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Abstract—The use of compressed sensing (CS) to achieve
low-power consumptions in electroencephalogram (EEG) mea-
surement devices has attracted considerable research interest.
However, a signal processing issue in utilizing CS is the trade-
off between the compression ratio (CR), reconstruction accuracy,
and reconstruction time. In this study, we developed a method
that resulted in a shortened reconstruction time and a high
reconstruction accuracy with a high CR by utilizing selected EEG
signals. When EEG signals were sorted using the mean frequency
and only the most frequently occurring EEG signals were used
in the basis matrix, a compressed EEG signal with an original
time length of 1 s could be recovered in only approximately 26
ms, and an average normalized mean square error of 0.11 was
achieved at a CR of 5.

Index Terms—EEG, compressed sensing, BSBL, basis matrix

I. INTRODUCTION

Electroencephalogram (EEG) measurement is a noninvasive
technique that has been widely studied owing to its easy
acquisition. Therefore, wireless EEG monitoring systems have
been increasingly used. Generally, in wireless EEG monitoring
systems, the sensors of the sensing unit in a measurement
device are placed on the scalp, and the signals are wirelessly
transmitted to a data processing unit, such as an edge device
or PC, for analysis. It is well-known that for wireless digital
data management and exchange, the sensing unit requires
a significant amount of power [1]. Therefore, the energy
efficiency of the sensing unit is important because its battery
life is limited.

The theory of compressed sensing (CS) [2], which is a
desirable method for signal acquisition and compression, has
attracted significant attention for the realization of a low-
power EEG measurement sensing unit [3]—[5]. In general, the
compression ratio (CR), reconstruction accuracy, and recon-
struction time should be considered when CS is employed. The
CR significantly affects power savings in the sensing unit, and
the reconstruction accuracy affects the acquired EEG signal
quality. In addition, the reconstruction time is a crucial pa-
rameter in several practical applications. For example, brain—
computer interfaces and brain—machine interfaces require low-
power consumption, highly accurate signal acquisition, and a
fast response (e.g. [6]). However, a trade-off between the CR,
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reconstruction accuracy, and reconstruction time hampers the
design of measurement systems based on CS [7].

Thus, various studies have been conducted to improve the
CS performance. For example, block sparse Bayesian learning
(BSBL) [8] is an algorithm that solves the CS problem
with high CR and reconstruction accuracy. Thus, it has been
employed in several EEG signal acquisition schemes that
utilize CS [9]. However, in principle, its computational cost
and time consumption are high compared to those of simple
algorithms such as orthogonal matching pursuit [10]. Further,
in addition to reconstruction algorithms, research on the bases
used for sparse representation has also received considerable
attention. For example, the K-singular value decomposition
(K-SVD) algorithm [11], a basis learning algorithm, has been
proposed to generate a basis matrix with sparse representation,
and it has subsequently been used in several studies [12].
Moreover, Gabor basis [13] and wavelet basis [14] have been
used as basis matrices in the reconstruction of compressed
EEG signals. However, such overcomplicated basis matrices
tend to increase the reconstruction time because the sizes of
the basis matrices increase. In other words, it is desirable to
achieve high accuracy with high CR by employing a compact
basis matrix such as a discrete cosine transform (DCT) (e.g.
[9]). Thus, in this study, we developed a method to realize
selected EEG signals as a compact basis matrix appropriate
for high-speed reconstruction by relying on the principle of the
BSBL algorithm with high CR and reconstruction accuracy.

The remainder of this manuscript is organized as follows.
Section II briefly describes the CS theory and the study
direction. Next, Section IIl explains the proposed method using
selected EEG signals as a compact basis matrix. Section IV
presents the effectiveness of the proposed method based on
actual EEG signals. Finally, Section V presents the conclu-
sions.

