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ABSTRACT
We have given theoretical expressions for the forces exerted on a so-called Wilhelmy plate, which we modeled as a quasi-2D flat and
smooth solid plate immersed in a liquid pool of a simple liquid. All forces given by the theory, the local forces on the top, the contact
line, and the bottom of the plate as well as the total force, showed an excellent agreement with the MD simulation results. The force
expressions were derived by a purely mechanical approach, which is exact and ensures the force balance on the control volumes arbitrar-
ily set in the system, and are valid as long as the solid–liquid (SL) and solid–vapor (SV) interactions can be described by mean-fields. In
addition, we revealed that the local forces around the bottom and top of the solid plate can be related to the SL and SV interfacial ten-
sions γSL and γSV, and this was verified through the comparison with the SL and SV works of adhesion obtained by the thermodynamic
integration (TI). From these results, it has been confirmed that γSL and γSV as well as the liquid–vapor interfacial tension γLV can be
extracted from a single equilibrium MD simulation without the computationally demanding calculation of the local stress distributions and
the TI.
© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0011979., s

I. INTRODUCTION

The behavior of the contact line (CL), where a liquid–vapor
interface meets a solid surface, has long been a topic of inter-
est in various scientific and engineering fields because it gov-
erns the wetting properties.1–5 By introducing the concept of
interfacial tensions and contact angle θ, Young’s equation6 is
given by

γSL − γSV + γLV cos θ = 0, (1)

where γSL, γSV, and γLV denote solid–liquid (SL), solid–vapor (SV),
and liquid–vapor (LV) interfacial tensions, respectively. The con-
tact angle is a common measure of wettability at the macroscopic
scale. Young’s equation (1) was first proposed based on the wall-
tangential force balance of interfacial tensions exerted on the CL in
1805 before the establishment of thermodynamics,7 while recently,
it is often re-defined from a thermodynamic point of view instead of
the mechanical force balance.1

Wetting is critical especially in the nanoscale with a large
surface to volume ratio, e.g., in the fabrication process of
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semiconductors,8 where the length scale of the structure has reached
down to several nanometers. From a microscopic point of view,
Kirkwood and Buff9 first provided the theoretical framework of
surface tension based on the statistical mechanics, and molecular
dynamics (MD) and Monte Carlo (MC) simulations have been car-
ried out for the microscopic understanding of wetting through the
connection with the interfacial tensions.10–35 Most of these works on
a simple flat and smooth solid surface indicated that the apparent
contact angle of the meniscus or droplet obtained in the simulations
corresponded well to the one predicted by Young’s equation (1)
using the interfacial tensions calculated through a mechanical man-
ner and/or a thermodynamic manner, where Bakker’s equation and
the extended one about the relation between the stress distribution
around LV, SL, or SV interfaces and the corresponding interfacial
tension have played a key role.22 On the other hand, on inhomoge-
neous or rough surfaces, the apparent contact angle did not seem
to correspond well to the predicted one27,36–38 because the pinning
force exerted from the solid must be included in the wall-tangential
force balance.23

The Wilhelmy method39 has been applied as one of the most
common methods to experimentally measure the LV interfacial ten-
sion, e.g., surface tension, or the contact angle.40 In this method,
the force on a solid sample vertically immersed in a liquid pool is
expressed from the force balance by

Ltotal
z = lγLV cos θ + mg − ρgV , (2)

where Ltotal
z is the total downward force (load) measured on the sam-

ple, the contact angle θ is defined on the liquid side, l is the CL
perimeter, m is the sample mass, V denotes the volume of the sample
immersed in a liquid of density ρ, and g stands for the accelera-
tion of gravity. The history of the Wilhelmy method and practical
issues mainly from a macroscopic point of view are well summa-
rized in a review article.40 In the nanoscale, the gravitational force
and buoyancy, respectively, as the second and third terms on the
RHS of Eq. (2) are negligible, and it follows that

ξtotal
z ≈ γLV cos θ, (3)

where the force per CL length ξtotal
z is defined by

ξtotal
z ≡ Ltotal

z

l
. (4)

From Eq. (3), one can estimate unknown γLV from ξtotal
z and θ deter-

mined by the apparent meniscus shape or unknown θ from ξtotal
z and

γLV as a known physical property. Apparently, the sign of ξtotal
z is

directly related to the wettability, e.g., the force is downward for a
wettable solid sample with θ < π/2.

It is often modeled, typically with a macroscopic schematic
illustrating the balance of forces acting on the solid sample, as if
the solid sample is “pulled” locally at the CL toward the direction
tangential to the LV interface. In such a model, the wall-tangential
component of this force lγLV cos θ in Eq. (2) seems to act on the solid
locally at the CL; however, it is not correct from a microscopic point
of view.41–43 As a straightforward example, consider the case with

θ = π/2: such model claims that the local wall-tangential force from
the fluid around the CL must be zero because cos θ = 0, whereas the
fluid density ρ along the wall-tangential direction z changes with
∂ρ/∂z ≠ 0 around the CL, which should form an inhomogeneous
force field for the solid in the z-direction. Probably due to the diffi-
culty of the direct experimental measurement, few studies have been
carried out specifically about the local force on the solid in compar-
ison with Young’s equation so far. Among them, Das et al.42 and
Weijs et al.43 proposed a model that describes the local force on the
solid around the CL per unit length as γLV(1 + cos θ), which was
based on the density functional theory with the sharp-kink approx-
imation.44,45 This model was later examined by MD simulations for
a simple liquid.17

In this work, we revisited the forces exerted on the Wilhelmy
plate with non-zero thickness and derived theoretical expressions
of the local forces on the CL and on the top and bottom of the
plate as well as the total force on the plate. The derivations were
done by a purely mechanical approach, which ensured the force
balance on the arbitrarily set control volumes, and the connection
to the thermodynamics was given by the extended Bakker equa-
tion.22 We also verified the present theoretical results by MD sim-
ulations. As a major outcome of the expressions of the local forces,
we will show in this article that all the interfacial tensions involved
in the system, γLV, γSL, and γSV, can be measured from a single
equilibrium MD simulation without computationally demanding
calculations.

II. METHOD
A. MD simulation

We employed equilibrium MD simulation systems of a quasi-
2D meniscus formed on a hollow rectangular solid plate (denoted
by “solid plate” hereafter) dipped in a liquid pool of a simple fluid,
as shown in Fig. 1. We call this system the “Wilhelmy MD sys-
tem” hereafter. Generic particles interacting through a LJ poten-
tial were adopted as the fluid particles. The 12–6 LJ potential
given by

ΦLJ(rij) = 4ϵ
⎡⎢⎢⎢⎢⎣
( σ
rij
)

12

− ( σ
rij
)

6

+ cLJ
2 (

rij
rc
)

2
+ cLJ

0

⎤⎥⎥⎥⎥⎦
(5)

was used for the interaction between fluid particles, where rij is the
distance between particles i at position ri and j at rj, while ϵ and
σ denote the LJ energy and length parameters, respectively. This
LJ interaction was truncated at a cutoff distance of rc = 3.5σ, and
quadratic functions were added so that the potential and interac-
tion force smoothly vanished at rc. The constant values of cLJ

2 and cLJ
0

were given in our previous study.19 Hereafter, fluid and solid parti-
cles are denoted by “f” and “s,” respectively, and the corresponding
combinations are indicated by subscripts.

