, Y. *et al.* Age-related GSK3beta overexpression drives podocyte senescence and glomerular aging. *J Clin Invest* **132** (2022).

43 Pippin, J. W. *et al.* Upregulated PD-1 signaling antagonizes glomerular health in aged kidneys and disease. *J Clin Invest* **132** (2022).

44 Mylonas, K. J. *et al.* Cellular senescence inhibits renal regeneration after injury in mice, with senolytic treatment promoting repair. *Sci Transl Med* **13** (2021).

45 Baker, D. J. *et al.* Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. *Nature* **479**, 232-236 (2011).

46 Jin, H. *et al.* Epithelial innate immunity mediates tubular cell senescence after kidney injury. *JCI Insight* **4** (2019).

47 Paez-Ribes, M., Gonzalez-Gualda, E., Doherty, G. J. & Munoz-Espin, D. Targeting senescent cells in translational medicine. *EMBO Mol Med* **11**, e10234 (2019).

48 Chaib, S., Tchkonia, T. & Kirkland, J. L. Cellular senescence and senolytics: the path to the clinic. *Nat Med* **28**, 1556-1568 (2022).

49 Johmura, Y. *et al.* Senolysis by glutaminolysis inhibition ameliorates various age-associated disorders. *Science* **371**, 265-270 (2021).

50 Franceschi, C., Garagnani, P., Parini, P., Giuliani, C. & Santoro, A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. *Nat Rev Endocrinol* **14**, 576-590 (2018).

51 Evenepoel, P., Stenvinkel, P., Shanahan, C. & Pacifici, R. Inflammation and gut dysbiosis as drivers of CKD-MBD. *Nat Rev Nephrol* **19**, 646-657 (2023).

52 Sato, Y., Silina, K., van den Broek, M., Hirahara, K. & Yanagita, M. The roles of tertiary lymphoid structures in chronic diseases. *Nat Rev Nephrol* **19**, 525-537 (2023).

53 Stenvinkel, P. *et al.* Chronic Inflammation in Chronic Kidney Disease Progression: Role of Nrf2. *Kidney Int Rep* **6**, 1775-1787 (2021).

54 Shelton, L. M., Park, B. K. & Copple, I. M. Role of Nrf2 in protection against acute kidney injury. *Kidney Int* **84**, 1090-1095 (2013).

55 Nezu, M. *et al.* Transcription factor Nrf2 hyperactivation in early-phase renal

ischemia-reperfusion injury prevents tubular damage progression. *Kidney Int* **91**, 387-401 (2017).

56 Jo, M. J. *et al.* Impaired NRF2 Inhibits Recovery from Ischemic Reperfusion Injury in the Aging Kidney. *Antioxidants (Basel)* **12** (2023).

57 Martini, S. *et al.* Integrative biology identifies shared transcriptional networks in CKD. *J Am Soc Nephrol* **25**, 2559-2572 (2014).

58 Salminen, A., Kaarniranta, K. & Kauppinen, A. Inflammaging: disturbed interplay between autophagy and inflammasomes. *Aging (Albany NY)* **4**, 166-175 (2012).

59 Komada, T. & Muruve, D. A. The role of inflammasomes in kidney disease. *Nat Rev Nephrol* **15**, 501-520 (2019).

60 Kaverina, N. *et al.* Inhibiting NLRP3 signaling in aging podocytes improves their life- and health-span. *Aging (Albany NY)* **15**, 6658-6689 (2023).

61 Sato, Y. *et al.* Heterogeneous fibroblasts underlie age-dependent tertiary lymphoid tissues in the kidney. *JCI Insight* **1**, e87680 (2016).

62 Ligon, M. M. *et al.* Single cell and tissue-transcriptomic analysis of murine bladders reveals age- and TNFalpha-dependent but microbiota-independent tertiary lymphoid tissue formation. *Mucosal Immunol* **13**, 908-918 (2020).

63 Singh, P. *et al.* Lymphoid neogenesis and immune infiltration in aged liver. *Hepatology* **47**, 1680-1690 (2008).

64 Sato, Y. & Yanagita, M. Immunology of the ageing kidney. *Nat Rev Nephrol* **15**, 625-640 (2019).

65 Sato, Y. *et al.* Developmental stages of tertiary lymphoid tissue reflect local injury and inflammation in mouse and human kidneys. *Kidney Int* (2020).

