

Title	On commutor rings and Galois theory of separable algebras
Author(s)	Kanzaki, Teruo
Citation	Osaka Journal of Mathematics. 1964, 1(1), p. 103–115
Version Type	VoR
URL	https://doi.org/10.18910/9776
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

ON COMMUTOR RINGS AND GALOIS THEORY OF SEPARABLE ALGEBRAS

Teruo KANZAKI

(Received May 20, 1964)

The purpose of this paper is to establish the Galois theory for a separable algebra over a commutative ring in the sense of Auslander-Goldman [1]. The notion of Galois extension defined in [1] for a commutative ring will be naturally extended to a non commutative ring in the following way. Let Λ be a ring, G a finite group of ring-automorphisms of Λ , and Γ the fixed subring of Λ under G, i.e. the totality of elements which are left invariant by G. If the homomorphism δ of the crossed product $\Delta(\Lambda, G)$ of Λ and G with trivial factor set to the Γ -endomorphism ring $\operatorname{Hom}_{\Gamma}^{r}(\Lambda, \Lambda)$ of Λ as Γ -right module; $\delta : \Delta(\Lambda G) = \sum_{\sigma \in G} \bigoplus \Lambda u_{\sigma} \to \operatorname{Hom}_{\Gamma}^{r}(\Lambda, \Lambda)$ defined by $\delta(\lambda u_{\sigma})(x) = \lambda \cdot \sigma(x)$ for $\lambda, x \in \Lambda$, is an isomorphism, and if Λ is a finitely generated projective Γ -right module, then Λ is called a *Galois extension* of Γ relative to G.

In §1 we shall show that a commutor ring of an arbitrary separable subalgebra Γ over R in the central separable algebra Λ over R (we denote it by $V_{\Lambda}(\Gamma)$) is also a separable algebra over R, and $V_{\Lambda}(V_{\Lambda}(\Gamma)) = \Gamma$. Further we obtain that if Λ is an *R*-separable algebra and *M* is a finitely generated faithful Λ -projective module then for $\Omega = \operatorname{Hom}_{\Lambda}(M, M) M$ is a finitely generated Ω -projective module, and Hom_{Ω} $(M, M) = \Lambda$. In §2 we shall show that for Galois extension of non commutative ring we have similar results to the case of commutative ring in $\lceil 1 \rceil$. Moreover we shall show that if Λ is a Galois extension of Γ relative to G and H is a subgroup of G then for the fixed subring Ω of Λ under $H \Lambda$ is a Galois extension of Ω relative to H. In §3 we consider a Galois extension of a separable algebra and its crossed product with trivial factor set. Let Λ be a central separable algebra over C and G a finite group of (ring-) automorphisms of Λ as follows; 1) G induces a group of automorphisms of C such that it is isomorphic to G, 2) for the fixed subring R of C under G C is a Galois extension of R relative to G. Then we can prove that the crossed product $\Delta(\Lambda, G)$ of Λ and G with trivial factor set is a separable algebra over R. In §4 we have the Galois theorem under the

above assumption in §3. That is

1) if Γ is the fixed subring of Λ under G then Λ is a Galois extension of Γ relative to G and Γ is a central separable algebra over R,

2) Γ is a direct summand of Λ as Γ -two sided module,

3) for an arbitrary subgroup H of G and the fixed subring Ω of Λ under H, Λ is a Galois extension of Ω relative to H, and Ω is a separable algebra over R. Moreover if we suppose that C is an integral domain, then we have

4) if Ω is an arbitrary intermediate subring between Λ and Γ such that Ω is a separable algebra over R, then Λ is a Galois extension of Ω relative to H where

$$H = \{ \sigma \in G \, | \, \sigma(x) = x \text{ for all } x \in \Omega \} .$$

Throughout this paper we assume that every ring has an identity element, every subring of a ring has common identity element, and every module is unitary. Furthermore we shall denote by the ring R always a commutative ring and an R-algebra means an algebra over R, and a central R-algebra means an algebra having the center R. We use the same notation as in [1].

1. Commuter ring in a central separable algebra

This section is concerned with a central separable *R*-algebra Λ and a separable *R*-subalgebra Γ of Λ containing *R*. We denote by $V_{\Lambda}(\Gamma)$ the subring of Λ which consists of all element λ satisfying $\gamma \lambda = \lambda \gamma$ for all $\gamma \in \Gamma$.

Lemma 1. (Auslander, Goldman) Let Λ be a central separable *R*algebra and Γ a central separable *R*-subalgbra of Λ having the same center *R*. Then $V_{\Lambda}(\Gamma)$ is central separable *R*-algebra and $V_{\Lambda}(V_{\Lambda}(\Gamma))=\Gamma$.

Proof. See [1], Theorem 3.3.

Lemma 2. Let Λ be a separable R-algebra and M a Λ -module. If M is a finitely generated projective R-module then M is a finitely generated projective Λ -module (cf. [1], Theorem 1.8).

Proof. For any Λ -module N we have the isomorphism

 $\theta: \operatorname{Hom}_{\Lambda^{e}}(\Lambda, \operatorname{Hom}_{R}(M, N)) \longrightarrow \operatorname{Hom}_{\Lambda}(M, N)$

defined by $\theta(g)(m) = g(1)(m)$ for $g \in \operatorname{Hom}_{\Lambda^e}(\Lambda, \operatorname{Hom}_R(M, N), m \in M$. Since Λ is a projective Λ^e -module and M is a projective R-module,

104

 $\operatorname{Hom}_{\Lambda^{e}}(\Lambda, \operatorname{Hom}_{R}(M, N))$ is an exact functor relative to N, therefore $\operatorname{Hom}_{\Lambda}(M, N)$ is so. Consequently, M is a projective Λ -module.

Theorem 1. Let M be a faithfule Λ -module, and set $\Omega = \operatorname{Hom}_{\Lambda}(M, M)$. If Λ is a separable R-algebra and M is a finitely generated projective Λ -module, then we have that Ω is also a separable R-algebra, M is a finitely generated projective Ω -module and $\operatorname{Hom}_{\Omega}(M, M) = \Lambda$. If Λ is central over R then Ω is also central over R.