A rectangular solid plate in contact with the fluid was pre-
pared by bending a honeycomb graphene sheet, where the solid
particles were fixed on the coordinate with the positions of the
2D-hexagonal periodic structure with an inter-particle distance rss
of 0.141 nm. The zigzag edge of the honeycomb structure was set
parallel to the y-direction with locating solid particles at the edge
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FIG. 1. Equilibrium molecular dynamics
(MD) simulation systems of a quasi-2D
meniscus formed on a hollow rectangu-
lar solid plate dipped in a liquid pool of
a simple Lennard-Jones (LJ) fluid: the
Wilhelmy MD system.

to match the hexagonal periodicity. The right and left faces were
set at x = ±xs parallel to the yz-plane, and the top and bottom
faces were parallel to the xy-plane. Note that the distance between
the left and right faces 2xs ≈ 1.7 nm was larger than the cutoff
distance rc.

The solid–fluid (SF) interaction, which denotes SL or SV inter-
action, was also expressed by the LJ potential in Eq. (5), where
the length parameter σsf was given by the Lorentz mixing rule,
while the energy parameter ϵsf was changed in a parametric man-
ner by multiplying a SF interaction coefficient η to the base value
ϵ0

sf =
√
ϵffϵss as

ϵsf = ηϵ0
sf. (6)

This parameter η expressed the wettability, e.g., η and the contact
angle of a hemi-cylindrically shaped equilibrium droplet on a homo-
geneous flat solid surface had a one-to-one correspondence,19,22,23

and we set the parameter η between 0.03 and 0.15 so that the cor-
responding cosine of the contact angle cos θ may be from −0.9 to
0.9. The definition of the contact angle is described later in Sec. III.
Note that due to the fact that the solid–solid inter-particle distance
rss shown in Table I was relatively small compared to the LJ length
parameters σff and σfs, the surface is considered to be very smooth,
and the wall-tangential force from the solid on the fluid, which
induces pinning of the CL, is negligible.22,23

In addition to these intermolecular potentials, we set a hori-
zontal potential wall on the bottom (floor) of the calculation cell
fixed at z = zflr about 5.3 nm below the bottom of the solid plate,
which interacted only with the fluid particles with a one-dimensional
potential field Φ1D

flr as the function of the distance from the wall
given by

Φ1D
flr (z′i) = 4πρnϵ0

sfσ
2
sf

⎡⎢⎢⎢⎢⎣

1
5
(σsf

z′i
)

10

− 1
2
(σsf

z′i
)

4

+ cflr
2 (

z′i
zflr

c
)

2

+ cflr
1 (

z′i
zflr

c
) + cflr

0 ], z′i ≡ zi − zflr, (7)

where zi is the z-position of fluid particle i. This potential wall mim-
icked a mean potential field created by a single layer of solid particles
with a uniform area number density ρn. Similar to Eq. (5), this poten-
tial field in Eq. (7) was truncated at a cutoff distance of zflr

c = 3.5σsf,
and a quadratic function was added so that the potential and interac-
tion force smoothly vanished at zflr

c . As shown in Fig. 1, fluid particles
were rather strongly attracted on this plane because this roughly
corresponded to a solid wall showing complete wetting. With this
setup, the liquid pool was stably kept even when the liquid pres-
sure is low with a highly wettable solid plate. Furthermore, we set
another horizontal potential wall on the top (ceiling) of the calcu-
lation cell fixed at z = zceil about 4.2 nm above the top of the solid
plate exerting a repulsive potential field Φ1D

ceil on the fluid particles
given by

Φ1D
ceil(z′′i ) = 4πρnϵ0

sfσ
2
sf

⎡⎢⎢⎢⎢⎣

1
5
(σsf

z′′i
)

10

+ cceil
2 (

z′′i
zceil

c
)

2

+ cceil
1 (

z′′i
zceil

c
) + cceil

0 ], z′′i ≡ zceil − zi, (8)

TABLE I. Simulation parameters and their corresponding non-dimensional values.

Property Value Unit Non-dim. value

σff 0.340 nm 1
σsf 0.357 nm 1.05
ϵff 1.67 × 10−21 J 1
ϵ0

sf 1.96 × 10−21 J 1.18
ϵsf η × ϵ0

sf
η 0.03–0.15 . . . . . .

mf 6.64 × 10−26 kg 1
Tc 90 K 0.703
Nf 10 000–15 000 . . . . . .
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where a cutoff distance of zceil
c = σsf was set to express a repulsive

potential wall.
The periodic boundary condition was set in the horizontal

x- and y-directions, where the system size in the y-direction ly
≈ 3.66 nm matched the hexagonal periodicity of the graphene sheet.
The temperature of the system was maintained at a constant tem-
perature Tc of 90 K, which was above the triple point temperature,46

by velocity rescaling applied to the fluid particles within 0.8 nm
from the floor wall regarding the velocity components in the x- and
y-directions. Note that this region was sufficiently away from the
bottom of the solid plate, and no direct thermostating was imposed
on the solid plate so that this temperature control had no effects on
the present results.

With this setting, a quasi-2D LJ liquid of a meniscus-shaped
LV interface with the CL parallel to the y-direction was formed as an
equilibrium state, as exemplified in Fig. 1, where a liquid bulk with
an isotropic density distribution existed above the bottom wall by
choosing a proper number of fluid particles Nf, as shown in Fig. 2.
We checked that the temperature was constant in the whole sys-
tem after the equilibration run described below. Note also that in
the present quasi-2D systems, effects of the CL curvature can be
neglected.14,16,19,22,23,27,47,48 The velocity Verlet method was applied
for the integration of the Newtonian equation of motion with a time
increment of 5 fs for all systems. The simulation parameters are sum-
marized in Table I with the corresponding non-dimensional ones,
which are normalized by the corresponding standard values based
on ϵff, σff, and mf.

FIG. 2. (a) Distribution of the time-averaged fluid density, (b) half side snapshot,
and (c) distributions of the time-averaged downward force density acting on the
solid plate and solid–fluid (SF) potential energy for the system with a SF interaction
parameter η of 0.15.

The physical properties of each equilibrium system with var-
ious η values were calculated as the time average of 40 ns, which
followed an equilibration run of more than 10 ns.