66 Sato, Y. *et al.* CD153-CD30 signaling promotes age-dependent tertiary lymphoid tissue expansion and kidney injury. *J Clin Invest* (2021).

67 Lee, Y. H. *et al.* Advanced Tertiary Lymphoid Tissues in Protocol Biopsies are Associated with Progressive Graft Dysfunction in Kidney Transplant Recipients. *J Am Soc Nephrol* (2021).

68 Yoshikawa, T. *et al.* Tertiary Lymphoid Tissues Are Microenvironments with Intensive Interactions between Immune Cells and Proinflammatory Parenchymal Cells in Aged Kidneys. *J Am Soc Nephrol* **34**, 1687-1708 (2023).

69 Doke, T. & Susztak, K. The multifaceted role of kidney tubule mitochondrial dysfunction in kidney disease development. *Trends Cell Biol* **32**, 841-853 (2022).

70 Guan, Y. *et al.* Nicotinamide Mononucleotide, an NAD(+) Precursor, Rescues Age-Associated Susceptibility to AKI in a Sirtuin 1-Dependent Manner. *J Am Soc Nephrol* **28**, 2337-2352 (2017).

71 Yamamoto, T. *et al.* Time-dependent dysregulation of autophagy: Implications in aging and mitochondrial homeostasis in the kidney proximal tubule. *Autophagy* **12**, 801-813 (2016).

72 Tang, C. *et al.* Mitochondrial quality control in kidney injury and repair. *Nat Rev Nephrol* **17**, 299-318 (2021).

73 Miwa, S., Kashyap, S., Chini, E. & von Zglinicki, T. Mitochondrial dysfunction in cell senescence and aging. *J Clin Invest* **132** (2022).

74 Kishi, S., Nagasu, H., Kidokoro, K. & Kashihara, N. Oxidative stress and the role of redox signalling in chronic kidney disease. *Nat Rev Nephrol* **20**, 101-119 (2024).

75 Salminen, A., Kaarniranta, K. & Kauppinen, A. Regulation of longevity by FGF21: Interaction between energy metabolism and stress responses. *Ageing Res Rev* **37**, 79-93 (2017).

76 Minami, S. *et al.* FGF21 and autophagy coordinately counteract kidney disease progression during aging and obesity. *Autophagy*, 1-16 (2023).

77 Yamamoto, T. *et al.* High-Fat Diet-Induced Lysosomal Dysfunction and Impaired Autophagic Flux Contribute to Lipotoxicity in the Kidney. *J Am Soc Nephrol* **28**, 1534-1551 (2017).

78 Yamamoto, T. *et al.* Eicosapentaenoic acid attenuates renal lipotoxicity by restoring autophagic flux. *Autophagy* **17**, 1700-1713 (2021).

79 Minami, S. *et al.* Lipophagy maintains energy homeostasis in the kidney proximal tubule during prolonged starvation. *Autophagy* **13**, 1629-1647 (2017).

80 Matsumoto, A. *et al.* Spatiotemporally quantitative in vivo imaging of mitochondrial fatty acid beta-oxidation at cellular-level resolution in mice. *Am J Physiol Endocrinol Metab* **325**, E552-E561 (2023).

81 Noels, H., Lehrke, M., Vanholder, R. & Jankowski, J. Lipoproteins and fatty acids in chronic kidney disease: molecular and metabolic alterations. *Nat Rev Nephrol* **17**, 528-542 (2021).

82 Mitrofanova, A., Merscher, S. & Fornoni, A. Kidney lipid dysmetabolism and lipid droplet accumulation in chronic kidney disease. *Nat Rev Nephrol* **19**, 629-645 (2023).

83 Mutlu, A. S., Duffy, J. & Wang, M. C. Lipid metabolism and lipid signals in aging and longevity. *Dev Cell* **56**, 1394-1407 (2021).