II. BACKGROUND OF CS
AND DIRECTIONS FOR THIS STUDY

The simple principle underlying CS is explained in the
diagram presented in Fig. 1. The CS theory is utilized to obtain
a signal vector x € R, which is k -sparse in a basis matrix ¥
€ RNY*P Here, k-sparse implies that only k (<< P) elements
of the coefficient vector s € RY, which are used to indicate
that x = ¥ s, are nonzero. In this example, ¥ is represented
using a square matrix with NV = P = 10, and sparsity of s is
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Fig. 1: Compression of the signal x using the measurement matrix

& to produce a low-dimensional compressed matrix y. The
product of ® and ¥ is termed as the sensing matrix ©.

k = 2. The color depth indicates the numerical size of each
element. The white elements indicate zeros.
We can obtain a compressed signal y € R expressed as

y = &x = $Ps = Os, (D

where @ is an M X N measurement matrix. In this study, %
is defined as the CR; thus, for the M = 5 example, the CR
= 2. Here, y is a known vector, and ¢ and ¥ are known
matrices. Therefore, we can define ® = ® ¥ as a known
matrix and label it as the sensing matrix. ® is an important
matrix in CS and is the subject of several studies [15]. We
can observe that equation (1) is underdetermined because the
length of y is smaller than the length of s. Therefore, several
reconstruction algorithms have been applied for solving CS
problems by utilizing ® and y to realize a sparse vector s.

In general, x, which is used as a biological signal, has a
block/group structure [16]. Subsequently, with an appropriate
W, we can assume that s can be represented by g blocks as
sSdy a+1s7 5 8d,] 2

S:[sl’...7sd1’...

T T
Sl Sg

Among the g blocks, only the 7 (7 < g¢g) blocks are
nonzero; however, their locations are unknown. Certain recon-
struction algorithms are known to benefit from the structure,
as described in [17]. BSBL is a reconstruction algorithm
that considers intra-block correlations to further improve the
reconstruction accuracy. Thus, numerous studies have been
conducted on CS utilizing BSBL. However, its drawback is
that the reconstruction is time-consuming compared to that of
simple algorithms.

In general, once the ®, which depends on the hardware
implementation method and the reconstruction algorithm to
be used, is determined, the size of W directly affects the
reconstruction time. Therefore, we considered the method
of generating the matrix W with a block structure and the
smallest possible size. Furthermore, a complicated method
for generating a basis matrix is known to hamper practical
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Fig. 2: (a) In several cases, sparsification based on previously ac-
quired biological signals is possible. (b) Compact basis matrix
can be realized by selecting highly correlated signals.

applications. Therefore, the proposed method should be simple
and easy to use.

III. PROPOSED METHOD: UTILIZING SELECTED EEG
SIGNALS AS A BASIS MATRIX

Herein, we propose a new basis matrix generation method
that is compatible with BSBL and utilizes EEG signals as
the basis matrix. A previous study reported that previously
obtained EEG signals can be used as the basis matrix [18].
The proposed method also uses EEG signals as the basis
matrix; however, reordering and selection are performed to
obtain the matrix. The proposed method yields a small-sized
basis matrix and efficiently sparsifies the EEG signals for
efficient measurements. As an example, details regarding the
proposed method are presented in Fig. 2(a) and (b). Figure
2(a) depicts the relationship between an EEG signal x; to
be measured, the sparse vector s,, and W,. For example,
the basis matrix created by simply arranging 20 previously
obtained EEG signals x;—xoq is defined as

‘I’p déf [X1X2 e Xgo]. (3)

x; is not the same signal as the previously obtained signal
group. For example, if x; is highly correlated with signals x;
and xg, the elements corresponding to x; and x3 in s, are
displayed with large values. The larger the number of EEG
signals used, the more likely the presence of highly correlated
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Fig. 3: System used to validate the idea. MATLAB was used for
validation, with random undersampling for the ADC and
BSBL for reconstruction. An ideal model with no loss of
characteristics was assumed for the remainder.

elements in the sparse vector. However, the method that uses
several EEG signals increases the size of the basis matrix,
thus requiring more reconstruction time. Moreover, if x1—X2¢
are arranged without regard for each other, the signals highly
correlated with x; may not be located closely, resulting in the
scattering of nonzero element locations in sp.