III. RESULTS AND DISCUSSION
A. Contact angle and force on the solid plate

We calculated the distribution of force exerted from the fluid on
the solid particles by dividing the system into equal-sized bins nor-
mal to the z-direction, where the height of the bin δz of 0.2115 nm
was used considering the periodicity of the graphene structure. We
defined the average force density dξz/dz as the time-averaged total
downward (in the−z-direction) force from the fluid on the solid par-
ticles in each bin divided by 2lyδz, where ly is the system width in the
y-direction. Except at the top and bottom of the solid plate, dξz/dz
corresponds to the total downward force from both sides divided by
the sum of the surface area of both sides, e.g., the downward force per
surface area. We also calculated the average SF potential energy per
area usf as well, which was obtained by substituting the downward
force by the SF potential energy.

Figure 2 shows the distribution of time-averaged fluid density
ρ around the solid plate for the system with the solid–fluid interac-
tion parameter η = 0.15 and a snapshot of the system. The time-
averaged distributions of the downward force acting on the solid
plate dξz/dz and the SF potential energy usf are also displayed in the
right panel. Multi-layered structures in the liquid, called the adsorp-
tion layers, were formed around the solid plate and the potential wall
on the bottom, and a liquid bulk with a homogeneous density is
observed away from the potential wall, the solid plate, and the LV
interface.

The downward force dξz/dz on the solid plate in Fig. 2(c) was
positive around the top as filled with brown, was zero below the top
up to the CL, and had smoothly distributed positive values around
the CL as filled with blue. As further going downward, it became zero
again below around the CL and showed a sharp change from posi-
tive to negative values as filled with red. On the SV interface between
the plate top and the CL and on the SL interface between the CL
and the plate bottom, the time-averaged downward force was zero.
Regarding the SF potential energy, usf was constant in the region
where dξz/dz = 0. This is because the time-averaged fluid density in
these regions was homogeneous in the z-direction, e.g., ∂ρ/∂z = 0
was satisfied within the range where the intermolecular force from
the fluid on the solid particles effectively reaches, and no surface-
tangential force in the z-direction was exerted on the solid. This
point will be described more in detail in Subsection III B. Such two
regions with zero downward force were formed for all systems in
the present study, and thus, the total downward force as the inte-
gral of dξz/dz can be clearly separated into three local parts, e.g.,
ξtop
z around the top, ξcl

z around the contact line, and ξbot
z around

the bottom. As indicated in Fig. 2(c), ξtop
z and ξcl

z are positive, e.g.,
downward forces, and ξbot

z is negative, e.g., an upward force. Note
that the distributions of dξz/dz and usf around the top and bottom
had less physical meaning because they included the top and bottom
faces in the bin, and these parts for usf are not displayed in this fig-
ure. However, the local integral of dξz/dz indeed gave the physical
information about the force around the top and bottom parts. Note
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also that ξz has the same dimension as the surface tension of force
per length.

The LV interface had a uniform curvature away from the solid
plate to minimize the LV interface area as one of the principal prop-
erties of surface tension. Considering the symmetry of the system,
the hemi-cylindrical LV interface with a uniform curvature is sym-
metrical between the solid plates over the periodic boundary in the
x-direction. Regarding the SF interface position xSF, which was dif-
ferent from the wall surface position xs, we defined it at the limit
that the fluid could reach. With this definition, Young’s equation
holds for quasi-2D droplets on a smooth and flat solid surface, as
shown in our previous study.22 The xSF value was determined as
xSF = 1.15 nm from the density distribution, whereas the curvature
radius R was determined through the least-squares fitting of a circle
on the density contour of ρ = 400 kg/m3 at the LV interface exclud-
ing the region in the adsorption layers near the solid surface.19,22,23

We defined the apparent contact angle θ by the angle at x = xSF
between the SF interface and the least-squares fit of the LV inter-
face having a curvature χ ≡ ±1/R, with R being the curvature radius.
Note that the sign± corresponds to the downward or upward convex
LV-interfaces, respectively. The relation between the SF interaction
coefficient η and the cosine of the contact angle cos θ is shown in
Appendix B, and the following results are shown based on cos θ
instead of η.

Figure 3 shows the above-defined local downward forces ξtop
z ,

ξcl
z , and ξbot

z and their sum ξtotal
z ≡ ξtop

z + ξcl
z + ξbot

z on the cosine

FIG. 3. MD results of the local downward forces exerted around the top, the contact
line, and the bottom of the solid plate and their sum as a function of the cosine of
the contact angle. The corresponding half-snapshots and density distributions for
three cases are also displayed on the top.

of the contact angle cos θ obtained by MD simulations. The cor-
responding half-snapshots and density distributions are also dis-
played on the top. Regarding the force around the top ξtop

z , it was
almost zero except for cases with a small contact angle. This is obvi-
ous because almost no vapor particles were adsorbed on the top of
the solid plate for non-wetting cases as seen in the top panel for
η = 0.03. However, in the case of large cos θ, ξtop

z had a non-negligible
positive value, e.g., downward force comparable to ξtotal

z , because an
adsorption layer was also formed at the SV interface as seen in the
top panel for η = 0.15. In terms of the force around the contact line
ξcl
z , it was positive even with a negative cos θ value, meaning that the

solid particle around the CL was always subject to a downward force
from the fluid. On the contrary to ξtop

z and ξcl
z , which were both posi-

tive, ξbot
z was negative and its magnitude increased as cos θ increased,

meaning that the upward force to expel the bottom side was exerted
from the liquid and that the upward force was larger for the larger
SL interaction η. Finally, the sum of the above three ξtotal

z seems to
be proportional to cos θ. We will show later that it actually deviates
from a simple Wilhelmy relation (3).

B. Analytical expressions of the forces
on the solid
1. Definition of the solid–fluid forces

In order to elucidate the origin of the forces exerted on the solid,
we examined the details of the forces ξtop

z , ξcl
z , and ξbot

z from the fluid
as well as the force balance on the control volumes (CVs) surround-
ing the fluid around the solid plate with taking the stress distribution
in the fluid into account as in our previous study.22,23 We supposed
three CVs surrounding the fluid around the solid plate, as shown
with dotted lines in Fig. 4: a CV on the top in dark-yellow dotted
line, one around the CL in blue dotted line, and one on the bottom
in red dotted line. All the CVs have their right face at the bound-
ary of the system in the x-direction at x = xend at which symmetry
of the physical values is satisfied, and the faces in contact with the
solid are set at the limit that the fluid could reach. The remaining
left sides of the top and bottom CVs are set in the center of the sys-
tem where the symmetry condition is satisfied. The z-normal faces
are set, respectively, at z = zblk

V , zSV, zSL, and zblk
L , where zblk

V and
zblk

L are at the vapor and liquid bulk heights, whereas zSV and zSL are
set at the heights of SV and SL interfaces, respectively, as shown in
Fig. 3, at which dξz/dz = 0 is satisfied. These heights can be set rather
arbitrary as long as the above conditions are satisfied. We define the
forces from the solid to liquid by Ftop

z , Fcl
z , and Fbot

z on the top, mid-
dle, and bottom CVs, respectively. In addition, we also categorize
the right-half of the solid plate into top, middle, and bottom parts
shown with dark-yellow, blue, and red solid lines, respectively, with
zSV and zSL as the boundaries, as shown in Fig. 4, where forces ξtop

z ,
ξcl
z , and ξbot

z in the z-direction are exerted from the fluid, respectively.
Specifically note that ξcl

z ≠ Fcl
z , ξbot

z ≠ Fbot
z , and ξtop

z ≠ Ftop
z because, for

instance, Fcl
z also includes the forces from the top and bottom parts

of the solid, whereas ξcl
z includes the forces from the top and bottom

CVs. In other words, the force between the middle solid part and
the middle fluid CV is in an action–reaction relation, but Fcl

z and ξcl
z

include different extra forces above. This will be described more in
detail in the following.
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FIG. 4. Top, contact line (middle), and bottom parts of the solid plate subject to
downward forces ξtop

z , ξcl
z , and ξbot

z from the fluid, respectively, and the control vol-
umes (CVs) surrounding the fluid particles in contact with these solid parts subject
to upward forces Ftop

z , Fcl
z , and Fbot

z from the solid.

