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We evaluated the effectiveness of a low-current-consumption amplifier for a compressed-sensing (CS) framework in wearable electroencephalo-
graphy (EEG) recording devices. The amplifier uses a capacitively coupled chopper instrumentation amplifier (CCIA) architecture which is often
used for low-noise amplifier (LNA) to achieve low consumption and low-noise characteristics. According to measurements of the designed CCIA,
the power consumption was 0.36 μW/channel, and the input referred noise (IRN) was 4.47 μVrms. The measured IRN and simulations were used
to confirm the effect of CCIA noise on the CS-based EEG measurement framework. The difference in the normalized mean squared error at
CR = 4 to the uncompressed conditions could be reduced to 0.008. The findings show that even with the LNA specialized for low power
consumption, a slight signal degradation is observed when the compression ratio is increased up to 4 in the CS framework by utilizing the sparsity
of EEG in the frequency domain. 

1. Introduction

In recent years, the application of electroencephalography
(EEG) has not been limited to healthcare, and new technol-
ogies such as brain-computer interfaces have been developed.
Wireless EEG recording devices have also attracted attention,
and these devices must be wearable and lightweight to reduce
the user burden and regulate user activities. However,
extending the operating time of wearable devices typically
involves increasing their battery size and weight. Therefore,
research has recently been undertaken to reduce the power
consumption of wearable devices via compressed sensing
(CS)1) with the aim of reducing the amount of data to be
transmitted. For example, several reports have been made on
integrated circuit implementations and low-power dissipation
measurements for electrocardiographs, electromyographs,
and ultrasound echo devices.2–4) Additionally, research is
underway to incorporate CS into EEG. For example, CS is
vulnerable to artifact contamination.5) However, in recent
years, an EEG measurement framework using CS that is
resistant to blink artifact contamination6–8) was proposed, and
its practical applicability has been enhanced. Examples are
also present on low-consumption EEG measurement frame-
works running on thermoelectric generation that have been
implemented and confirmed to consume less power as a
system.9) Moreover, research on integrated circuits for
wireless EEG recording devices is ongoing.10)

Capacitively coupled amplifiers11–13) with a high input
impedance are used in instrumentation amplifiers for EEG
measurements because of their connection electrodes.14) The
capacitively coupled chopper instrumentation amplifier
(CCIA) architecture, which adds a chopping technique to
the above configuration, has been extensively used as a low-
noise amplifier (LNA) for EEG measurement.15–23) In gen-
eral, a tradeoff is present between the input referred noise
(IRN) and the power consumption of an LNA. Research has
been conducted to optimize this tradeoff, and the application
of CS is considered one of the solutions. For example, in CS,
the EEG signal is assumed to be sparse when mapped on a
certain basis. Various bases are known24–27); for example, in
the case of frequency-domain-based transforms,28) flicker
noise, which has strong frequency dependence, reportedly

has significant effect on the reconstruction accuracy, while
thermal noise, which has power over a wide bandwidth, has a
weak effect on the transform.29) Because the EEG signal is
distributed mainly in the frequency band below 100 Hz,30)

reducing flicker noise is essential for improving the signal-to-
noise ratio. In addition, the low power consumption of the
LNA is important for the realization of wearable EEG
recording devices. Considering a system using bluetooth
low energy (BLE), the power consumption of the RF circuit
increases only during communication,31) and the majority of
the current consumption is accounted for by the RF
circuit.32,33) Outside of communication, most of the power
consumption is determined by the circuits contributing to
sensing. The power consumption of the LNA, which is in
constant operation, is one of the circuits that consume power
on the sensing circuit. In previous studies, the power
consumption of the LNA comprised a large proportion of
the total system power consumption, including the analog
front end.34–36) Therefore, a lower power consumption of the
LNA leads to smaller and lighter batteries, and thus, low-
consumption AFE ICs and AFE ICs with RF circuits have
been developed, although LNAs still account for a large
proportion of power consumption in some cases.37,38) When
considering 10-to-20-channel EEG-recording devices,39) we
set a power consumption target of 0.5 μW for one LNA
channel to maintain the total power consumption of LNAs
below the majority of the above IC38) even at a large number
of LNAs. As described above, in the CS framework, the LNA
characteristic that critically affects signal compression and
reconstruction is not thermal noise but flicker noise, which
mitigates the tradeoff between thermal noise and power
consumption in the characteristics of LNAs. In this study,
we design an LNA that is specialized for flicker noise
suppression and thermal noise with some magnitude using
the CCIA architecture. We aim to demonstrate that signal
degradation can be mitigated within a CS framework, even
when employing a low-power LNA with significant noise in
the system.
In this study, we extend the research presented in our