Therefore, as illustrated in Fig. 2(b), we develop a method
that generates a new basis matrix, ¥ ,¢. This matrix has a small
number of columns and can place the locations of nonzero
elements to arbitrary locations in the sparse vector by selecting
and rearranging the EEG signals to be used. The s that is
achieved using W, can be suitable for reconstruction using
the BSBL algorithm because it can generate blocks of nonzero
elements. In this study, the mean frequencies of the x;-—
x20 EEG signals were calculated and sorted using the mean
frequency values. Note that the number of the basis matrix
columns can be reduced by performing selection based on
the distribution of the mean frequencies and by focusing on
frequencies with a high occurrence rate. For example, in Fig.
2(b), x7 and Xg are not included in W, indicating that the
frequency distribution of the mean frequency was checked, and
signals with low occurrence rates were excluded. The proposed
method is similar to basis learning algorithms, such as K-SVD,
as it uses previously obtained or known signals; however,
unlike K-SVD, it does not require complex preprocessing.
Thus, it can also reduce the computational load and time
required to create the basis matrix.

IV. EVALUATION

The effectiveness of the proposed basis matrix used in the
EEG measurement was compared with that of the conventional
DCT basis matrix. Figure 3 presents a schematic of the
simulation system used for this validation, which was built
using MATLAB 2022b. Same as in [19], ADC means an
ideal sample and hold (S/H) circuit to perform random under-
sampling in this simulation. Reconstruction processing in the
data processing unit was executed using the BSBL algorithm.

Histogram of mean frequencies (1 s/frame)
‘I’ps_3—3.5Hz (Selected 200 signals)
7000 ¥
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(Selected 200 sig

........
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Fig. 4: Histogram of EEG signals with 10,000 frames arranged in
terms of their mean frequency and used to generate the basis
matrix. Wai_freq includes all sorted signals. W 33,51, and
W, 20-25H, are the basis matrices comprising the selected
top 200 in each mean frequency range.
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(DC cut, amplitude < 150 1 V, 1 s/frame)
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Fig. 5: Relationship between the average NMSE of 1,500 frames and
CR when various basis matrices are utilized. The degrada-
tions in Wy 3.3.5H, are suppressed at large CRs similar to
‘I'all_freq-

The other parts were considered as ideal models, because the
purpose of this study was to verify the effectiveness of the
proposed basis matrix in the reconstruction process.

FP1-F7 channel data, in which seizure symptom periods
were avoided, based on the CHB-MIT scalp EEG database
were used as test data of EEG signals [20]. The sampling
frequency of data was reduced from 256 Hz to 200 Hz, and
the time corresponding to one frame was set to 1 s. In this
evaluation, a DC component cut was applied to all frames,
and frames with an absolute amplitude exceeding 150 1V were
simply judged to contain artifacts and excluded. Subsequently,
data of the chb06, chb08, and chb14 (each 500 frames) were
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Fig. 6: Relationship between the average reconstruction time and
CR when various basis matrices are utilized. Wps_3-3.5H2
has a sufficiently high reconstruction accuracy, which is
identical to Waii_freq; however, the reconstruction time can
be significantly reduced, similar to ¥pc.

used as test data to perform compression and reconstruction.
As shown in Fig. 3, we use a matrix, which consists of only
one ”1” in each row and zeros in the rest, as the measurement
matrix ® € RM*290 o achieve random undersampling [21].
Effectiveness of random undersampling for implementation
has been discussed as low power consumption [22]. The
validity of the reconstruction accuracy was confirmed for
1,500 frame averages of EEG signals, and a fair and statistical
check could be performed.