2. Capillary force ξclz around the contact line
We start from the comparison between MD results and ana-

lytical expression of the wall tangential force on the solid particles
ξcl
z on the right face of the solid plate. The full derivation is pro-

vided in Appendix A, and only the summary and final result of the
derivation are described in the following. The mean number density
per volume ρf

V(zf, xf) (= ρ/mf) of the fluid is given as a function of
the two-dimensional position (zf, xf) of the fluid, whereas a constant
mean number density per area ρs

A of the solid is used considering the
present system with a solid plate of zero-thickness without volume.
Assuming that the fluid particles are homogeneously distributed in
the y-direction with a number density ρf

V(zf, xf) per volume, the
mean potential field from an infinitesimal volume segment of dzf

× dxf to a solid particle at (xs, ys, zs) is defined by using ρf
V(zf, xf),

and the mean local potential ϕ(z′f, x′f) as

ρf
V(zf, xf)dzfdxf ⋅ ϕ(z′f, x′f),

where ϕ(z′f, x′f) is given by

ϕ(z′f, x′f) ≡ ∫
∞

−∞

ΦLJ(r)dy′f. (9)

By using the relative position (x′f, y′f, z
′

f) and distance r,

(x′f, y′f, z
′

f) ≡ (xf − xs, yf − ys, zf − zs), r ≡ ∣(x′f, y′f, z
′

f)∣, (10)

where σ = σsf and ϵ = ϵsf are used for the solid–fluid interaction
ΦLJ(r) in Eq. (5). Using this mean local potential, the tangential force
density f s

z (zs, zf, xf) exerted on the solid at zs from the fluid at (zf, xf)
is given by

f s
z (zs, zf, xf) = −ρs

Aρ
f
V(zf, xf)

∂ϕ(z′f, x′f)
∂zs

(11)

as a function of the solid area density ρs
A, the fluid volume den-

sity ρf
V(zf, xf), and the relative position (z′f, x′f). This schematic is

shown in the inset of Fig. 8.
In addition, since ΦLJ(r) is truncated at the cutoff distance rc in

the present case,

ϕ(z′f, x′f) = 0,
∂ϕ(z′f, x′f)

∂zs
= 0 (12)

for

∣z′f∣ ≥
√

r2
c − x′2f ≡ zc(x′f) or x′f ≥ rc

holds, where zc(x′f) as a function of x′f denotes the cutoff with
respect to z′f. Hence, the analytical expression of the local tangen-
tial force f s

z (z′f, x′f)dzfdxfdzs exerted on an infinitesimal solid area-
segment of dzs can be derived by calculating the double integral of
f s
z (zs, zf, xf)with respect to zf and xf (equivalently, z′f and x′f) within

a finite cutoff range.
Regarding the fluid density ρf

V(zf, xf) in Eq. (11), it decreases
with the increase in zf within a certain range around the CL, as
shown in Fig. 2, and outside this range, ρf

V is given as a unique
function of xf by

ρf
V(zf, xf) =

⎧⎪⎪⎨⎪⎪⎩

ρf(SL)
V (xf) (zSL − zc < zf < zSL + zc),
ρf(SV)
V (xf) (zSV − zc < zf < zSV + zc),

(13)

which is satisfied around a height at zSL both away from the CL and
top of the plate or around a height at zSV both away from the CL
and bottom of the plate. Thus, the capillary force −ξcl

z is obtained by
integrating the force density f s

z (zs, zf, xf) in Eq. (11) for zs between
zSV and zSL as well as integrating z′f and x′f within the cutoff ranges
mentioned in Eq. (12). As shown in Appendix A, this results in

ξcl
z = Fcl

z − uSL + uSV, (14)

which is expressed by the force Fcl
z on the fluid from the solid around

the CL as well as the SL and SV potential energy densities uSL and
uSV, e.g., potential energy per SL- and SV-interfacial areas at zSL and
zSV, respectively, given by

uSL ≡ ρs
A ∫

rc

0
(ρf(SL)

V (x′f)∫
zc(x′ f)

−zc(x′ f)
ϕ(z′f, x′f)dz′f)dx′f, (15)
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and

uSV ≡ ρs
A ∫

rc

0
(ρf(SV)

V (x′f)∫
zc(x′ f)

−zc(x′ f)
ϕ(z′f, x′f)dz′f)dx′f. (16)

By further using Fcl
z = 0 (see Appendix A for details),

ξcl
z = −uSL + uSV = (−uSL) − (−uSV) (17)

is obtained as the analytical expression of ξcl
z , where the final equality

is appended considering that the potential energy densities uSL and
uSV are both negative.

Figure 5 shows the dependence of the SL and SV potential
energy densities uSL and uSV, respectively, as the potential energies
per interfacial area, on the cosine of the contact angle cos θ and com-
parison between the force on the solid around the CL ξcl

z and the
difference of potential energy density −uSL + uSV. Very good agree-
ment between ξcl

z and −uSL + uSV is observed within the whole range
of the contact angle, and this indicates that Eq. (17) is applicable for
the present system with a flat and smooth surface. It is also quali-
tatively apparent from Eq. (17) that ξcl

z is positive regardless of the
contact angle because the SF potential energy is smaller at the SL
interface than at the SV interface. It is also interesting to note that for
the very wettable case with large cos θ, e.g., large wettability param-
eter η, ξcl

z decreased with the increase in cos θ. This can be explained
as follows: the changes in −uSV and −uSL are both due to the change
in η and the fluid density especially in the first adsorption layer,
while the density change in the SL adsorption layer due to η is rather
small. Thus, for a higher η value, the effect of density increase in the
SV adsorption layer on −uSV upon the increase in η overcomes the
increase in −uSL.

FIG. 5. Dependence of the SL and SV potential energy densities uSL and uSV as
the potential energies per interfacial area on the cosine of the contact angle cos θ
and the comparison between the force on the solid around the CL ξcl

z and the
difference of potential energy density −uSL + uSV.