84 Braun, F. *et al.* Altered lipid metabolism in the aging kidney identified by three layered omic analysis. *Aging (Albany NY)* **8**, 441-457 (2016).

85 Kang, H. M. *et al.* Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. *Nat Med* **21**, 37-46 (2015).

86 Dhillon, P. *et al.* The Nuclear Receptor ESRRA Protects from Kidney Disease by

Coupling Metabolism and Differentiation. *Cell Metab* **33**, 379-394 e378 (2021).

87 Chung, K. W. *et al.* Impairment of PPARalpha and the Fatty Acid Oxidation Pathway Aggravates Renal Fibrosis during Aging. *J Am Soc Nephrol* **29**, 1223-1237 (2018).

88 Lee, G. *et al.* PGC-1alpha, a potential therapeutic target against kidney aging. *Aging Cell* **18**, e12994 (2019).

89 Kuro-o, M. *et al.* Mutation of the mouse klotho gene leads to a syndrome resembling ageing. *Nature* **390**, 45-51 (1997).

90 Kurosu, H. *et al.* Suppression of aging in mice by the hormone Klotho. *Science* **309**, 1829-1833 (2005).

91 Shi, M. *et al.* alphaKlotho Mitigates Progression of AKI to CKD through Activation of Autophagy. *J Am Soc Nephrol* **27**, 2331-2345 (2016).

92 Wang, Y. *et al.* Imbalanced lipid homeostasis caused by membrane alphaKlotho deficiency contributes to the acute kidney injury to chronic kidney disease transition. *Kidney Int* **104**, 956-974 (2023).

93 Edmonston, D. *et al.* Klotho and Clinical Outcomes in CKD. *Am J Kidney Dis* (2024).

94 Fujimura, R. *et al.* Autophagy protects kidney from phosphate-induced mitochondrial injury. *Biochem Biophys Res Commun* **524**, 636-642 (2020).

95 Kuro, O. M. Phosphate as a Pathogen of Arteriosclerosis and Aging. *J Atheroscler Thromb* **28**, 203-213 (2021).

96 Kawai, M., Kinoshita, S., Ozono, K. & Michigami, T. Inorganic Phosphate Activates the AKT/mTORC1 Pathway and Shortens the Life Span of an alpha-Klotho-Deficient Model. *J Am Soc Nephrol* **27**, 2810-2824 (2016).

97 Kuro, O. M. Klotho and calciprotein particles as therapeutic targets against accelerated ageing. *Clin Sci (Lond)* **135**, 1915-1927 (2021).

98 Shiizaki, K. *et al.* Calcium phosphate microcrystals in the renal tubular fluid accelerate chronic kidney disease progression. *J Clin Invest* **131** (2021).

99 Mafra, D. *et al.* Food as medicine: targeting the uraemic phenotype in chronic kidney disease. *Nat Rev Nephrol* **17**, 153-171 (2021).

100 Avesani, C. M., Cuppari, L., Nerbass, F. B., Lindholm, B. & Stenvinkel, P. Ultraprocessed foods and chronic kidney disease-double trouble. *Clin Kidney J* **16**, 1723-1736 (2023).

101 Dominguez, L. J., Veronese, N. & Barbagallo, M. Magnesium and the Hallmarks of Aging. *Nutrients* **16** (2024).

102 Sakaguchi, Y. *et al.* Hypomagnesemia in type 2 diabetic nephropathy: a novel predictor of end-stage renal disease. *Diabetes Care* **35**, 1591-1597 (2012).

103 Oka, T. *et al.* Proteinuria-associated renal magnesium wasting leads to hypomagnesemia: a common electrolyte abnormality in chronic kidney disease. *Nephrol Dial Transplant* **34**, 1154-1162 (2019).

104 Du, S., Kim, H., Crews, D. C., White, K. & Rebholz, C. M. Association Between Ultraprocessed Food Consumption and Risk of Incident CKD: A Prospective Cohort Study. *Am J Kidney Dis* **80**, 589-598 e581 (2022).

105 Su, D. *et al.* Metabolomic Markers of Ultra-Processed Food and Incident CKD. *Clin J Am Soc Nephrol* **18**, 327-336 (2023).