Proof. Let M be a faithful and finitely generated projective Λ -module, and let Λ be a central separable C-algebra. Since Λ is a finitely generated projective C-module, M is a finitely generated projective C-module. By Proposition 5.1 in [1], $\operatorname{Hom}_{C}(M, M)$ is a central separable C-algebra. Since Λ is a central separable C-subalgebra of $\operatorname{Hom}_{C}(M, M)$, from Lemma 1 $\Omega = \operatorname{Hcm}_{\Lambda}(M, M) = V_{\operatorname{Hom}_{C}(M,M)}(\Lambda)$ is a central separable C-algebra and $\operatorname{Hom}_{\Omega}(M, M) = V_{\operatorname{Hom}_{C}(M,M)}(\Omega) = V_{\operatorname{Hom}_{C}(M,M)}(\Lambda) = \Lambda$. By Lemma 2 M is a finitely generated projective Ω -module, since Ω is a central separable C-algebra. If Λ is a separable R-algebra in general, then from Theorem 2.3 in [1] we have that Λ is a central separable C-algebra and C is a separable R-algebra where C is the center of Λ . Therefore $\Omega = \operatorname{Hom}_{\Lambda}(M, M)$ is a central separable C-algebra. Hence Ω is a separable R-algebra.

Corollary 1. Let Λ be a separable *R*-algebra and *M* a Λ -module. If *M* is a finitely generated projective *R*-module then $\Omega = \operatorname{Hom}_{\Lambda}(M, M)$ is a separable *R*-algebra and *M* is finitely generated and projective over Ω .

Proof. Since the image Λ' of the natural homomorphism $\Lambda \rightarrow \operatorname{Hom}_R(M, M)$ is also a separable *R*-algebra, *M* is a finitely generated projective Λ' -module by Lemma 2. Therefore $\Omega = \operatorname{Hom}_{\Lambda}(M, M) = \operatorname{Hom}_{\Lambda'}(M, M)$ is a separable *R*-algebra and *M* is a finitely generated projective Ω -module by Theorem 1.

Corollary 2. If Λ is a separable *R*-algebra and *e* is an idempotent element in Λ , then $e\Lambda e$ is also a separable *R*-algebra.

Proof. Since Λe is a projective Λ -left module, we have that $\operatorname{Hom}_{\Lambda}^{i}(\Lambda e, \Lambda e) \simeq e \Lambda e$ is a separable *R*-algebra.

Theorem 2. Let Λ be a central separable R-algebra. If Γ is an arbitrary separable R-subalgebra of Λ containing R, then $V_{\Lambda}(\Gamma)$ is a separable R-algebra and we have $V_{\Lambda}(V_{\Lambda}(\Gamma)) = \Gamma$. (cf. [1], Theorem 3.3)

Proof Since Λ is a finitely generated projective *R*-module, $\Gamma \otimes_R \Lambda^{\circ}$

is a subring of $\Lambda^e = \Lambda \otimes_R \Lambda^0$. Since R is a direct summand of Λ as Rmodule, Λ and Λ° may be regarded as subring of $\Lambda \otimes_R \Lambda^{\circ}$. Then $\Lambda \otimes_R \Lambda^0 = \Lambda \cdot \Lambda^0$ and $V_{\Lambda \otimes \Lambda^0}(\Lambda^0) = \Lambda$ ([1], Theorem 3.5). It follows that $V_{\Lambda \otimes \Lambda^0}(\Gamma \otimes_R \Lambda^0) = V_{\Lambda}(\Gamma)$. Now we consider $\Lambda \otimes_R \Lambda^0 \supset \Gamma \otimes_R \Lambda^0 \supset R$, and then $\Gamma \otimes_R \Lambda^0$ is a separable *R*-subalgebra of the central separable *R*-algebra $\Lambda \otimes_R \Lambda^{\circ}$ ([1], Proposition 1.5). Let $\Lambda^{\circ} = R \oplus \Lambda_1$ where Λ_1 is an *R*-submodule of Λ° , then we have $\Lambda \otimes_R \Lambda^{\circ} = \Lambda \oplus \Lambda \otimes_R \Lambda_1$ and $\Gamma \otimes_R \Lambda^{\circ} = \Gamma \oplus \Lambda \otimes_R \Lambda_1$. Since $\Gamma \otimes_R \Lambda^{_0} \subset \Lambda \otimes_R \Lambda^{_0}, \ \Gamma \subset \Lambda \text{ and } \Gamma \otimes_R \Lambda_1 \subset \Lambda \otimes_R \Lambda_1, \text{ we have } (\Gamma \otimes_R \Lambda^{_0}) \bigcap \Lambda = \Gamma.$ Now $V_{\Lambda}(V_{\Lambda}(\Gamma)) = V_{\Lambda \otimes_R \Lambda^0}(V_{\Lambda}(\Gamma) \otimes \Lambda^0) = V_{\Lambda \otimes \Lambda^0}(V_{\Lambda \otimes \Lambda^0}(\Gamma \otimes_R \Lambda^0)) \cap V_{\Lambda \otimes \Lambda^0}(\Lambda^0) =$ $V_{\Lambda\otimes\Lambda^0}(V_{\Lambda\otimes\Lambda^0}(\Gamma\otimes_R\Lambda^0))\cap \Lambda$, it is sufficient to show that $V_{\Lambda\otimes_R\Lambda^0}(\Gamma\otimes_R\Lambda^0)$ is a separable *R*-algebra and $V_{\Lambda \otimes_{R} \Lambda^{0}}(V_{\Lambda \otimes \Lambda^{0}}(\Gamma \otimes_{R} \Lambda^{0})) = \Gamma \otimes_{R} \Lambda^{0}$. Since $\Lambda \otimes_R \Lambda^0 \simeq \operatorname{Hom}_R(\Lambda, \Lambda)$ and Λ is a finitely generated projective *R*-module, we may show that if M is a finitely generated projective R-module, $\Lambda = \operatorname{Hom}_{R}(M, M)$, and Γ is a separable *R*-subalgebra of Λ , then $V_{\Lambda}(\Gamma)$ is a separable *R*-algebra and $V_{\Lambda}(V_{\Lambda}(\Gamma)) = \Gamma$. Let *S* be the center of Γ . Then $\Lambda \supset \Gamma \supset S \supset R$. We regard M as S-module. Since S is R-separable, by Lemma 2 M is a finitely generated projective S-module, therefore $\operatorname{Hom}_{S}(M, M)$ is a central separable S-algebra. Then $V_{\Lambda}(\Gamma) = V_{\operatorname{Hom}_{R}(M,M)}(\Gamma)$ = Hom_{Γ}(M, M). By Theorem 1 $V_{\Lambda}(\Gamma)$ is a separable R-algebra. Since S is the center of Γ , we have $\operatorname{Hom}_{\Gamma}(MM) = V_{\operatorname{Hom}_{S}(M,M)}(\Gamma)$. Since Hom_s $(M, M) \supset \Gamma \supset S$, Hom_{Γ} $(M, M) \supset S$, and Hom_s(M, M) and Γ are central separable S-algebra, we have by Lemma 1

$$V_{\Lambda}(V_{\Lambda}(\Gamma)) = V_{\operatorname{Hom}_{S}(M,M)}(V_{\operatorname{Hom}_{S}(M,M)}(\Gamma)) = \Gamma.$$

Corollary 3. Let Λ be a central separable *R*-algebra and Γ an arbitrary separable *R*-subalgebra containing *R*. Then $\Gamma \cdot V_{\Lambda}(\Gamma)$ is a separable *R*-algebra and it is isomorphic to $\Gamma \otimes_{S} V_{\Lambda}(\Gamma)$ where *S* is the center of Γ . In particular, if S = R then $\Lambda = \Gamma \cdot V_{\Lambda}(\Gamma) \cong \Gamma \otimes_{R} V_{\Lambda}(\Gamma)$ (cf. [1], Theorem 3.3).