The previously obtained EEG signals for generating ¥ were
chb01, 02, 03, 04, and 05 (each 2,000 frames), which were
different from the subject of the test signal and were prepared
by the same process as the test data. The mean frequency
distribution of the previously obtained signal (10,000 frames)
is shown in Fig. 4. There was a bias specific to EEG sig-
nals. In this evaluation, the basis matrix taking advantage
of this characteristic was used. The following basis matrices
were considered in this verification: DCT (200 columns) as
Wpor € R200%200 4 matrix generated by sorting all signals in
ascending order based on their mean frequency as W.i_freq €
[R200%10,000 "and a matrix W, 3351, € R200%200 created by
retrieving the signals with mean frequencies between 3 Hz
and 3.5 Hz from W, ¢ and extracting the top 200 signals.
To confirm the accuracy of this reconstruction when the basis
matrix was created using signals with low histogram counts,
a matrix Wye 90-251, € R200%200 \aq also constructed using
the signals with the top 200 mean frequencies from 20 Hz to
25 Hz as the basis matrix.

In this study, the index of the normalized mean square error
(NMSE) was used as follows:

L2
NMSE = M, 4)

13

where x is the original EEG signal and X is the recon-
structed EEG signal. The DC component of X was also
removed before calculating the NMSE. The smaller the value
of the NMSE, the higher the accuracy of the reconstruction.
In this evaluation, BSBL was used as the reconstruction
algorithm, and g was set to 30. The value of g was the same
for all basis cases because it is known to affect both the
reconstruction accuracy and time, and 30 was the value with
the highest reconstruction accuracy when the DCT basis was
used.

Figure 5 presents the relationship between the average
NMSE of 1,500 frames and CR when ¥pcr, Wi 3-3.5H2
W 20-25Hz, and Wup roq are utilized. The results reveal
that the reconstruction resulting from W4 29.251, Was poor
compared to that resulting from the other bases. Therefore,
it is not suitable to use a signal with a low occurrence
count as a basis. It was also discovered that no significant
difference exists between Wpcr, Wps 3.3.5H2, and Wai_freq
when the CR is low. However, as the CR increases, Wpcr
presents the highest NMSE. W1 freq and W,¢ 3.3 51, yielded
approximately the same results. In other words, even when
using W 3.3.5H,, Which is a compact matrix compared to
Wi freq, the performance approaches to that of Wy greq.
Specifically, an NMSE value of 0.11 can be achieved at CR
=5 with W 3.3 5H,, although an NMSE of 0.19 is obtained
with conventional basis ¥YpcT.

A computer with an Intel Core i7 CPU and 16 GB
RAM was employed to record the average time required to
perform the reconstruction. Figure 6 presents the results of
selecting 150 frames from chb06, chb08, and chbl4 when
Ypor, Wps_3-3.5H2, Pps_20-25Hz, and Way_freq are used. The
reconstruction time is almost identical when using Wpcr,
W 3-3.5Hz, and W4 90.95H,, Which have the same number
of columns; however, W, req, Which has a larger number
of columns, takes longer to process. The results indicate
that the reconstruction time is not significantly affected by
the CR; however, it varies considerably depending on the
number of columns. The reconstruction time W 3.3 51, can
be significantly reduced to 26 ms owing to the small number
of columns, although W, 5.3 51, is approximately the same
as W,1_freq considering the reconstruction accuracy.

V. CONCLUSIONS

Herein, we developed a new compact basis matrix genera-
tion method that utilized previously obtained EEG signals and
evaluated its effectiveness based on MATLAB calculations.
By analyzing the trend followed by the mean frequency of the
previously acquired EEG signals and using the most frequently
occurring EEG signals in the basis matrix, we achieved a
reconstruction time of only 26 ms for an EEG signal with a
time of 1 s at CR =5 while maintaining the average NMSE at
approximately 0.11. Our results are expected to further expand
the application scope of CS for EEG signals because the results
of this study can be used to resolve the conventional trade-offs
in EEG measurements by applying CS.
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