106 Rebholz, C. M. *et al.* Dietary Magnesium and Kidney Function Decline: The Healthy Aging in Neighborhoods of Diversity across the Life Span Study. *Am J Nephrol* **44**, 381-387 (2016).

107 Sakaguchi, Y. *et al.* Low magnesium diet aggravates phosphate-induced kidney injury. *Nephrol Dial Transplant* **34**, 1310-1319 (2019).

108 Diaz-Tocados, J. M. *et al.* Dietary magnesium supplementation prevents and reverses vascular and soft tissue calcifications in uremic rats. *Kidney Int* **92**, 1084-1099 (2017).

109 Sakaguchi, Y. *et al.* Magnesium modifies the association between serum phosphate and the risk of progression to end-stage kidney disease in patients with non-diabetic chronic kidney disease. *Kidney Int* **88**, 833-842 (2015).

110 Jahan, N. *et al.* Possible contribution of phosphate to the pathogenesis of chronic kidney disease in dolphins. *Sci Rep* **13**, 5161 (2023).

111 Gupta, N. *et al.* Targeted Inhibition of Gut Microbial Trimethylamine N-Oxide Production Reduces Renal Tubulointerstitial Fibrosis and Functional Impairment in a Murine Model of Chronic Kidney Disease. *Arterioscler Thromb Vasc Biol* **40**, 1239-1255 (2020).

112 Wang, M. *et al.* The Gut Microbial Metabolite Trimethylamine N-oxide, Incident CKD, and Kidney Function Decline. *J Am Soc Nephrol* (2024).

113 Sakai, S. *et al.* Proximal Tubule Autophagy Differs in Type 1 and 2 Diabetes. *J Am Soc Nephrol* **30**, 929-945 (2019).

114 Takahashi, A. *et al.* Autophagy Inhibits the Accumulation of Advanced Glycation End Products by Promoting Lysosomal Biogenesis and Function in the Kidney Proximal Tubules. *Diabetes* **66**, 1359-1372 (2017).

115 Ballabio, A. & Bonifacino, J. S. Lysosomes as dynamic regulators of cell and organismal homeostasis. *Nat Rev Mol Cell Biol* **21**, 101-118 (2020).

116 Yamamoto, T., Nakamura, J., Takabatake, Y. & Isaka, Y. Obesity-related proximal tubulopathy: an emerging threat to kidney health. *Autophagy Reports* **2** (2023).

117 Minami, S., Yamamoto, T., Yamamoto-Imoto, H., Isaka, Y. & Hamasaki, M. Autophagy and kidney aging. *Prog Biophys Mol Biol* **179**, 10-15 (2023).

118 Cui, M. *et al.* HKDC1, a target of TFEB, is essential to maintain both mitochondrial and lysosomal homeostasis, preventing cellular senescence. *Proc Natl Acad Sci U S A* **121**, e2306454120 (2024).

119 Gros, F. & Muller, S. The role of lysosomes in metabolic and autoimmune diseases. *Nat Rev Nephrol* **19**, 366-383 (2023).

120 Takabatake, Y., Yamamoto, T. & Isaka, Y. Stagnation of autophagy: A novel mechanism of renal lipotoxicity. *Autophagy* **13**, 775-776 (2017).

121 Nakamura, J. *et al.* TFEB-mediated lysosomal exocytosis alleviates high-fat diet-induced lipotoxicity in the kidney. *JCI Insight* **8** (2023).

122 Matsunaga, K. *et al.* Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. *Nat Cell Biol* **11**, 385-396 (2009).

123 Nakamura, S. *et al.* Suppression of autophagic activity by Rubicon is a signature of aging. *Nat Commun* **10**, 847 (2019).

124 Yamamoto-Imoto, H. *et al.* Age-associated decline of MondoA drives cellular senescence through impaired autophagy and mitochondrial homeostasis. *Cell Rep* **38**, 110444 (2022).

125 Maeda, S. *et al.* MondoA and AKI and AKI-to-CKD Transition. *J Am Soc Nephrol* (2024).

126 Kim, J., Kundu, M., Viollet, B. & Guan, K. L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. *Nat Cell Biol* **13**, 132-141 (2011).