international conference paper.40) We present the measure-
ment results for the designed LNA and the results of signal
processing using CS framework, which utilizes random
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undersampling41) based on the measured LNA data. The
remainder of this paper is organized as follows. Section 2
presents the circuit configuration and features of the designed
CCIA. Section 3 presents the CCIA measurement results.
Section 4 presents the simulation results for signal processing
using the proposed framework based on the measurement
results in Sect. 3. Section 5 concludes the paper.

2. Designed CCIA

As described in the Introduction, when reconstructing using
frequency domain sparsity in the CS framework, flicker noise
is susceptible to reconstruction while thermal noise is not.
Considering this characteristic, the use of a low-power LNA
with suppressed flicker noise and high thermal noise can
contribute to reducing the overall AFE power consumption
while minimizing signal degradation. This section describes
the design of an LNA to realize the aforementioned system.
Figure 1 illustrates the CCIA designed for this study. A
180 μm CMOS process was used for the design. Because the
impedance of the electrode is high in EEG measurements,42)

a capacitor for positive feedback loop was employed to
increase the input impedance.43) Although the signal char-
acteristic of the input node of the CCIA operational amplifier
is AC, it requires an appropriate DC bias to ensure proper
amplification.44) In Fig. 1, as in previous studies,43,44) a high
resistance is generated and used with NM1 and NM2 to
ensure the stability of the capacitively coupled nodes. The
NBIAS node is supplied from outside the chip. Figure 2 shows
the circuit diagram of the amplifier used in Fig. 1. As in a
previous study, a folded cascode is used to achieve low-
supply voltage operation and high gain.16) Indirect phase
compensation technology is used for phase compensation to
generate zeros at high frequencies, even when the node
impedance increases.45,46) In addition, a common-mode

feedback (CMFB) circuit based on the output voltage of
the CCIA is used, and the signal is amplified around VCM,
which is half of VDD. The CCIA operates with VDD = 1.8 V.
RCM1 and RCM2 are used for the CMFB and feedback the

center of the output voltage. The operational transconduc-
tance amplifier (OTA) used for CMFB is shown in Fig. 3.
The circuit configuration of the CMFB circuit, including
RCM1 and RCM2, is general.

47,48) In addition to the 4-channel
CCIA, VCM generate circuit and CMFB circuits were
designed in this study, and the simulation results indicate
that the current consumption of the entire chip is 828 nA and
the current consumption per channel is 207 nA. This result
implies a power consumption of 0.373 μW per channel, a
performance that meets the target indicated above. The
chopping frequency was set at 5 kHz because of the narrow
bandwidth of the amplifier resulting from its low power
consumption. To reduce the spike voltage due to chopping,
low pass filters (LPFs) consisting of RLPF1, RLPF2, CLPF1, and
CLPF2 are implemented in the chip. The LPFs are first-order
filters with a cutoff frequency of 24.5 kHz and are designed
with a high cutoff frequency to allow fine tuning with off-
chip anti-aliasing filters. Figure 4 shows the AC simulation
results for the CCIA without chopping. Figure 4 shows that
the gain from 0.5 to 100 Hz is greater than 37 dB, indicating
that sufficient amplification is achieved considering the
frequency of the EEG signal.30) Figure 5 shows the input
EEG signal and output differential voltage waveform of the
CCIA during chopping. The amplification ratio is identical to
that in Fig. 4, indicating that the amplitude of the EEG signal,
which was on the μV order, is amplified to the mV order as
expected. Figure 6 shows the IRN spectrum of the CCIA
during chopping. The maximum value at frequencies above
0.5 Hz is 1.04 μVrms/√Hz. The integrated value of the input
equivalent noise calculated from Fig. 6 is 2.9 μVrms.

Fig. 1. Configuration of designed CCIA.

03SP54-2 © 2024 The Japan Society of Applied Physics

Jpn. J. Appl. Phys. 63, 03SP54 (2024) K. Mii et al.