3. Total force ξtotalz and local forces ξbotz and ξtopz
on the bottom and the top

Before proceeding to the analytical expression of ξbot
z and ξtop

z ,
we derive their relations with Fbot

z and Ftop
z . Through the compari-

son between the regions of double integration for ξbot
z and Fbot

z with
respect to zf and zs in Fig. 8, e.g., the red-filled region and one sur-
rounded by a red-solid line, it is clear that the difference between ξbot

z

and Fbot
z corresponds to the integral of hatched regions around zSL

in the bottom-left. Thus, it follows that

ξbot
z = Fbot

z + uSL (18)

and
ξtop
z = Ftop

z − uSV. (19)

Note that the sum of Eqs. (17)–(19) satisfies

ξtotal
z = Ftop

z + Fcl
z + Fbot

z . (20)

Considering that feature, we examine the total force ξtotal
z and local

ones ξbot
z and ξtop

z on the bottom and the top. We consider the dis-
tribution of the two-dimensional fluid stress tensor τ averaged in
the y-direction by the method of plane (MoP)49,50 based on the
expression by Irving and Kirkwood51 (IK), with which an exact force
balance is satisfied for an arbitrary control volume bounded by a
closed surface. The stress tensor component ταβ(x, z) denotes the
stress in the β-direction exerted on an infinitesimal surface element
with an outward normal in the α-direction at position (x, z). In
the formulation of the MoP based on the IK-expression, ταβ(x, z)
consists of the time-average of the kinetic and inter-molecular inter-
action contributions due to the molecular motion passing through
the surface element and the intermolecular force crossing the surface
element, respectively. For a single mono-atomic fluid component
whose constituent particles interact through a pair potential as in
the present study, all force line segments between two fluid parti-
cles, which cross the surface element, are included in the second.
Note that technically for the MoP, the SF interaction can also be
included in the inter-molecular force contribution, but only the FF
interaction as the internal force is taken into account as the stress,
and the SF contribution is considered as an external force in this
study.11,22,23,52,53 With this definition, the stress is zero at the SF
boundary for all CVs because no fluid particle exists beyond the
boundary to contribute to the stress component as the kinetic nor
at inter-molecular interaction contribution. Hence, the force bal-
ance on each CV containing only fluid is satisfied with the sum of
the stress surface integral and external force from the solid. The
force balance on the red-dotted CV in Fig. 4 in the z-direction is
expressed by

− ∫
xend

0
τzz(x, zblk

L )dx + ∫
xend

xSF

τzz(x, zSL)dx + Fbot
z = 0, (21)

with the stress contributions from the bottom and top and external
force in the RHS, respectively, by taking into account that τxz = 0 on
the x-normal faces at x = 0 and x = xend due to the symmetry and also
that the stress at the SF interface is zero. Similarly, the force balance
on the blue-dotted CV and dark-yellow-dotted CV in Fig. 4 in the
z-direction is expressed by
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− ∫
xend

xSF

τzz(x, zSL)dx + ∫
xend

xSF

τzz(x, zSV)dx + Fcl
z = 0 (22)

and

− ∫
xend

xSF

τzz(x, zSV)dx + ∫
xend

0
τzz(x, zblk

V )dx + Ftop
z = 0, (23)

respectively.
By taking the sum of Eqs. (21)–(23) and inserting Eq. (20), it

follows for ξtotal
z that

ξtotal
z = ∫

xend

0
τzz(x, zblk

L )dx − ∫
xend

0
τzz(x, zblk

V )dx. (24)

Since the bottom face of the red-dotted CV and top face of the dark-
yellow-dotted CV in Fig. 4 are, respectively, set in the liquid and
vapor bulk regions under an isotropic static pressure pblk

L and pblk
V

given by

pblk
L = −τxx(x, zblk

L ) = −τzz(x, zblk
L ) (25)

and

pblk
V = −τxx(x, zblk

V ) = −τzz(x, zblk
V ), (26)

the first and second terms in the RHS of Eq. (24) can be written as

∫
xend

0
τzz(x, zblk

L )dx = −∫
xend

0
pblk

L dx = −pblk
L xend (27)

and

∫
xend

0
τzz(x, zblk

V )dx = −∫
xend

0
pblk

V dx = −pblk
V xend. (28)

Thus, Eq. (24) results in a simple analytical expression of

ξtotal
z = (pblk

V − pblk
L )xend. (29)

Furthermore, by applying the geometric relation,

sin(θ − π
2
) = cos θ = χ(xend − xSF), (30)

with χ being the LV interface curvature and the Young–Laplace
equation for the pressure difference in Eq. (29),

pblk
V − pblk

L = γLVχ =
γLV cos θ
xend − xSF

, (31)

which hold irrespective of whether the LV-interface is convex down-
ward or upward, it follows for Eq. (29) as another analytical expres-
sion of ξtotal

z that

ξtotal
z = xend

xend − xSF
γLV cos θ, (32)

which includes the correction to Eq. (3) considering the effect of the
Laplace pressure due to the finite system configuration with the peri-
odic boundary condition. Note also that from Eq. (32), by giving xend

and xSF, it is possible to estimate γLV from the relation between ξtotal
z

and cos θ.

Figure 6 shows the comparison of the total downward force
ξtotal
z on the solid plate directly obtained from MD with the analyt-

ical expression (pblk
V − pblk

L )xend in Eq. (29) using the pressures pblk
L

and pblk
V measured on the bottom and top boundaries as the force

exerted from the fluid on the potential walls per area. Clearly, ξtotal
z

and (pblk
V − pblk

L )xend agree very well, and this is because Eq. (29)
is simply the force balance to be satisfied for equilibrium systems.
Regarding the pressure, pblk

V is almost constant, which corresponds
to the saturated vapor pressure at this temperature. In addition, a
linear relation between pblk

L − pblk
V and cos θ can be observed, and

this indicates that the Young–Laplace equation (31) is applicable in
the present scale. We evaluated γLV from this relation with the least-
squares fitting, and the resulting value was γLV = 9.79 ± 0.23 × 10−3

N/m with xSF = 1.15 nm and xend = 7.5 nm, which was indeed close to
the value obtained by a standard mechanical process.18 The standard
Wilhelmy equation (3) using this value is also shown in Fig. 6, indi-
cating that γLV would be overestimated with this standard Wilhelmy
equation (3) in a small measurement system such as the present one.

Finally, we derive the analytical expression of the local forces
ξbot
z and ξtop

z . For the derivation of ξbot
z , we apply the extended

Bakker’s equation for the SL relative interfacial tension,22,23

γSL − γS0 = ∫
xend

xSF

[τzz(x, zSL) − τblk
L ]dx, (33)

for the second term in the LHS of Eq. (21), where γSL − γS0 is the
SL interfacial tension relative to the interfacial tension between the
solid and the fluid with only repulsive interaction (denoted by “0” to
express the solid surface without adsorbed fluid particles). Then, it
follows that

∫
xend

xSF

τzz(x, zSL)dx = γSL − γS0 − (xend − xSF)pblk
L . (34)

FIG. 6. Comparison of the total downward force ξtotal
z on the solid plate directly

obtained from MD with the analytical expression (pblk
V − pblk

L )xend in Eq. (29)
using the pressures pblk

L and pblk
V measured on the bottom and top boundaries.