127 Huynh, C., Ryu, J., Lee, J., Inoki, A. & Inoki, K. Nutrient-sensing mTORC1 and AMPK pathways in chronic kidney diseases. *Nat Rev Nephrol* **19**, 102-122 (2023).

128 Zhang, W., Feng, C. & Jiang, H. Novel target for treating Alzheimer's Diseases: Crosstalk between the Nrf2 pathway and autophagy. *Ageing Res Rev* **65**, 101207 (2021).

129 Oh, H. S. *et al.* Organ aging signatures in the plasma proteome track health and disease. *Nature* **624**, 164-172 (2023).

130 Cohen, N. M. *et al.* Longitudinal machine learning uncouples healthy aging factors from chronic disease risks. *Nat Aging* **4**, 129-144 (2024).

131 Rutledge, J., Oh, H. & Wyss-Coray, T. Measuring biological age using omics data. *Nat Rev Genet* **23**, 715-727 (2022).

132 Shiels, P. G. *et al.* Manipulating the exposome to enable better ageing. *Biochem J* **478**, 2889-2898 (2021).

133 Stenvinkel, P., Avesani, C. M., Gordon, L. J., Schalling, M. & Shiels, P. G. Biomimetics provides lessons from nature for contemporary ways to improve human health. *J Clin Transl Sci* **5**, e128 (2021).

134 Ebert, T. *et al.* Inflammation and Premature Ageing in Chronic Kidney Disease. *Toxins (Basel)* **12** (2020).

135 Singh, M., Stewart, R. & White, H. Importance of frailty in patients with cardiovascular disease. *Eur Heart J* **35**, 1726-1731 (2014).

136 Otobe, Y., Rhee, C. M., Nguyen, M., Kalantar-Zadeh, K. & Kopple, J. D. Current status of the assessment of sarcopenia, frailty, physical performance and functional status in chronic kidney disease patients. *Curr Opin Nephrol Hypertens* **31**, 109-128 (2022).

137 Fried, L. P. *et al.* Frailty in older adults: evidence for a phenotype. *J Gerontol A Biol Sci Med Sci* **56**, M146-156 (2001).

138 Nixon, A. C. *et al.* Frailty and chronic kidney disease: current evidence and continuing uncertainties. *Clin Kidney J* **11**, 236-245 (2018).

139 Miao, Z., Humphreys, B. D., McMahon, A. P. & Kim, J. Multi-omics integration in the age of million single-cell data. *Nat Rev Nephrol* **17**, 710-724 (2021).

140 Klinkhammer, B. M. *et al.* Non-invasive molecular imaging of kidney diseases. *Nat Rev Nephrol* **17**, 688-703 (2021).

141 Schreibing, F. & Kramann, R. Mapping the human kidney using single-cell genomics. *Nat Rev Nephrol* **18**, 347-360 (2022).

142 He, X., Memczak, S., Qu, J., Belmonte, J. C. I. & Liu, G. H. Single-cell omics in ageing: a young and growing field. *Nat Metab* **2**, 293-302 (2020).

143 Kirita, Y., Wu, H., Uchimura, K., Wilson, P. C. & Humphreys, B. D. Cell profiling of mouse acute kidney injury reveals conserved cellular responses to injury. *Proc Natl Acad Sci U S A* (2020).

144 Ahadi, S. *et al.* Personal aging markers and ageotypes revealed by deep longitudinal profiling. *Nat Med* **26**, 83-90 (2020).

145 Baek, J., He, C., Afshinnia, F., Michailidis, G. & Pennathur, S. Lipidomic approaches to dissect dysregulated lipid metabolism in kidney disease. *Nat Rev Nephrol* **18**, 38-55 (2022).

146 Tsugawa, H. *et al.* A lipidome landscape of aging in mice. *Nat Aging* (2024).

147 Burtscher, J. *et al.* Mitochondrial stress and mitokines in aging. *Aging Cell* **22**, e13770 (2023).

148 Kim, K. H. *et al.* Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. *Nat Med* **19**, 83-92 (2013).

149 Hamano, T. *et al.* Fetuin-mineral complex reflects extraosseous calcification

stress in CKD. *J Am Soc Nephrol* **21**, 1998-2007 (2010).

