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Since its discovery by Butlerov et al. in 1861,1 the 1 
formose reaction—a non-enzymatic pathway for 2 
synthesizing sugars from formaldehyde (HCHO) under basic 3 
conditions—has attracted considerable interest for its 4 
implications in origin of life and food production.2-6  5 
Recently, our research successfully demonstrated that 6 
Corynebacterium glutamicum can be cultured using formose 7 
sugar, highlighting its potential as a substrate for the 8 
bioproduction of valuable compounds.7 The formose reaction 9 
involves a myriad of reaction combinations featuring 10 
carbonyl groups, including aldol reactions, retro-aldol 11 
reactions, and aldose-ketose isomerization reactions, thereby 12 

forming a highly complex chemical reaction network.8 13 
Therefore, achieving high selectivity for desired products 14 
within this network is challenging. 15 

Developing selective catalysts has been proposed as a 16 
strategy to address the challenge inherent in the formose 17 
reaction.9-14 As an approach different from catalyst 18 
development, a strategy has also been proposed that involves 19 
adding scavengers that bind to the target sugar. Through the 20 
protection of hydroxy groups in these target sugars by the 21 
chemical scavenger, further reactions of the target sugars can 22 
be prevented, thereby increasing their yields. Boronic acids 23 
(BA) emerge as promising materials for these scavengers, as 24 
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they can form boronic esters with the diols of sugars in 1 
aqueous solutions, thereby stabilizing the products.15 In fact, 2 
Ricardo et al. have discovered that boronic acid, protect 3 
ribose in the formose reaction system.16 However, due to their 4 
general property of forming cyclic esters with diols, BA can 5 
bind not only to the target sugars in the formose reaction 6 
products but also to non-target sugars, which are unnecessary. 7 
Thus, simply adding BA to the formose reaction system 8 
captures non-target sugars as well, potentially clogging the 9 
entire reaction.17 10 

 This issue can be addressed by employing boronic acid 11 
derivatives that have strong binding affinity for the target 12 
sugars while having weak binding affinity for the non-target 13 
sugars. To find suitable boronic acid derivatives for the 14 
formose reaction, exploration of all combination of boronic 15 
acid derivatives and sugars is needed. However, there are 16 
more than 3,000 types of commercially available boronic acid 17 
derivatives. Additionally, the formose reaction can yield up 18 
to 23 types of sugars, not even accounting for stereoisomers, 19 
presenting a significant challenge in identifying the most 20 
effective derivatives for selective sugar capture. Moreover, 21 
given that a single sugar molecule can have multiple pairs of 22 
hydroxyl groups capable of interacting with boronic acid 23 
derivatives18, there is more than one potential interaction 24 
pattern between a sugar and a boronic acid derivatives; in 25 
some cases, there can be as many as eight varieties. 26 
Consequently, even when restricting the variety of sugars 27 
under consideration, the total number of potential 28 
combinations can surpass 600,000. Exploring these 29 
combinations through deductive methods is unfeasible. In 30 
addressing these challenges, employing machine learning 31 
proves to be a valuable approach.19-23 Hence, this study aims 32 
to derive guidelines for designing scavengers that enhance 33 
selectivity for target sugars by investigating boronic acid 34 
derivative-based scavengers through machine learning, 35 
which is informed by density functional theory (DFT) 36 

calculations. There have been several examples where 37 
machine learning has been applied to formose reaction 38 
systems24,25; however, this study is the first to explore 39 
scavenger materials using this approach. 40 

Figure 1(a) shows an overview of the formose reaction 41 
network, highlighting both the target and non-target sugars 42 
investigated in this study. All sugar structure used in this 43 
work is detailed in Table S1. In this study, bio-assimilable 44 
sugars such as glucose, fructose, ribose, and arabinose, which 45 
possess five (C5) and six (C6) carbon atoms, were defined as 46 
target sugars. On the other hand, aldoses (C4a) and ketoses 47 
(C4k), containing four carbon atoms, were classified as non-48 
target sugars. This classification stems from the fact that C4a 49 
and C4k serve as precursors to C5 and C6 sugars, and their 50 
interception by scavengers might inhibit the generation of the 51 
larger C5 and C6 sugars. Furthermore, the reaction products 52 
of C4k and C4a with glycolaldehyde (C2) (C4k+C2, 53 
C4a+C2), the compound formed by the reaction of C4k with 54 
two molecules of HCHO (C1) (C4k+C1+C1), and the 55 
product resulting from the combination of two molecules of 56 
C3k (C3k+C3k) were designated as non-target sugars in this 57 
study. This is due to their potential to transform into glucose 58 
or fructose through subsequent reactions within the formose 59 
reaction network.  60 

Figure 1(b) depicts the conceptual framework of this 61 
study. We computed the Gibbs free energy change (∆𝑟𝑟𝐺𝐺°) for 62 
2,927 reactions from the possible 615,876 combinations of 63 
ester formation reactions between boronic acid derivatives 64 
and sugars using DFT calculations. Utilizing these 65 
computations as training data, we developed a machine 66 
learning model to predict the ∆𝑟𝑟𝐺𝐺°  for the entire set of 67 
615,87616 ester formation reactions. Given the aim of this 68 
study to identify boronic acid derivatives that selectively bind 69 
to target sugars, our focus is on the difference between the 70 
average ∆𝑟𝑟𝐺𝐺°  for ester formation reactions involving a 71 
specific boronic acid with the 4 types of target sugars 72 