3. Measurement results for designed CCIA

Figure 7 shows a photograph of the fabricated chip. The area
of each CCIA channel was 0.142 mm2. Figure 8 shows a
photograph of the printed circuit board (PCB) used for the
measurements. The PCB was a general two-layer board, and
an 84-PLCC was used for the chip package. Figure 9 shows

the configuration of the measurement circuit, and Table I
presents the conditions and equipment used for the measure-
ment. The total measured quiescent current of the chip was
800 nA, which was approximately equal to that in the
simulation, and the current consumption per channel was

Fig. 2. Schematic of the operational amplifier of the CCIA.

Fig. 3. Schematic of the OTA of CMFB.

Fig. 4. Simulated gain frequency characteristic of the CCIA in the no-chopping state.

Fig. 5. Simulated input EEG signal and differential output voltage of the
CCIA.
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200 nA. This result implies a power consumption of 0.36 μW
per channel, achieving the target value, which agrees with the
simulation result. Because the designed CCIA had low
quiescent current, connecting the measurement probes di-
rectly to the output pins was impossible; therefore, measure-
ments were performed using LPV542 (Texas Instruments) as
a unity gain buffer. The LPV542 had sufficiently low noise
and an adequately high cutoff frequency for the designed
CCIA; therefore, it did not affect the measurement. In
addition, as shown in Fig. 9(a), the oscilloscope output signal
was input to the CCIA via an attenuator to prevent clipping of
the CCIA output voltage in the gain frequency response
measurement. Figure 9(b) shows circuit configuration for
measuring the noise spectral density. Figure 10 shows the
measured gain frequency response, which match the simula-
tion results, confirming that amplification is possible in the
EEG frequency bands. Figure 11 shows the common mode

rejection ratio (CMRR) measurements during chopping.
Figure 11 shows that the CMRR remains at 80 dB up to
100 Hz, which is sufficient because it is above the 60 dB
target set in a previous study.34) Figure 12 presents the IRN
measurement results; the peak at 60 Hz is due to a hum in the
power supply and is not due to chip characteristics. As
shown, the IRN was significantly lower during chopping
compared with the condition without chopping. The results
obtained during chopping were generally similar to those of
the simulation, with a maximum IRN of 1.78 μVrms/√Hz
0.5 Hz. The integrated IRN during chopping, which was
calculated from the measurements presented in Fig. 12, is
4.47 μVrms. In the next section, according to the measure-
ment results, we confirm the effect of LNA noise on EEG
signal reconstruction by applying the designed CCIA to the
CS signal-processing framework with random undersam-
pling.

4. Evaluation results for proposed framework with
designed CCIA

In this section, we confirm the implementation of the
designed CCIA via a simulation of the CS framework based
on the IRN measurement results obtained in the previous
section. To confirm the influence of CCIA noise on the
reconstruction of EEG signals, a comparison of the LNA
noise with a noise-free ideal state is desirable. In this study,
the measurement results were reflected in the simulation and
compared with ideal conditions. Figure 13 shows the signal
processing performed in this study. As shown in Fig. 13(a),
the hum caused by the 60 Hz power supply was removed
from the measured IRN shown in Fig. 12 and input to the
noise-source model. This converted the IRN resulting from
the AC measurement into a transient noise waveform that
was overlaid on the input of the CCIA. For noise in the
frequency band below 100 Hz, which is the critical frequency
band of the EEG, the IRN measurement results were used in
the simulation as described above. For noise at frequencies
above 100 Hz, where the CCIA gain decreased, the simulator
generated flicker noise and thermal noise from 100 Hz to
10 kHz based on the process design kit information.
Figure 13(b) shows the ideal state in which no noise was
generated at all, which was used for reference. In the cases of
both Figs. 13(a) and 13(b), the output voltage of the CCIA

Fig. 6. Simulated noise spectral density of the designed CCIA.

Fig. 7. Chip microphotograph of each CCIA.

Fig. 8. Part of the PCB used for the measurement.
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was input to an anti-aliasing filter with a cutoff frequency of
0.54 kHz; then, the signal was sampled at 1 kHz. After
sampling, it was converted into a single-phase voltage using
a differential-to-single circuit. The single-phase signal was
used as the input signal for the CS compression and
reconstruction algorithm in the simulations. The amplified
signal was compressed via random undersampling.41) In this
evaluation, a block-sparse Bayesian learning algorithm was
used for the signal reconstruction. In addition, a discrete
cosine transfer basis28) was used for frequency-domain sparse
representation in this study. xnoiseless denotes the result
obtained without considering noise in the compression and
reconstruction of the EEG signal during the CS process, and
xnoise denotes the result obtained with consideration of noise.