The Wilhelmy equation (3) using γLV = 9.79 × 10−3 N/m evaluated by the Young–
Laplace equation (31) is also shown.
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By inserting Eqs. (18), (27), and (34) into Eq. (21), the analytical
expression of ξbot

z can be written as

ξbot
z = −pblk

L xend − [γSL − γS0 − (xend − xSF)pblk
L ] + uSL

= −xSFpblk
L − (γSL − γS0) + uSL. (35)

Similarly, by applying the extended Bakker’s equation for the SV
interfacial tension,22,23

γSV − γS0 = ∫
xend

xSF

[τzz(x, zSV) − τblk
V ]dx, (36)

to Eq. (23) with Eq. (19), the analytical expression of ξtop
z can be

written as

ξtop
z = xSFpblk

V + (γSV − γS0) − uSV. (37)

To verify Eqs. (35) and (37), we compared the present results
with ξbot

z and ξtop
z calculated using the corresponding SL and SV

works of adhesion WSL and WSV obtained by the thermodynam-
ics integration (TI) with the dry-surface scheme.22,29 The calcula-
tion detail is shown in Appendix C. By definition, the SL and SV
interfacial tensions γSL and γSV are related to WSL and WSV by

WSL ≡ γS0 + γL0 − γSL ≈ γS0 + γLV − γSL (38)

and

WSV ≡ γS0 + γV0 − γSV ≈ γS0 − γSV, (39)

respectively, where the approximation γL0 ≈ γLV for the interfacial
tension γL0 between liquid and vacuum is used in Eq. (38), and γV0
is set zero in the final approximation in Eq. (39). Note that γL0 or γLV

FIG. 7. Comparison of the downward forces ξbot
z and ξtop

z on the bottom and top
of the solid plate directly obtained from MD with those evaluated using the works
of adhesion WSL and WSV calculated by the thermodynamic integration (TI) using
the dry-surface scheme shown in Appendix C. The error bar for ξbot

z using WSL in
blue comes from the evaluation of γLV from pblk

L and pblk
V in Fig. 6.

is included in WSL. From Eqs. (38) and (35) and from Eqs. (39) and
(37), ξbot

z and ξtop
z are, respectively, rewritten as

ξbot
z ≈WSL − pblk

L xSF − γLV + uSL (40)

and

ξtop
z ≈ xSFpblk

V −WSV − uSV. (41)

Figure 7 shows the comparison of ξbot
z and ξtop

z directly obtained
from MD with those evaluated by Eqs. (40) and (41) using the SL and
SV works of adhesion WSL and WSV, respectively, obtained by the
TI with the DS scheme shown in Appendix C. Note that except WSL

and WSV, we used the values of pblk
L , pblk

V , xend, uSL, and uSV directly
obtained from the present Wilhelmy MD simulations as well as the
γLV value evaluated in Fig. 6. The error bars for ξbot

z using WSL in
blue mainly came from the error upon evaluating γLV. Note also that
the TI calculation in Appendix C for WSL was carried out under a
control pressure of 1 MPa, whereas that for WSV was considered to
be under the saturated vapor pressure at the present temperature.
For both ξbot

z and ξtop
z , the Wilhelmy MD and TI results agreed well,

and this indicates the validity of the present analytical expression.

C. Discussion
1. Further application of the present method

We list the key issues for the further application of the present
expression in the following. First, Eqs. (21)–(23) are about the force
balance and should be satisfied in equilibrium systems without any
restrictions. In addition, Eqs. (14), (18), and (19) are about the rela-
tion between the solid–fluid and fluid–solid forces and should hold
as long as the solid plate can be decomposed into the three parts
without the interface overlapping. At both the SL and SV interfaces,
which are between the CL and the plate bottom and between the
CL and the plate top, respectively, a quasi-one-dimensional density
distribution with ∂ρ/∂z = 0 can be assumed, and one can apply the
mean-field approach described in Sec. III B 2. Furthermore, Eqs. (33)
and (36) are extended Bakker’s equations22 for the SL and SV interfa-
cial tensions. Hence, our analytical expressions with these equations
are constructed by a purely mechanical approach and are exact, as
observed in the comparison in Figs. 5 and 6.

Another issue is about the relation between Young’s equation
(1) and the Wilhelmy equation (29) formulated with the Laplace
pressure. Indeed, Eq. (29) holds irrespective of whether the CL is
pinned or not because this relation means a simple equilibrium force
balance. In the present case, Fcl

z = 0 is satisfied because the solid sur-
face is flat and smooth, and Young’s equation holds. This can easily
be proved considering the force balance in Eq. (22) about the mid-
dle CV. In cases with Fcl

z ≠ 0 because of the pinning force exerted
on the fluid from the solid around the CL, e.g., due to the boundary
of wettability parallel to the CL in our previous research,23 Young’s
equation should be rewritten including the pinning force. Even if
such wettability boundary would be included in the present sys-
tem, Eq. (29) would still be satisfied. In practice, such pinning force
denoted by ζpin in Ref. 23 as the downward force from the solid on
the fluid around the CL corresponds to −Fcl

z here, and this can be
extracted by Eq. (14) as

− ζpin = Fcl
z = ξcl

z + uSL − uSV. (42)
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Considering the above discussion, we summarize the proce-
dure to extract the wetting properties. In a single Wilhelmy MD
simulation, we can calculate

1. forces ξtop
z , ξcl

z , and ξbot
z on three parts of the solid from

the force–density distribution dξz/dz in the surface-tangential
direction,

2. SF potential energy densities uSL and uSV on the solid per area
at SL and SV interfaces, respectively, from the distribution of
the potential energy density usf,

3. bulk pressures pblk
V and pblk

L measured on the top and bottom of
the system, and

4. contact angle θ from the density distribution.

From these quantities, the following physical properties can be
obtained:

a. SL relative interfacial tension γSL − γS0 from ξbot
z , uSL, xSF, and

pblk
L using Eq. (35),

b. SV relative interfacial tension γSV − γS0 from ξtop
z , uSV, xSF, and

pblk
V using Eq. (37),

c. LV interfacial tension γLV from pblk
V , pblk

L , xSF, the system size
xend, and the contact angle θ using Eq. (31), and

d. pinning force Fcl
z from Eq. (14) to be added to Young’s equa-

tion, which is zero in the case of the flat and smooth solid
surface.