Proof. By Theorem 1.4 $V_{\Lambda}(\Gamma)$ is a central separable S-algebra, therefore $\Gamma \otimes_S V_{\Lambda}(\Gamma)$ is a central separable S-algebra ([1], Proposition 1.5). In the homomorphism $\psi : \Gamma \otimes_S V_{\Lambda}(\Gamma) \to \Gamma \cdot V_{\Lambda}(\Gamma)$ defined by $\psi(x \otimes y) = x \cdot y$ for $x \in \Gamma$, $y \in V_{\Lambda}(\Gamma)$, the kernel of ψ is a two sided ideal of $\Gamma \otimes_S V_{\Lambda}(\Gamma)$. By Corollary 3.2 in [1] there exists an ideal α of S such that ker $\psi = \alpha \cdot \Gamma \otimes V_{\Lambda}(\Gamma)$, but $0 = \psi(\alpha) = \alpha$, therefore ψ is an isomorphism. The case of S = R was proved in [1], Theorem 3.3.

REMARK. In Theorem 2, the second part " $V_{\Lambda}(V_{\Lambda}(\Gamma))=1$ " is proved in the following way too. Since Λ is a finitely generated projective *R*module, and since Γ is a separable *R*-algebra, Λ is a finitely generated projective Γ -right (or left) module by Lemma 2, and $\mathfrak{B}=\operatorname{Hom}_{\Gamma}^{r}(\Lambda, \Lambda)$ is a separable *R*-algebra, and $\operatorname{Hom}_{\mathfrak{B}}(\Lambda, \Lambda)=\Gamma_{r}$, where Γ_{r} is the ring of right multiplications by the elements of Γ (Theorem 1). Hence Λ is, in the sense of Nakayama [5], \mathfrak{B} -Galois extension over Γ . Therefore Γ is a direct summand of Λ as Γ -right module by Proposition 1 in [5], and we have $V_{\Lambda}(V_{\Lambda}(\Gamma)) = \Gamma$ by Theorem 3.5 in [4].

2. Galois extension

In this section we assume that Λ is any ring and Γ is a subring of Λ having the common identity. We define a Galois extension for the case of non-commutative rings similarly to the case of commutative rings in [1]. Let G be a finite group of (ring) automorphisms of Λ . We consider the crossed product $\Delta = \Delta(\Lambda, G)$ with trivial factor set, that is $\Delta = \Delta(\Lambda, G) = \sum_{\sigma \in G} \bigoplus \Lambda u_{\sigma}, \ u_{\sigma} \lambda = \sigma(\lambda) \cdot u_{\sigma}, \ u_{\sigma} \cdot u_{\tau} = u_{\sigma\tau}$ for $\sigma, \ \tau \in G, \ \lambda \in \Lambda$. Then we may assume that u_1 is the identity of Δ and Λ is a subring of Δ . The subring Γ consisting of all elements of Λ fixed by every element of G will be called the fixed subring of Λ under G. Then we shall say that Λ is a (right-) Galois extension of Γ relative to G if it satisfies the following condition : 1) Λ is a finitely generated projective Γ -right module, 2) the ring-homomorphism $\delta \colon \Delta(\Lambda, G) \to \operatorname{Hom}_{\Gamma}^{r}(\Lambda, \Lambda)$ where $\operatorname{Hom}_{\Gamma}^{r}(\Lambda, \Lambda)$ is the Γ -endomorphism ring of Λ as Γ -right module, defined by $\delta(\lambda u_{\sigma})(x) = \lambda \cdot \sigma(x), \ \lambda, \ x \in \Lambda, \ \sigma \in G$, is an isomorphism.

REMARK. If Λ be an algebra over R, Γ is a separable R-subalgebra of Λ whose elements are left invariant by G, and if the condition 1) and 2) are satisfied, then it follows that Γ is the fixed subring of Λ under G from Theorem 1. In this case, Λ is a \mathfrak{B} -Galois over Γ , in the sense of Nakayama [5], where $\mathfrak{B} = \operatorname{Hom}_{\Gamma}^{r}(\Lambda, \Lambda)$.

We may regard Λ as a left Δ -module by setting $a \cdot \lambda = \delta(a) \cdot \lambda$. Then we have a similar proposition to Proposition A.1 in [1].

Proposition 1. Let Γ be a subring of a ring Λ , G a finite group of automorphisms of Λ . Then Λ is a Galois extension of Γ relative to G if and only if Γ is the fixed subring of Λ under G and $\mathfrak{T}_{\Delta}(\Lambda) = \Delta$ where $\mathfrak{T}_{\Delta}(\Lambda)$ is the trace ideal of Δ -module M. (See [1] and [2].)

Proof. This is proved similarly to Proposition A.1 in [1].

We regard the module $\operatorname{Hom}_{\Lambda}(\Lambda, \Delta)$ as Γ -left module by setting $(\gamma \cdot f)(\lambda) = f(\lambda \cdot \gamma)$ for $f \in \operatorname{Hom}_{\Delta}(\Lambda, \Delta)$, $\gamma \in \Lambda$, $\lambda \in \Lambda$. Let κ be a homomorphism of $\operatorname{Hom}_{\Delta}(\Lambda, \Delta)$ into Δ defined by $\kappa(f) = f(1)$ for $f \in \operatorname{Hom}_{\Delta}(\Lambda, \Delta)$. Then we have

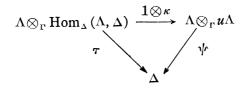
Lemma 3. The homomorphism κ is a Γ -monomorphism, and the image of κ is $u \cdot \Lambda$ where $u = \sum_{\sigma \in \mathcal{G}} u_{\sigma}$ in Δ .