150 Miura, Y., Kurosu, H. & Kuro, O. M. Quantification of Calciprotein Particles (CPPs) in Serum/Plasma Samples Using a Fluorescent Bisphosphonate. *Methods Mol Biol* **2664**, 333-341 (2023).

151 Mukai, H. *et al.* Skin autofluorescence, arterial stiffness and Framingham risk score as predictors of clinical outcome in chronic kidney disease patients: a cohort study. *Nephrol Dial Transplant* **34**, 442-448 (2019).

152 Reurean-Pintilei, D. *et al.* Skin Autofluorescence as a Potential Adjunctive Marker for Cardiovascular Risk Assessment in Type 2 Diabetes: A Systematic Review. *Int J Mol Sci* **25** (2024).

153 Neytchev, O. *et al.* Epigenetic clocks indicate that kidney transplantation and not dialysis mitigate the effects of renal ageing. *J Intern Med* **295**, 79-90 (2024).

154 Suzuki, T. *et al.* Mitochondric Acid 5 Binds Mitochondria and Ameliorates Renal Tubular and Cardiac Myocyte Damage. *J Am Soc Nephrol* **27**, 1925-1932 (2016).

155 Matsuhashi, T. *et al.* Mitochondric Acid 5 (MA-5) Facilitates ATP Synthase Oligomerization and Cell Survival in Various Mitochondrial Diseases. *EBioMedicine* **20**, 27-38 (2017).

156 Xu, M. *et al.* Senolytics improve physical function and increase lifespan in old age. *Nat Med* **24**, 1246-1256 (2018).

157 Zhang, L. *et al.* Cellular senescence: a key therapeutic target in aging and diseases. *J Clin Invest* **132** (2022).

158 Hickson, L. J. *et al.* Senolytics decrease senescent cells in humans: Preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. *EBioMedicine* **47**, 446-456 (2019).

159 Katsuumi, G. *et al.* SGLT2 inhibition eliminates senescent cells and alleviates pathological aging. *Nat Aging* (2024).

160 Grosse, L. *et al.* Defined p16(High) Senescent Cell Types Are Indispensable for Mouse Healthspan. *Cell Metab* **32**, 87-99 e86 (2020).

161 Namba, T. *et al.* Autophagic clearance of mitochondria in the kidney copes with metabolic acidosis. *J Am Soc Nephrol* **25**, 2254-2266 (2014).

162 Zhang, Y. *et al.* The starvation hormone, fibroblast growth factor-21, extends lifespan in mice. *Elife* **1**, e00065 (2012).

163 Bhatt, D. L. *et al.* The FGF21 analog pegozafermin in severe hypertriglyceridemia: a randomized phase 2 trial. *Nat Med* **29**, 1782-1792 (2023).

164 Loomba, R. *et al.* Randomized, Controlled Trial of the FGF21 Analogue Pegozafermin in NASH. *N Engl J Med* (2023).

165 Yang, T., Richards, E. M., Pepine, C. J. & Raizada, M. K. The gut microbiota and

the brain-gut-kidney axis in hypertension and chronic kidney disease. *Nat Rev Nephrol* **14**, 442-456 (2018).

166 Buffa, J. A. *et al.* The microbial gbu gene cluster links cardiovascular disease risk associated with red meat consumption to microbiota L-carnitine catabolism. *Nat Microbiol* **7**, 73-86 (2022).

167 Lew, Q. J. *et al.* Red Meat Intake and Risk of ESRD. *J Am Soc Nephrol* **28**, 304-312 (2017).

168 Taguchi, K., Fukami, K., Elias, B. C. & Brooks, C. R. Dysbiosis-Related Advanced Glycation Endproducts and Trimethylamine N-Oxide in Chronic Kidney Disease. *Toxins (Basel)* **13** (2021).

169 Dai, L. *et al.* The association between TMAO, CMPF, and clinical outcomes in advanced chronic kidney disease: results from the European QUALity (EQUAL) Study. *Am J Clin Nutr* **116**, 1842-1851 (2022).