Figure 1. (a) The formose reaction network. Species surrounded with red and blue squares represents target sugars and non-
target sugars, respectively. (b) The conceptual framework of this study and the actual versus predicted plot from the constructed 
machine learning model.  
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( ∆𝑟𝑟𝐺𝐺°������target ) and the average ∆𝑟𝑟𝐺𝐺°  for ester formation 1 
reactions between that same boronic acid and the 7 types of 2 
non-target sugars ( ∆𝑟𝑟𝐺𝐺°������non−target ). This difference is 3 
represented as ∆𝑟𝑟𝐺𝐺diff. 4 

∆𝑟𝑟𝐺𝐺diff  = ∆𝑟𝑟𝐺𝐺°������non−target − ∆𝑟𝑟𝐺𝐺°������target (1) 5 
The greater the ∆𝑟𝑟𝐺𝐺diff value, the more it exhibits 6 
characteristics that align with the objective of this study. 7 
∆𝑟𝑟𝐺𝐺diff values are derived from the ∆𝑟𝑟𝐺𝐺° values predicted by 8 
the machine learning model, and boronic acid derivatives that 9 
appear promising are identified based on these values. 10 

Finally, the ∆𝑟𝑟𝐺𝐺° values for the ester formation reactions 11 
between the boronic acid derivative identified as optimal by 12 
the machine learning model and both target and non-target 13 
sugars are calculated using DFT. These values are then 14 
compared with those of a standard boronic acid (i.e., 15 
phenylboronic acid (PBA)) to validate the suitability of the 16 
boronic acid derivative proposed by the machine learning 17 
model. We would like to re-emphasize here that the purpose 18 
of this study is to perform a first screening to extract the 19 
general trends that promising boronic acid derivatives should 20 
possess, through comprehensive analysis of over 600,000 21 
combinations. Therefore, the accuracy of the machine 22 
learning and DFT calculations presented hereafter, as well as 23 
the interpretation of their results, are conducted in light of this 24 
objective. 25 

The actual versus predicted plot for the constructed 26 
machine learning model is displayed in Figure 1b. The 27 
coefficient of determination (R²) exceeded 0.8, as indicated 28 
in Figure 1(b), verifying that the model has adequate 29 
performance. The results of the analysis of feature 30 
importance by SHAP values26 are shown in Figure 2(a). 31 
Notably, among the different factors considered, the sugar 32 
species emerged as the most significant feature, suggesting 33 
that the structure of the sugar plays a predominant role in 34 
determining the ∆𝑟𝑟𝐺𝐺°, while the contribution from boronic 35 
acid functional groups is relatively minor. This finding is 36 
consistent with the discussions in the field of glucose sensing, 37 
where it has been argued that the sugar species, more 38 
specifically its structure, significantly influences its affinity 39 
with boronic acid derivatives.16 The fact that the sugar species, 40 
rather than the boronic acid derivatives or the boronic ester 41 
formation products, was identified as the most significant 42 
factor in the ∆𝑟𝑟𝐺𝐺° calculation further supports the validity of 43 
the machine learning approach employed in this study.27,28 44 

The findings from the SHAP analysis further revealed 45 
that the descriptor Chi2n, indicative of the topological 46 
characteristics of molecules, also played a significant role. 47 
The Chi2n value, understood to be calculated by considering 48 
interatomic paths, increases in response to greater structural 49 
complexity, such as branching, and with the enlargement of 50 
molecular size (Table S2).29 The positive correlation between 51 
the Chi2n values and the predicted ∆𝑟𝑟𝐺𝐺° values, as confirmed 52 
by the SHAP analysis depicted in Figure 2(b), suggests that 53 
steric hindrance is a primary contributing factor. Additionally, 54 
the analysis revealed that descriptors associated with the C=N 55 
bond in boronic acid derivatives, specifically PEOE_VSA9 56 
(Figure S1), and VSA_ESTATE6, which represents the 57 
carbon of the phenyl group (Figure S2), did not significantly 58 
contribute. Taken all together, it is suggested that the steric 59 

effects associated with boronic acid derivatives play a more 60 
substantial role in influencing the reaction ∆𝑟𝑟𝐺𝐺°  than the 61 
presence of specific functional groups or bonds. 62 

As previously discussed, boronic acid derivatives were 63 
assessed based on their ∆𝑟𝑟𝐺𝐺diff value (equation (1)). In 64 
comparison to the ∆𝑟𝑟𝐺𝐺diff  value of 3.344, associated with 65 
standard PBA, the ∆𝑟𝑟𝐺𝐺diff  value for the boronic acid 66 
derivative Bortezomib—identified as an optimal molecule by 67 
machine learning—was significantly higher, registering at 68 
5.913, as detailed in Table S3. Thus, through DFT 69 
calculations, it has been confirmed that Bortezomib, as 70 
suggested by the machine learning model, indeed exhibits 71 
better selectivity towards target sugars compared to PBA. 72 