T. KANZAKI

Proof. If $f \in \text{Hom}_{\Delta}(\Lambda, \Delta)$, $\gamma \in \Gamma$, then $\kappa(\gamma \cdot f) = (\gamma \cdot f)(1) = f(\gamma) = \gamma \cdot f(1) = \gamma \cdot \kappa(f)$. Therefore κ is a Γ -monomorphism. We shall show that Im $(\kappa) = u \cdot \Lambda$. Let f be any homomorphism of Λ into Δ without operator. Then f is a Δ -homomorphism if and only if $f(x) = x \cdot f(1)$ and $\sigma(x) \cdot f(1) = u_{\sigma} \cdot x \cdot f(1)$ for all $x \in \Lambda$, $\sigma \in G$. Therefore f is in $\text{Hom}_{\Delta}(\Lambda, \Delta)$ if and only if there exists a in Δ such that $f(x) = x \cdot a$ and $a = u_{\sigma}a$ for all $x \in \Lambda$ and $\sigma \in G$. Now we set $a = \sum_{\sigma \in \mathcal{A}} \lambda_{\sigma} u_{\sigma}$ where $\lambda_{\sigma} \in \Lambda$. Then a satisfies $u_{\sigma}a = a$ for all $\sigma \in G$ if and only if $\sigma(\lambda_{\tau}) = \lambda_{\sigma\tau}$ for all $\sigma, \tau \in G$. If in $\sigma(\lambda_{\tau}) = \lambda_{\sigma\tau}$ we put $\tau = 1$ then we have $\sigma(\lambda_1) = \lambda_{\sigma}$. Conversely if we put $\lambda_{\sigma} = \sigma(\lambda_1)$ for every $\sigma \in G$ where λ_1 is an element of Λ , then we obtain $\lambda_{\sigma\tau} = \sigma\tau(\lambda_1) = \sigma(\tau(\lambda_1)) = \sigma(\lambda_{\tau})$ for all $\sigma, \tau \in G$. Consequently f is a Δ -homomorphism if and only if for every $x \in \Lambda$ it satisfies $f(x) = x \cdot a$ where $a = \sum_{\sigma \in \mathcal{G}} \sigma(\lambda_1) u_{\tau} = \sum_{\sigma \in \mathcal{G}} u_{\sigma} \lambda_1 = u \cdot \lambda_1$ for any $\lambda_1 \in \Lambda$. Therefore we have Im $(\kappa) = u\Lambda$.

Proposition 2. Let G be a finite group of automorphisms of Λ , and Γ the fixed subring of Λ under G. Then $\mathfrak{T}_{\Delta}(\Lambda) = \Delta$ if and only if $\Delta = \Lambda u \Lambda$.

Proof. We have the homomorphism $\psi: \Lambda \otimes_{\Gamma} u \Lambda \to \Delta$ defined by $\psi(\lambda \otimes u \lambda') = \lambda u \lambda'$ for $\lambda, \lambda' \in \Lambda$. In the following commutative diagram



where τ is the trace mapping, $\tau(\lambda \otimes f) = f(\lambda)$, we have $\mathfrak{T}_{\Delta}(\Lambda) = \operatorname{Im}(\tau) = \operatorname{Im}(\psi \circ (1 \otimes \kappa)) = \Lambda u \Lambda$. Therefore we have that $\mathfrak{T}_{\Delta}(\Lambda) = \Delta$ if and only in $\Delta = \Lambda u \Lambda$.

Corollary 4. Let G be finite group of automorphisms of Λ , and Γ a subring of Λ . Then Λ is a Galois extension of Γ relative to G if and only if Γ is the fixed subring of Λ under G and $\Delta(\Lambda, G) = \Lambda u \Lambda$.

Theorem 3. Let Λ be a Galois extension of Γ relative to G. If H is a subgroup of G and Ω is the fixed subring of Λ under H, then Λ is a Galois extension of Ω relative to H.

Proof. Since Λ is a Galois extension of Γ relative to G, we have $\Delta = \Delta(\Lambda, G) = \Lambda u \Lambda$. Let $\Delta_H = \Delta(\Lambda, H) = \sum_{\tau \in H} \bigoplus \Lambda u_{\tau}$ be the crossed product of Λ and H. Then we may regard Δ_H as a subring of $\Delta = \Delta(\Lambda, G) = \sum_{\sigma \in G} \bigoplus \Lambda u_{\sigma}$. Now we shall show that $\Delta_H = \Delta(\Lambda, H) = \Lambda u_0 \Lambda$ for $u_0 = \sum_{\tau \in H} u_{\tau}$. Let

108

 $\begin{array}{l} G = \sigma_1 H + \sigma_2 H + \cdots + \sigma_r H \text{ be a left decomposition of } G \text{ with respect to } H \\ \text{where } \sigma_1 = 1. \quad \text{Then it follows that } \Delta = \sum_{\sigma \in \mathcal{G}} \oplus \Lambda u_\sigma = \sum_{i=1, r \in \mathcal{A}}^r \oplus \Lambda u_{\sigma_i} u_\tau = \\ \sum_{i=1}^r \oplus u_{\sigma_i} \sum_{\tau \in \mathcal{A}} \Lambda u_\tau = \sum_{i=1}^r \oplus u_{\sigma_i} \Delta_H \text{ and } u = \sum_{\sigma \in \mathcal{G}} u_\sigma = \sum_{i=1, r \in \mathcal{A}}^r u_{\sigma_i} u_\tau = \sum_{i=1}^r u_{\sigma_i} u_0. \quad \text{Since } \Delta = \Lambda u \Lambda \\ \text{we have } \Delta = \sum_{i=1}^r u_{\sigma_i} \Delta_H = \Lambda u \Lambda = \Lambda \sum_{i=1}^r u_{\sigma_i} u^0 \Lambda \subset \sum_{i=1}^r u_{\sigma_i} (\Lambda u_0 \Lambda) \subset \sum_{i=1}^r u_{\sigma_i} \Delta_H = \Delta. \\ \text{Therefore } \sum_{i=1}^r \oplus u_{\sigma_i} \Delta_H = \sum_{i=1}^r \oplus u_{\sigma_i} \Lambda u_0 \Lambda. \quad \text{Since } u_{\sigma_i} \Lambda u_0 \Lambda \subset u_{\sigma_i} \Delta_H \text{ for } i = 1, 2, \cdots, r, \\ \text{it follows that } u_{\sigma_i} \Lambda u_0 \Lambda = u_{\sigma_i} \Delta_H. \quad \text{Consequently, we have } \Lambda u_0 \Lambda = \Delta_H. \quad \text{By Corollary } 4 \Lambda \text{ is the Galois extension of } \Omega \text{ relative to } H. \end{array}$

Proposition 3. Let G be a finite group of automorphisms of Λ , and C the center of Λ . We suppose that the group of automorphisms of C induced by G is isomorphic to G. If for the fixed subring R of C under G, C is a Galois extension of R relative to G, then Λ is a Galois extension of Γ relative to G where Γ is the fixed subring of Λ under G.