The relationship between xnoiseless and xnoise was evaluated
using the normalized mean squared error (NMSEcomp) as
follows:

=
-|| ||

|| ||
( )x x

x
NMSE 1comp

noiseless noise 2
2

noiseless 2
2

Using NMSEcomp for the results obtained with different
compression ratio (CR), the effects of noise and compres-
sion can be examined simultaneously. CR can be expressed
by the following equation, where N and M represent the
numbers of sample points before and after compression,
respectively.

= ( )N

M
CR . 2

A total of 100 frames of EEG signals, such as the
waveform shown in Fig. 5, were processed, with 1.5 s as
one frame. Figure 14 shows the average NMSEcomp for 100
frames. The uncompressed NMSEcomp was 0.15, which is
reasonable considering previous studies.28,39) Although some
fluctuations were present in the reconstruction due to
reconstruction errors, the results in Fig. 14 indicate that for
CR = 4, NMSEcomp was 0.158, which was almost the same
as that in the uncompressed case. This indicates that the CRs

(b) 

Fig. 9. Circuit configuration for measurement of the designed CCIA. (a) Circuit configuration for measuring the gain frequency characteristics. (b) Circuit
configuration for measuring the noise spectral density.

Table I. Measurement parameters and components used.

Parameters and components Value and model

Vdd 1.8 V
Total chip IQ 800 nA
Chopping frequency 5 kHz
Attenuator 8495B
Function generator SG-4115
Oscilloscope with frequency response analysis function MSO44
Unity gain buffer LPV542
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from 2 to 4 were reconstructed to the same quality as the
uncompressed results, regardless of the presence or absence
of noise from the CCIA. This suggests that the proposed
CCIA, which was designed with priority for flicker noise
reduction and low power consumption, can be used even with
CR = 4 in the proposed framework. In this case, NMSEcomp

increases with CR larger than 5, but NMSEcomp generally
decreases as CR increases in CS because less information is
used for reconstructing.39) The optimized CR used for CS
depends on the type of reconstruction algorithm that is used.
In this case, when the algorithm shown above is used, the

degradation of NMSEcomp due to compression is suppressed
up to CR = 4.
Table II compares the CCIA designed in this study with

previous studies on LNAs for similar applications. Table II
shows that the CCIA designed in this study has lower power
consumption than the LNAs in previous studies. Table II also
shows that the NEF of the CCIA designed in this study is not
notably low. Table II and the results of Fig. 14 verify our
assertion that the CS framework can reduce signal degrada-
tion even when employing a low-power LNA with significant
thermal noise in the system. Therefore, the CS framework

Fig. 10. Measured gain frequency characteristics of the CCIA.

Fig. 11. Measured CMRR characteristics of the CCIA in the chopping state.

Fig. 12. Measured noise spectral density of the designed CCIA.
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can achieve a smaller battery size for wireless EEG recorders
due to the availability of LNAs with low power consumption.

5. Conclusions

We designed a CCIA specialized for low-power consumption
and measured its characteristics. Using the IRN measurement
results for the simulation, we employed the normalized mean
squared error to evaluate the reconstruction effect of the noise
generated by the CCIA in a CS-based EEG measurement
framework. The measurement results indicated that the power

consumption was low which is 0.36 μW per channel, and the
IRN was 4.47 μVrms. In simulations using the measured
IRNs, the normalized mean squared error was computed for
100 EEG frames, and the result obtained at CR = 4 and the
uncompressed result were almost equal. This finding proves
that the degradation that occurs during signal compression
and reconstruction in the CS framework can be suppressed
while using an LNA specialized for flicker noise suppression
and low power consumption. Although the NEF of the
designed CCIA is not significantly low, the simulation results

(a)

(b)

Fig. 13. Signal processing performed in this study. (a) Settings for calculating x .noise (b) Settings for calculating xnoiseless.

Fig. 14. NMSEcomp calculation results.
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prove that compression may be achieved in the CS frame-
work by using frequency domain sparsity, and the developed
wearable EEG recording devices can operate for a long time
by reducing power consumption and communication data
volume during EEG sensing.
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