Related to the above procedure, it should also be noted that,
surprisingly, the microscopic structure of the bottom face does not
have a direct effect on the force ξbot

z . This is similar to buoyancy
given by the third term of the RHS of Eq. (2), which depends on the
volume V immersed in the liquid and is not directly related to the
microscopic structure. Note that in the system with the most wet-
table plate with η = 0.15 shown in Fig. 4, the liquid layering seemed
to extend between the bottom of the simulation cell and the bottom
of the Wilhelmy plate. Indeed, we have checked that an isotropic
bulk pressure pblk

L was still achieved at zblk
L at the bottom of the red

control volume in Fig. 4 because the layering was not intense. As a
possible alternative, one could locate less wettable solid particles only
at the bottom of the plate to reduce the liquid layering because the
properties of the bottom plate do not affect the surface tension cal-
culations. In that sense, a simple potential field to simply cover the
bottom of the solid plate to prevent the fluid molecules from pen-
etrating into the space in the solid plate would be another simple
alternative.

The extension of the method to more realistic systems, in par-
ticular, with electrostatic interactions, is one of the important tar-
gets in the future. Even with the electrostatic interaction between
the solid and fluid molecules, the present method can be applied.
When the interest is strictly in the wetting on a single side of
the solid plate, one should locate the two solid surfaces suffi-
ciently apart from each other to avoid the electrostatic interac-
tions across the other surface. One does not have to completely
fill the space in the solid plate with real constituent solid atoms,
e.g., with a crystal structure, which would increase the computa-
tional load. Rather, simply covering the top and bottom of the
plate to prevent the penetration of the fluid molecules is enough
as mentioned above. With that setting, the capillary behavior of

polar molecules such as water on polar solid surfaces could be
investigated.

2. Comparison with an existing model regarding
the contact line force

Finally, we compare the present analytical expression of the
contact line force ξcl

z with a model proposed by Das et al.,42 which
states

ξcl
z = γSV − γSL + γLV = γLV(1 + cos θ). (43)

This model is derived based on the assumption that the densities of
the liquid and vapor are constant at bulk values even in the region
close to the solid interface: the so-called sharp-kink approximation.
This is similar to the interface of two different solids whose densities
and structures do not change upon contact. Even under this assump-
tion, the force ξcl

z on the solid around the CL is expressed by Eq. (17)
as the difference between the SL and SV potential energy densities
uSL and uSV as well.42 The difference arises for the works of adhe-
sion. Under the sharp-kink approximation, it is clear that the works
of adhesion required to quasi-statically strip the liquid and vapor off
the solid surface are equal to the difference of solid–fluid potential
energies after and before the procedure, e.g.,

WSL = 0 − uSL = −uSL, WSV = 0 − uSV = −uSV

(under the sharp-kink approx.),
(44)

because the solid and fluid structures do not change upon this
procedure. Then, it follows for Eq. (17) that

ξcl
z =WSL −WSV (under the sharp-kink approx.), (45)

which indeed results in Eq. (43) with Eqs. (38) and (39). However,
the density around the solid surface is not constant, as shown in the
density distribution in Fig. 2, and the difference of WSL and WSV is
not directly related to the SL and SV potential energy densities uSL
and uSV as in Eq. (44). In other words, the fluid can freely deform
and can have inhomogeneous density in a field formed by the solid
at the interface to minimize its free energy at equilibrium, and this
includes the entropy effect in addition to uSL and uSV as parts of the
internal energies.34

IV. CONCLUSION
We have given theoretical expressions for the forces exerted on

a Wilhelmy plate, which we modeled as a quasi-2D flat and smooth
solid plate immersed in a liquid pool of a simple liquid. By a purely
mechanical approach, we have derived the expressions for the local
forces on the top, the contact line (CL), and the bottom of the plate
as well as the total force on the plate. All forces given by the theory
showed an excellent agreement with the MD simulation results.

In particular, we have shown that the local force on the CL is
written as the difference of the potential energy densities between
the SL and SV interfaces away from the CL but not generally as
the difference between the SL and SV works of adhesion. On the
other hand, we have revealed that the local forces on the top and
bottom of the plate can be related to the SV and SL works of adhe-
sion, respectively. As the summation of these local forces, we have
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obtained the modified form of the Wilhelmy equation, which was
consistent with the overall force balance on the system. The modi-
fied Wilhelmy equation includes the cofactor taking into account the
plate thickness, whose effect can be significant in small systems such
as the present one.

Finally, we have shown that with these expressions of the forces,
all the interfacial tensions γSL and γSV as well as γLV can be extracted
from a single equilibrium MD simulation without the computation-
ally demanding calculation of the local stress distributions and the
thermodynamic integrations.
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APPENDIX A: FULL DERIVATION OF THE CAPILLARY
FORCE ξclz AROUND THE CONTACT LINE BASED
ON A MEAN-FIELD APPROACH

We show the full derivation of the wall tangential force on the
solid particles ξcl

z on the right face of the solid plate. In the present
systems, the solid surface is smooth for the fluid particles because
the interparticle distance parameters σff and σsf are sufficiently large
compared to rss between solid particles. Therefore, ξcl

z can be well
modeled by the mean fields of the fluid and solid. The mean number
density per volume ρf

V(zf, xf) (= ρ/mf) of the fluid is given as a func-
tion of the two-dimensional position (zf, xf) of the fluid, whereas a
constant mean number density per area ρs

A of the solid is used con-
sidering the present system with a solid plate of zero-thickness with-
out volume; however, the following derivation can easily be extended
for a system with a solid with a volume and density per volume in the
range x ≤ xs as long as the density is independent of zs. We start from
the potential energy on a solid particle at position (xs, ys, zs) due to a
fluid particle at (xf, yf, zf) given by Eq. (5). We define

x′f = −x′s ≡ xf −xs, y′f = −y
′

s ≡ yf − ys, z′f = −z′s ≡ zf − zs (A1)

in the following. Assuming that the fluid particles are homo-
geneously distributed in the y-direction with a number density
ρf
V(zf, xf) per volume, the mean potential field from an infinitesimal

volume segment of dzf × dxf on the solid particle is defined by using
ρf
V(zf, xf) and the mean local potential ϕ(z′f, x′f) as ρf

V(zf, xf)dzfdxf ⋅
ϕ(z′f, x′f), where ϕ(z′f, x′f) is given by

ϕ(z′f, x′f) ≡ ∫
∞

−∞

ΦLJ(r)dy′f, (A2)

with

r =
√

x′2f + y′2f + z′2f , σ = σsf, ϵ = ϵsf. (A3)

This schematic is shown in the inset of Fig. 8. Then, the local tan-
gential force f s

z (z′f, x′f)dzfdxfdzs exerted on an infinitesimal solid

FIG. 8. Region for the double integral of the mean field regarding the interaction
between the solid plate and the fluid at heights zs and zf, respectively. The geo-
metrical relation is shown in the inset. Three height ranges of “top,” “cl,” and “bot”
corresponding to those in Fig. 4 are depicted in color. Cutoff distance zc for |zf −
zs| is set depending on the lateral position xf − xs, and the solid–liquid interactions
between height ranges are categorized as filled regions or as ones surrounded by
solid lines.

area-segment of dzs from the present fluid volume-segment is given
by

f s
z (zs, zf, xf)dzfdxfdzs = −

∂

∂zs
[ρf

V(zf, xf)ϕ(z′f, x′f)]dzfdxf ⋅ ρs
Adzs

= −ρs
Aρ

f
V(zf, xf)

∂ϕ(z′f, x′f)
∂zs

dzfdxfdzs, (A4)

where

f s
z (zs, zf, xf) = −ρs

Aρ
f
V(zf, xf)

∂ϕ(z′f, x′f)
∂zs

(A5)

denotes the tangential force density on the solid. Note that dxf and
dx′f are identical because xs is a constant.