The increase in the ∆𝑟𝑟𝐺𝐺diff  value for Bortezomib may 73 
result from two scenarios: (1) higher affinity for the target 74 
sugar, or (2) lower affinity for the non-target sugars. 75 
Consequently, we investigated which scenario, (1) or (2), 76 
applies. The ∆𝑟𝑟𝐺𝐺° values, as estimated by DFT calculations, 77 
for the ester formation reactions involving Bortezomib and 78 
PBA with their target and non-target sugars are shown in 79 
Figure 3a and 3b, respectively. It should be noted here that 80 
we plot the average ∆𝑟𝑟𝐺𝐺°  values of the ester formation 81 

Figure 2. (a) The SHAP importance values of the machine 
learning model constructed. Blue, orange, and green 
represents sugars, boronic acid derivatives, and ester bond 
formation products, respectively. (b) A dependence plot 
between Chi2n and SHAP values. 
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reactions between various isomers of each sugar and the 1 

boronic acid derivatives. For the target sugars, the values 2 
were around -30 kcal/mol with Bortezomib and -40 kcal/mol 3 
with PBA. In contrast, for the non-target sugars, the values 4 
exceeded -20 kcal/mol with Bortezomib and were around -30 5 
kcal/mol with PBA. The bar plot of Figure 3c illustrates the 6 
difference in ∆𝑟𝑟𝐺𝐺°  values between the two boronic acid 7 
derivatives. On the other hand, the dotted lines in Figure 3c 8 
represent the average differences in the ∆𝑟𝑟𝐺𝐺° values between 9 
Bortezomib and PBA for each target and non-target sugars. 10 
(That is, they do not correspond to the simple average of each 11 
bar shown in Fig. 3c.) This average yields positive values for 12 
both target and non-target sugars, indicating that the larger 13 
∆𝑟𝑟𝐺𝐺diff  value in Bortezomib, compared to PBA, was 14 
attributable to reason (2) rather than (1). 15 

Next, we will explore the chemical reasons behind 16 
the increased difference in the ∆𝑟𝑟𝐺𝐺diff  value. As shown in 17 
Figure 3(c), focusing on the magnitude of the ∆𝑟𝑟𝐺𝐺° for each 18 
sugar with PBA and Bortezomib, it is apparent that 19 
Bortezomib tends to exhibit larger ∆𝑟𝑟𝐺𝐺° compared to PBA. 20 
Given the discussion regarding Chi2n in Figure 2, the 21 
primary reason for this is believed to be the steric hindrance 22 
resulting from the molecular complexity of Bortezomib. On 23 
the other hand, the aforementioned increase in ∆𝑟𝑟𝐺𝐺° in the 24 
Bortezomib varies depending on the sugar species, being 25 

smaller for target sugars compared to non-target sugars. This 26 
variation is thought to stem from the inherent structure of the 27 
sugars themselves. Specifically, cyclic fructose and cyclic 28 
ribose in target sugars have many cis-configured OH groups 29 
advantageous for the formation of boronic acid esters, and the 30 
sugar itself has small steric hindrance.30 Conversely, the 31 
branched sugars contained in the non-target sugars. In other 32 
words, in the target sugars, the ∆𝑟𝑟𝐺𝐺° mentioned earlier is 33 
mitigated, and such an effect cannot be expected in the non-34 
target sugar. Therefore, it is speculated that in Bortezomib, 35 
the difference in ∆𝑟𝑟𝐺𝐺° between the target sugars and non-36 
target sugars becomes significant, suggesting its potential 37 
function as a selective scavenger for sugars. 38 

In this study, we aimed to obtain a general guideline for 39 
designing boronic acid-based scavengers that are efficacious 40 
in selectively capturing target sugars. From a comprehensive 41 
pool of 615,876 possible combinations, involving boronic 42 
ester products derived from 42 types of monosaccharides and 43 
3003 commercially available monoboronic acid molecules, 44 
Bortezomib emerged as an optimal candidate. The insights 45 
from SHAP analysis and DFT calculations indicate that 46 
controlling the spatial structure is more crucial than tuning 47 
electronic properties, such as the selection of functional 48 
groups, in the context of boronic acid derivatives. In this 49 
study, we searched for the ideal scavenger under the 50 
assumption that one molecule of a boronic acid derivative 51 
forms an ester bond with one sugar molecule, as a first 52 
screening. Through machine learning, Bortezomib was 53 
proposed as a candidate molecule. This study has established 54 
a fundamental guideline demonstrating that effective control 55 
of stereo-configuration is beneficial. Following this guideline, 56 
future work will likely find that enhancing reaction 57 
selectivity can be effectively achieved by combining multiple 58 
mono-boronic acid molecules or poly-boronic acids to a 59 
target sugar. 60 
  61 
Supplementary data 62 
Supplementary material is available at Chemistry Letters 63 
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