Proof. We denote by $\Delta(C, G) = \sum_{\sigma \in G} \oplus Cu_{\sigma}$ the crossed product of C and G, and denote by $\Delta(\Lambda G) = \sum_{\sigma \in G} \oplus \Lambda u_{\sigma}$ the crossed product of Λ and G. We may regard $\Delta(C, G)$ as a subring of $\Delta(\Lambda, G)$. By Corollary 4 we have $\Delta(C, G) = CuC$ for $u = \sum_{\sigma \in G} u_{\sigma}$, since C is a Galois extension of R relative to G. Therefore for every $\sigma \in G$, u_{σ} is contained in $CuC \subset \Lambda u\Lambda$. Therefore $\Lambda u_{\sigma} \subset \Lambda u\Lambda$ and $\Delta(\Lambda G) = \Lambda u\Lambda$. By Corollary 4 Λ is a Galois extension of Γ relative to G.

3. Separability of crossed product with trivial factor set

Proposition 4. Let Λ be a Galois extension of Γ relative to G, C the center of Λ , and R the fixed subring of C under G. If Γ is a separable R-algebra, then $\Delta(\Lambda, G)$ and Λ are separable R-algebrar and the center of $\Delta(\Lambda, G)$ coincides with the center of Γ .

Proof. If Γ is a separable *R*-algebra then by Theorem 1, $\operatorname{Hom}_{\Gamma}^{r}(\Lambda, \Lambda)$ is a separable *R*-algebra, since Λ is a finitely generated projective Γ -right module. Therefore $\Delta = \Delta(\Lambda, G)$ is a separable *R*-algebra, and Δ is a projective $\Delta^{e} = \Delta \otimes_{R} \Delta^{0}$ -module where $\Delta^{0} = (\Delta(\Lambda, G))^{0}$ is the opposite ring of Δ . Since $\Delta(\Lambda, G)^{0} = \Delta(\Lambda^{0}, G)$, $\Delta = \sum_{\sigma \in G} \oplus \Lambda u_{\sigma}$ is a direct summand of a Δ^{e} -free module as Δ^{e} -module, and $\Delta^{e} = \Delta \otimes_{R} \Delta^{0} = \sum_{\sigma, \tau \in G} \oplus \Lambda \otimes_{R} \Lambda^{0} \cdot u_{\sigma} \otimes u_{\tau}^{0}$ is a $\Lambda \otimes_{R} \Lambda^{0}$ free module. It follows that Λ is a direct summand of $\Lambda \otimes_{R} \Lambda^{0}$ -free module as $\Lambda \otimes_{R} \Lambda^{0}$ -module. Therefore Λ is a separable *R*-algebra. Since Γ is a separable *R*-algebra and Λ is a finitely generated projective Γ - right module, we have $\operatorname{Hom}_{\Delta}^{\iota}(\Lambda, \Lambda) = \Gamma$ by Theorem 1. Therefore the center of $\Delta = \Delta(\Lambda, G)$ coincides with the center of Γ .

We now show that under the following assumption Λ is the Galois extension of the fixed subring Γ under G and the crossed product $\Delta(\Lambda, G)$ is separable over R.

(\sharp) Λ is a central separable *C*-algebra, *G* is a finite group of automorphisms of Λ which induces a group of automorphisms of *C* isomorphic to *G*, and *C* is the Galois extension of *R* relative to *G*, where *R* is the fixed subring of *C* under *G*.

REMARK. If C is a field then Λ and Γ are simple algebras and the assumption (\sharp) means that Λ is an outer-Galois extension of Γ .

Lemma 4. Let R be a subring of a commutative ring C, G a finite group of automorphisms of C having the fixed ring R. We set $Tr(c) = \sum_{\sigma \in G} \sigma(c)$ for $c \in C$. If C is a Galois extension of R relative to G, there exists an element c in C such that Tr(c)=1.

Proof. We consider two homomorphisms $\mu: C \otimes_R \operatorname{Hom}_R(C, R) \to \operatorname{Hom}_R(C, C)$ defined by $\mu(c \otimes f)(x) = f(x) \cdot c$ and $\tau: C \otimes_R \operatorname{Hom}_R(C, R) \to R$ defined by $\tau(c \otimes f) = f(c)$. Since C is a finitely generated projective R-module, μ and τ are isomorphisms ([2], Proposition A.1 and A.3). Regarding C as submodule of $\operatorname{Hom}_R(C, C)$, we denote by t the homomorphism $\tau \circ \mu^{-1}$ restricted on C. By Proposition A.4 in [1] we have $\operatorname{Hom}_R(C, R) = t \circ C$. Since C is a finitely generated projective R-module there exists f in $\operatorname{Hom}_R(C, R)$ such that f(C)=R. Accordingly there exist a and b in C such that $f=t \circ a$ and f(b)=1. By Proposition A.3 in [1], $t(x) = \sum_{\sigma \in \mathcal{G}} \sigma(x)$ for $x \in C$. It follows that $1 = f(b) = t \circ a(b) = t(ab) = \sum_{\sigma \in \mathcal{G}} Tr(ab)$.

Theorem 4. Under the assumption (\sharp) , Λ is a Galois extension of Γ relative to G when Γ is the fixed subring of Λ under G, and $\Delta(\Lambda, G)$ is a separable R-algebra.