170 Fontana, L. & Partridge, L. Promoting health and longevity through diet: from model organisms to humans. *Cell* **161**, 106-118 (2015).

171 Windahl, K. *et al.* The safety of a low protein diet in older adults with advanced chronic kidney disease. *Nephrol Dial Transplant* (2024).

172 Carrero, J. J. *et al.* Plant-based diets to manage the risks and complications of chronic kidney disease. *Nat Rev Nephrol* **16**, 525-542 (2020).

173 Sakaguchi, Y., Kaimori, J. Y. & Isaka, Y. Plant-Dominant Low Protein Diet: A Potential Alternative Dietary Practice for Patients with Chronic Kidney Disease. *Nutrients* **15** (2023).

174 Sakaguchi, Y., Hamano, T. & Isaka, Y. Effects of Magnesium on the Phosphate Toxicity in Chronic Kidney Disease: Time for Intervention Studies. *Nutrients* **9** (2017).

175 Lu, Y., Zhang, Y., Lou, Y., Cui, W. & Miao, L. Sulforaphane suppresses obesity-related glomerulopathy-induced damage by enhancing autophagy via Nrf2. *Life Sci* **258**, 118153 (2020).

176 Mohammad, R. S., Lokhandwala, M. F. & Banday, A. A. Age-Related Mitochondrial Impairment and Renal Injury Is Ameliorated by Sulforaphane via Activation of Transcription Factor NRF2. *Antioxidants (Basel)* **11** (2022).

177 Luis, C. *et al.* Nutritional senolytics and senomorphics: Implications to immune cells metabolism and aging - from theory to practice. *Front Nutr* **9**, 958563 (2022).

178 Jylhava, J., Pedersen, N. L. & Hagg, S. Biological Age Predictors. *EBioMedicine* **21**, 29-36 (2017).

Author notes

Scientific diagrams by their nature contain layers of complex information. The art editor has assessed each of your figures to ensure that the intended information can be understood quickly and easily by the reader. We do this mostly using:

- Colour: to show information hierarchy and to categorise information.
- Layout: to show a logical flow and organisation of information.
- Visual editing: by keeping essential information, adding anything missing, and removing unnecessary repetition or decoration (e.g., misleading or overly generic icons).

For more detailed information, see [our guiding principles for conceptual figures](#).

Please check these figures carefully and return any comments/amendments that you might have to me as soon as possible. In particular, we would like you to check the following:

- Do the figures convey the intended message?
- Are all the labels and arrows accurate and in the correct place?
- Have any of the figures been previously published, or have they been supplied by a colleague(s) who is not a named author on the article?
- For any maps or chemical structures, some style modifications may have been made, are they still correct?

To mark up any corrections, please use the commenting tools in the PDF, or print and draw by hand, rather than directly editing the PDFs.

Fig 1

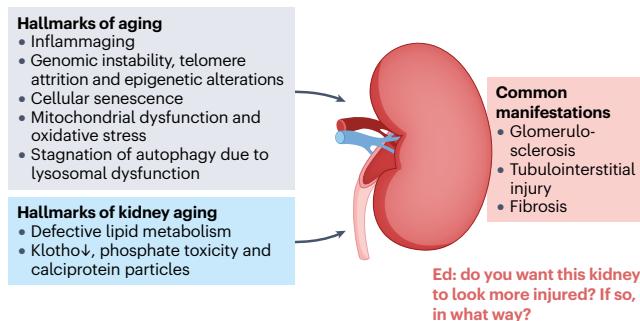


Fig 2

Ed: the author uses different colours for the arrows but I'm not sure what they're trying to show with that. Is this ok or do we need coloured arrows?