Proof. By Proposition 3, Λ is a Galois extension of Γ relative to G. For the opposite ring Λ^{0} of Λ , G is regarded as a group of automophisms of Λ^{0} by setting $\sigma(\lambda^{0}) = (\sigma(\lambda))^{0}$ for $\sigma \in G$ and $\lambda \in \Lambda$. We have a opposite correspondence between $\Delta(\Lambda, G) = \sum_{\sigma \in G} \oplus \Lambda u_{\sigma}$ and $\Delta^{0} = \Delta(\Lambda^{0}, G) = \sum_{\sigma \in G} \oplus \Lambda^{0} v_{\sigma}$ defined by $\lambda u_{\sigma} \leftrightarrow (\lambda u_{\sigma})^{0} = v_{\sigma^{-1}} \lambda^{0}$. In $\Lambda^{e} = \Lambda \otimes_{R} \Lambda^{0}$ and $\Delta^{e} = \Delta \otimes_{R} \Delta^{0}$ we set $J_{1} = \{\lambda \otimes 1^{0} - 1 \otimes \lambda^{0} \in \Lambda^{e} | \lambda \in \Lambda\}, J_{2} = R$ -submodule of Δ^{e} generated by $\{u_{\sigma} \otimes 1^{0} - 1 \otimes v_{\sigma^{-1}} \in \Delta^{e} | \sigma \in G\}$, and $J = \{x \otimes 1^{0} - 1 \otimes x^{0} \in \Delta^{e} | x \in \Delta\}$. Then we have $\Delta^{e} J = \Delta^{e} J_{1} + \Delta^{e} J_{2}$, because $\lambda u_{\sigma} \otimes 1^{0} - 1 \otimes (\lambda u_{\sigma})^{0} = u_{\sigma} \sigma^{-1}(\lambda) \otimes 1^{0} - 1 \otimes v_{\sigma^{-1}} \lambda^{0} = u_{\sigma} \sigma^{-1}(\lambda) \otimes 1^{0} - u_{\sigma} \otimes \sigma^{-1}(\lambda)^{0} + u_{\sigma} \otimes \sigma^{-1}(\lambda^{0}) - 1 \otimes \sigma^{-1}(\lambda^{0}) u_{\sigma^{-1}} = u_{\sigma} \otimes 1^{0} \cdot (\sigma^{-1}(\lambda) \otimes 1^{0} - 1)$

110

 $\otimes \sigma^{-1}(\lambda^0)) + 1 \otimes \sigma^{-1}(\lambda^0) \cdot (u_{\sigma} \otimes 1^0 - 1 \otimes v_{\sigma^{-1}}).$ We denote by A the right annihilator of J_1 in Λ^e , and denote by **A** the right annihilator of **J** in Δ^e . We have easily $A \subset \sum_{\sigma, \tau \in G} \oplus A \, u_{\sigma} \otimes v_{\tau}$. We define the automorphism $\sigma \times \tau$ of $\Lambda^{e} \text{ by setting } \sigma \times \tau(x \otimes y^{0}) = \sigma(x) \otimes \tau(y^{0}) \text{ for every } \sigma \times \tau \in G \times G \text{ and } x \otimes y^{0} \in \Lambda^{e}.$ For any element $f = \sum_{\sigma, \tau \in G} a(\sigma, \tau^{-1}) u_{\sigma} \otimes v_{\tau^{-1}} \text{ in } \sum_{\sigma, \tau \in G} A u_{\sigma} \otimes v_{\tau^{-1}}, (a(\sigma, \tau^{-1}) \in A),$ $f \in \mathbf{A} \text{ if and only if } (u_{\gamma} \otimes 1^{\circ} - 1 \otimes v_{\gamma^{-1}}) \cdot f = 0 \text{ for all } r \in G. \text{ Since } (u_{\gamma} \otimes 1^{\circ} - 1 \otimes v_{\gamma^{-1}}) \cdot f = \sum_{\sigma, \tau \in G} \{\gamma \times 1(a)\gamma^{-1}\sigma, \tau^{-1})\} - 1 \times \gamma^{-1}(a(\sigma, \gamma\tau^{-1}))\} u_{\sigma} \otimes v_{\tau^{-1}}, \text{ we } (u_{\gamma} \otimes 1^{\circ} - 1 \otimes v_{\gamma^{-1}}) \cdot f = \sum_{\sigma, \tau \in G} \{\gamma \times 1(a)\gamma^{-1}\sigma, \tau^{-1})\} - 1 \times \gamma^{-1}(a(\sigma, \gamma\tau^{-1}))\} u_{\sigma} \otimes v_{\tau^{-1}}, \text{ we } (u_{\gamma} \otimes 1^{\circ} - 1 \otimes v_{\gamma^{-1}}) \cdot f = \sum_{\sigma, \tau \in G} \{\gamma \times 1(a)\gamma^{-1}\sigma, \tau^{-1})\} - 1 \times \gamma^{-1}(a(\sigma, \gamma\tau^{-1}))\} u_{\sigma} \otimes v_{\tau^{-1}}, \text{ and } (u_{\gamma} \otimes 1^{\circ} - 1 \otimes v_{\gamma^{-1}}) \cdot f = \sum_{\sigma, \tau \in G} \{\gamma \times 1(a)\gamma^{-1}\sigma, \tau^{-1})\} - 1 \times \gamma^{-1}(a(\sigma, \gamma\tau^{-1})) = 0$ have that $f \in A$ if and only if $\gamma \times \gamma(a(\gamma^{-1}\sigma, \tau^{-1})) = a(\sigma, \gamma\tau^{-1})$ for all $\sigma, \tau, \gamma \in G$. We set $\gamma^{-1}\sigma = \sigma_0$, $\tau^{-1} = \tau_0$, then $f \in A$ if and only if $\gamma \times \gamma(a(\sigma_0, \tau_0)) = a(\gamma \sigma_0, \gamma \tau_0)$ for all $\gamma, \sigma_0, \tau_0 \in G$. We remark that $\gamma \times \gamma(A) = A$ for every $\gamma \in G$. If we set $\tau_0 = 1$ and $\gamma \cdot \sigma_0 = \delta$, then we get $a(\delta, \gamma) = \gamma \times \gamma(a(\gamma^{-1}\delta, 1))$ from the above. Therefore A contains every element f of the following form; $f = \sum_{\delta, \gamma \in G} \gamma \times \gamma(a(\gamma \delta^{-1}, 1)) u_{\delta} \otimes v_{\gamma} \text{ where } a(\tau, 1) \in A \text{ for } \tau \in G. \text{ We set } a(\tau, 1) = 0$ if $\tau = 1$. Then we have that for any element *a* in *A*, $\sum_{\gamma \in \sigma} \gamma \times \gamma(a) \cdot u_{\gamma} \otimes v_{\gamma}$ is contained in A. We remark that $v_{\gamma} = (u_{\gamma^{-1}})^{\circ}$ and $\varphi(\gamma \times \gamma(a)) = \gamma(\varphi(a))$ for the homomorphism $\varphi: \Lambda^e \to \Lambda$ defined by $\varphi(x \otimes y^0) = xy$. Then for the homomorphism $\varphi: \Delta^e \to \Delta$ (defined by $\varphi(\mathbf{x} \otimes \mathbf{y}^0) = \mathbf{x} \cdot \mathbf{y}$) we have $\varphi(\sum_{\gamma \in G} \gamma \times \gamma(a) \cdot u_{\gamma} \otimes v_{\gamma}) = \varphi(\sum_{\gamma \in G} \gamma \times \gamma(a) \cdot u_{\gamma} \otimes (u_{\gamma^{-1}})^{0}) = \sum_{\gamma} \varphi(\gamma \times \gamma(a)) = \sum_{\gamma} \gamma(\varphi(a)) =$ $Tr(\varphi(a))$. Therefore $\varphi(A) \supset Tr(\varphi(A))$. Since Λ is a central separable C-algebra and by Corollary A.5 in [1] C is separable over R, therefore Λ is separable over R ([1], Theorem 2.3). Accordingly, by Proposition 1.1 in $[1] \varphi(A) = C$, and have $\varphi(A) \supset Tr(C)$. On the other hand by Lemma 4 Tr(C) contains the identity of R, therefore $\varphi(A) \ni 1$ and Δ is a separable R-algebra.