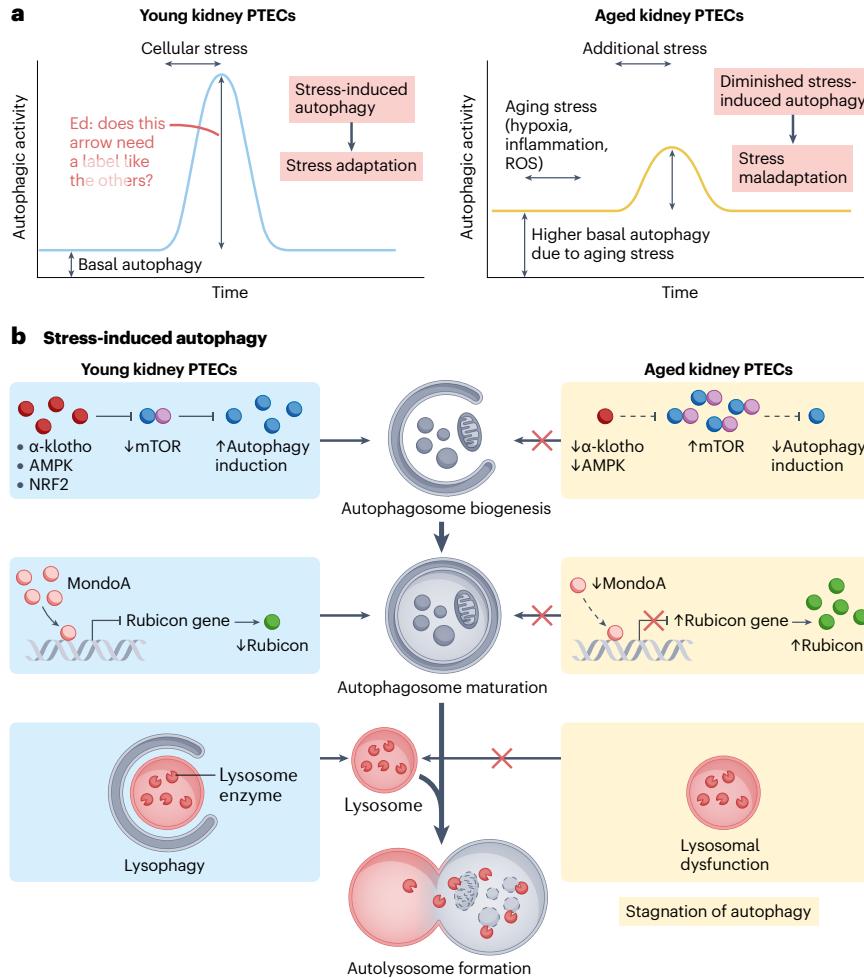


Fig 3

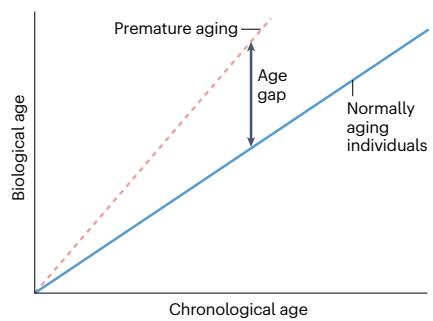
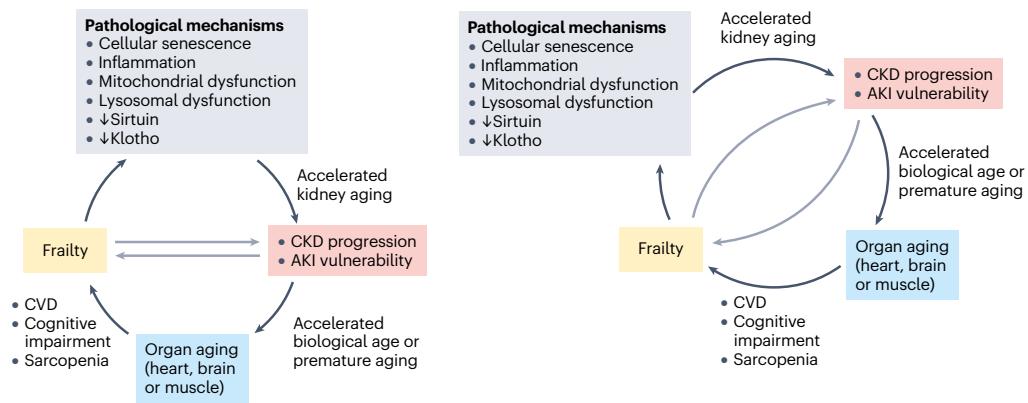



Fig 4