Corollary 5. Under the same assumption as in Theorem 4, Γ as a separable R-algebra.

Proof. Since Λ is a finitely generated projective *C*-module and *C* is a finitely generated projective *R*-module, Λ is a finitely generated projective *R*-module ([3], IX Corollary 2.5). If we regard Λ as $\Delta(\Lambda, G)$ -left module, then Λ is a finitely generated projective $\Delta(\Lambda, G)$ -module from Lemma 2 since Δ is a separable *R*-algebra. By Theorem 1 the $\Delta(\Lambda G)$ -endomorphism ring $\operatorname{Hom}_{\Delta}^{i}(\Lambda, \Lambda)$ is a separable *R*-algebra. Since $\operatorname{Hom}_{\Delta}^{i}(\Lambda, \Lambda) \simeq \Gamma$ we have that Γ is a separable *R*-algebra.

From Proposition 4 and the above proof we have

Corollary 6. Let Λ be an *R*-algebra satisfying the same assumption (#) except " Λ is a separable *C*-algebra". If Λ is a finitely generated projective *R*-module and $\Delta(\Lambda, G)$ is a (central) separable *R*-algebra, then Γ is also a (central) separable R-algebra.

4. Galois theory

In this section we shall consider a ring Λ satisfying the assumption (#) in § 3.

Lemma 5. Let Λ be a ring satisfying the assumption (#) in §3. Then $\Delta(\Lambda, G)$ and Γ are central separable *R*-algebra, where Γ is the fixed subring of Λ under *G*.

Proof. From Theorem 4 and Corollary 5, $\Delta(\Lambda, G)$) and Γ are separable R-algebra, and by Proposition 3 Λ is a Galois extension of Γ relative to G. By Proposition 4 the center of $\Delta(\Lambda, G)$ coinsides with the center of Γ . We shall show that the center of $\Delta(\Lambda, G)$ in R. We denote by S the center of Γ (=the center of $\Delta(\Lambda, G)$). We have $R = \{c \in C \mid \sigma(c) = c \text{ for all } \sigma \in G\} = C \cap \{\lambda \in \Lambda \mid \tau(\lambda) = \lambda \text{ for all } \sigma \in G\} = C \cap \Gamma$. Since the center of Γ is contained in the center of Λ , we have $S \subset C \cap \Gamma = R$. On the other hand R is contained in the center of Δ , we have R = S.

Proposition 5. Let C be a commutative ring, and let C be a Galois extension of R relative to G. If S is an intermedate ring between C and R such that C is a Galois extension of S relative to a subgroup H of G, then S is a separable R-algebra.

Proof. Since C is a Galois extension of R, C is a separable Ralgebra, therefore C is a projective $C \otimes_R C$ -module, and C is a finitely generated projective S-module since C is a Galois extension of S. It follows that $C \otimes_R C$ is a projective $S \otimes_R S$ -module ([3], IX Proposition 2.3), and S is a direct summand of C as two sided S-module, therefore S is a separable R-algebra.

Proposition 6. Let C be a commutative integral domain, and let C be a Galois extension of R relative to G. If S is an intermediate ring betweeen C and R such that S is a separable R-algebra, then C is a Galois extension of S relative to a subgroup H of G where $H = \{\sigma \in G | \sigma(x) = x \text{ for all } x \in S\}$, and C is a separable S-algebra.

Proof. Since C is a finitely generated projective R-module and S is a separable R-algebra, from Lemma 2 C is a finitely generated projective S-module. We set $T = \operatorname{Hom}_{S}(C, C)$. From Proposition A. 2 and A. 3 in [2] we have $\operatorname{Hom}_{T}(C, C) = S$. Since $\operatorname{Hom}_{R}(C, C) \cong \Delta(C, G) = \sum_{\sigma \in \mathcal{G}} C u_{\sigma}$, $T = V_{\operatorname{Hom}_{R}(C,C)}(S) = V_{\Delta(C,G)}(S)$. Now we shall show that $V_{\Delta(C,G)}(S)$ is a crossed

product $\Delta(C, H) = \sum_{\tau \in \mathcal{A}} Cu_{\tau}$ of C and H where $H = \{\sigma \in G | \sigma(x) = x \text{ for all } x \in S\}$. If $\sum_{\sigma} a_{\sigma}u_{\sigma}$ is an arbitrary element in $V_{\Delta(C,G)}(S)$, then we have $a_{\sigma} \cdot \sigma(x) = a_{\sigma} \cdot x$ for all $x \in S$ and $\tau \in G$. Since C is an integral domain, for every x in S, $a_{\sigma}(\sigma(x)-x)=0$ implies $a_{\sigma}=0$ or $x=\sigma(x)$. Therefore, if σ is not contained in H then $a_{\sigma}=0$. Consequently, $\sum_{\sigma} a_{\sigma}v_{\sigma}$ is contained in $\sum_{\tau \in \mathcal{A}} Cu_{\tau} = \Delta(C,H)$. Since $\Delta(C,H) \subset V_{\Delta(C,G)}(S) = T$, we have $T = \Delta(CH)$. Since $S = \operatorname{Hom}_{T}(C, C)$, S is the fixed subring of C under H. By Theorem 3 C is a Galois extension of S relative to H, and by Corollary A.5 in [1] C is a separable S-algebra.

Lemma 6. Let C be a commutative ring, M a projective C-module, and m a non zero elemen in M. If cm=0 for an element c in C, then there exists a non zero element c' in C such that $c \cdot c'=0$ and c' is independent of c.

Proof. If *M* is a projective *C*-module then it can be imbedded in a free *C*-module $F = \sum_{i} \oplus Cv_i$. Then we have $m = \sum_{i=1}^{r} c_i v_i$ for $m \neq 0$ in *M*. If $cm = \sum_{i} cc_i v_i = 0$ then we have $cc_i = 0$ where c_i is independent of *c*.

Theorem 5. Let Λ be a central separable algebra over a commutative ring C, and let G be a finite group of automorphisms of Λ such that G induce the group of automorphisms of C isomorphic to G and for the fixed subring R of C under G C is a Galois extension of R relative to G. Then we have

1) if Γ is the fixed subring of Λ under G then Λ is a galois extension of Γ and Γ is a central separable algebra over R,

2) Γ is a direct summand of Λ as Γ -two sided module,

3) for an arbitrary subgroup H of G, the fixed subring Ω of Λ under H is a separable R-subalgebra of Λ containing Γ , and Λ is a Galois extension of Ω relative to H.

Furthermore if we suppose that C is an integral domain, then we have

4) if Ω is an arbitrary intermediate ring between Λ and Γ such that Ω is a separable R-algebra, then Λ is a Galois extension of Ω relative to H where $H = \{\sigma \in G | \sigma(x) = x \text{ for all } x \in \Omega\}$.

Proof. 1). We have proved it above, but we may prove it also as follows. By Lemma 5 $\Delta = \Delta(\Lambda, G)$ is a central separable *R*-algebra and $\Delta_0 = \Delta(C, G)$ is so. From Theorem 2 the commutor ring $V_{\Delta}(\Delta_0)$ of a separable *R*-subalgebra Δ_0 in a central separable *R*-algebra Δ is a separable *R*-algebra. On the other hand we have $V_{\Delta}(\Delta_0) = \Gamma$. Because, if $\sum_{\sigma} \lambda_{\sigma} u_{\sigma}$ is an arbitrary element in $V_{\Delta}(\Delta_0)$, then $\sum_{\sigma} \lambda_{\sigma} x u_{\sigma} = \sum_{\sigma} \lambda_{\sigma} \cdot \sigma(x) u_{\sigma}$ for all $x \in C$, therefore $\lambda_{\sigma}(x - \sigma(x)) = 0$ for all $x \in C$. Since Λ is a projective *C*-module, if $\lambda_{\sigma} \neq 0$ then by Lemma 6 there exists a non zero element *c* in *C* such that $c(x - \sigma(x)) = 0$ for all *x* in *C*. If $\sigma \neq 1$, then u_{σ} and 1 are linearly independent over *C* in $\Delta(C, G)$, therefore in $\operatorname{Hom}_R(C, C)$, σ and 1 are so. It follows that $\lambda_{\sigma} = 0$ for $\sigma \neq 1$. Thus we have $V_{\Delta}(\Delta) \subset \Lambda$. Therefore we have that $V_{\Delta}(\Delta_0)$ is the fixed subring Γ of Λ under *G*. Since the center of $\Delta(\Lambda, G)$ is *R*, by Proposition 4 Γ is a central separable *R*-algebra, and $V_{\Delta}(\Gamma) = \Delta_0$ from Theorem 2.

2). Since $V_{\Delta}(\Delta_0) = \Gamma$ and Δ_0 is a central separable *R*-subalgebra of Δ , we have $\Delta = \Delta_0 \cdot \Gamma \simeq \Delta_0 \otimes_R \Gamma$ from Corollary 3. Since *C* is a finitely generated projective *R*-module, *R* is a direct summand of *C* as *R*-module, and *R* is a direct summand of $\Delta_0 = \Delta(C, G)$ as *R*-module. Therefore $\Gamma = R \otimes_R \Gamma$ is a direct summand of $\Delta \simeq \Delta_0 \otimes_R \Gamma$ as two sided Γ -module. Since $\Delta \supset \Lambda \supset \Gamma$ we have that Γ is a direct summand of Λ as two sided Γ -module.

3). From Theorem 3 Λ is a Galois extension of Ω relative to H. We denote by S the fixed subring of C under H. Then C is a Galois extension of S relative to H, and from 1) Ω is a central separable Salgebra. Since S is a separable R-algebra by Proposition 5, Ω is a separable R-algebra by Theorem 2.3 in [1].

4). We suppose that Ω is an intermediate separable *R*-algebra between Λ and Γ . Since $\Delta = \Delta(\Lambda, G)$ is a central separable *R*-algebra and Ω is a separable *R*-subalgebra of Δ . We have $V_{\Delta}(V_{\Delta}(\Omega)) = \Omega$, and $V_{\Delta}(\Omega)$ is a separable *R*-algebra. On the other hand $V_{\Delta}(\Lambda) = C$ and $V_{\Delta}(\Gamma) = \Delta_0 = \Delta(C, G)$. Set $T = V_{\Delta}(\Omega)$, so that $R \subset C \subset T \subset \Delta_0$. Since Δ_0 is a central separable *R*-algebra and *T* is a separable *R*-subalgebra of Δ_0 , $V_{\Delta_0}(T)$ is a separable *R*-algebra and $V_{\Delta_0}(V_{\Delta_0}(T)) = T$. We set $S = V_{\Delta_0}(T)$. We have $V_{\Delta_0}(C) = C$, $V_{\Delta_0}(\Delta_0) = R$, and $R \supset S \supset C$. Since *C* is a Galois extension of *R* relative to *G*, by Proposition 6 *C* is a Galois extension of *S* relative to *H* where $H = \{\sigma \in G | \sigma((x) = x \text{ for all } x \in S\}$. Therefore $\Delta(C, H) \cong \text{Hom}_S(C, C)$. Regarding $\Delta(C, H) = \text{Hom}_S(C, C)$, we have $T = V_{\Delta_0}(S) = V_{\text{Hom}_R(C,C)}(S) =$ $\text{Hom}_S(C, C) = \Delta(C, H)$, and $V_{\Delta}(\Omega) = T = \Delta(C, H)$. Since $\Omega = V_{\Delta}(T)$, Ω is the fixed subring of Λ under *H*. Therefore, from Theorem 3 we have that Λ is the Galois extension of Ω relative to a subgroup *H* of *G*.

Osaka Gakugei Daigaku

References

- [1] M. Auslander and O. Goldman: The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367-409.
- [3] H. Cartan and S. Eilenberg: Homological algebra, Princeton, 1956.
- [4] A. Hattori: Semisimple algebra over a commutative ring, J. Math. Soc. Japan 15 (1963), 404-419.
- [5] T. Nakayama: On a generalized notion of Galois extension of a ring, Osaka Math. J. 15 (1963), 11-23.