Since ΦLJ(r) is truncated at the cutoff distance rc in the present
case,

ϕ(z′f, x′f) = 0,
∂ϕ(z′f, x′f)

∂zs
= 0 (A6)

for

∣z′f∣ ≥
√

r2
c − x′2f ≡ zc(x′f) or x′f ≥ rc

holds, where zc(x′f) as a function of x′f denotes the cutoff with
respect to z′f. Indeed, this cutoff is not critical as long as ϕ(z′f, x′f)
quickly vanishes with the increase in r, but we continue the
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derivation including the cutoff for simplicity. With the definition of
xSF as the limit that the fluid could reach, it follows that

ρf
V = 0 for xf < xSF. (A7)

In addition, considering that ϕ(z′f, x′f) is an even function with
respect to z′f, e.g.,

ϕ(z′f, x′f) = ϕ(−z′f, x′f), (A8)

it follows for the mean local potential ϕ that

∂ϕ(z′f, x′f)
∂zs

= −∂ϕ(−z
′

f, x′f)
∂zs

, (A9)

and

∂ϕ(z′f, x′f)
∂zs

= −∂ϕ(z
′

f, x′f)
∂zf

, (A10)

where Eq. (A1) is applied for the latter, which corresponds to the
action–reaction relation between the solid and fluid particles under
a simple two-body interaction, e.g.,

f f
z(zs, zf, xf) = −f s

z (zs, zf, xf) = −ρs
Aρ

f
V(zf, xf)

∂ϕ(z′f, x′f)
∂zf

(A11)

holds for the tangential force density on the fluid f f
z .

Based on these properties, we now derive the analytical expres-
sion of ξcl

z as the triple integral of the local tangential force f s
z in

Eq. (A4) around the CL, where the fluid density ρf
V decreases with

the increase in zf within a certain range. Let this range be zSL + zc
≤ zf ≤ zSV − zc satisfying

∂ρf
V

∂zf
< 0 (zSL + zc ≤ zf ≤ zSV − zc), (A12)

and let ρf
V outside this range be given as a unique function of xf by

ρf
V(zf, xf) =

⎧⎪⎪⎨⎪⎪⎩

ρf(SL)
V (xf) (zSL − zc < zf < zSL + zc),
ρf(SV)
V (xf) (zSV − zc < zf < zSV + zc),

(A13)

as shown in Fig. 8. Then, ξcl
z is expressed by

ξcl
z ≡ −∫

xs+rc

xSF

[∫
zSV

zSL

(∫
zc

−zc

f s
z (zs, z′f, xf)dz′f)dzs]dxf (A14)

as the triple integral of the force density f s
z in Eq. (A5), where

the integration range of the double integral regarding zf and zs
corresponds to the region filled with blue in Fig. 8.

To obtain the double integral as the square brackets in
Eq. (A14) for the blue-filled region in Fig. 8, we calculate at first that
in the region surrounded by the blue-solid line, add those in the ver-
tically hatched regions and subtract those in the horizontally hatched
regions. Note that ρf

V(zf, xf) = ρf(SL)
V (xf) and ρf

V(zf, xf) = ρf(SV)
V (xf)

are assumed for the hatched regions in the bottom-left and in the

top-right regions, respectively, based on Eq. (A13). The double
integral for the region surrounded by the blue-solid line is

∫
zSV

zSL

(∫
zc

−zc

f s
z dz′s)dzf

= −ρs
A ∫

zSV

zSL

ρf
V(zf, xf)(∫

zc

−zc

∂ϕ(z′f, x′f)
∂zs

dz′s)dzf

= 0, (A15)

by using Eq. (A8). Indeed, from Eq. (A11), the reaction force −Fcl
z

from the solid on the fluid around the CL in the blue-dotted line
in Fig. 4 is obtained by further integrating Eq. (A15) with respect
to xf, e.g.,

∫
xs+rc

xSF

[∫
zSV

zSL

(∫
zc

−zc

f s
z dz′s)dzf]dxf

= −∫
xs+rc

xSF

[∫
zSV

zSL

(∫
zc

−zc

f f
zdz′s)dzf]dxf

= −Fcl
z

= 0. (A16)

The final equality means that no tangential force acts on the fluid
there as mentioned in our previous study.22

Regarding the bottom-left vertically hatched region in Fig. 8,
the double integral is

∫
0

−zc

(∫
zc

−z′ f
f s
z dz′s)dz′f

= −ρs
Aρ

f(SL)
V (xf)∫

0

−zc

(∫
zc

−z′ f

∂ϕ(z′f, x′f)
∂zs

dz′s)dz′f

= ρs
Aρ

f(SL)
V (xf)∫

0

−zc

ϕ(z′f, x′f)dz′f, (A17)

where ϕ(zc, x′f) = 0 and Eq. (A9) is used for the second equality.
This region physically corresponds to the interaction between the
blue solid part and the fluid in the red-dotted part in Fig. 4. For the
bottom-left horizontally hatched region in Fig. 8, it follows that

∫
zc

0
(∫

−z′ f

−zc

f s
z dz′s)dzf

= −ρs
Aρ

f(SL)
V (xf)∫

zc

0
(∫

−z′ f

−zc

∂ϕ(z′f, x′f)
∂zs

dz′s)dz′f

= −ρs
Aρ

f(SL)
V (xf)∫

zc

0
ϕ(z′f, x′f)dz′f. (A18)

This region corresponds to the interaction between the red solid
part and the fluid in the blue-dotted part in Fig. 4. Hence, the net
force due to the double integral in the bottom-left hatched regions in
Eqs. (A17) and (A18) with also integrating in the xf-direction, which
we define by uSL, results in

uSL ≡ ρs
A ∫

rc

0
(ρf(SL)

V (x′f)∫
zc(x′ f)

−zc(x′ f)
ϕ(z′f, x′f)dz′f)dx′f. (A19)

As a physical meaning, uSL represents the SL potential energy den-
sity, e.g., potential energy per SL-interfacial area at the SL interface
away from the CL and the bottom of the solid plate.
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Regarding the top-right hatched regions, the net force results in
−uSV with the SV potential energy density area given by

uSV ≡ ρs
A ∫

rc

0
(ρf(SV)

V (x′f)∫
zc(x′ f)

−zc(x′ f)
ϕ(z′f, x′f)dz′f)dx′f, (A20)

which can be derived in a similar manner. Thus, it follows for the
force −ξcl

z from the fluid on the solid around the CL that

− ξcl
z = −Fcl

z + uSL − uSV, ξcl
z = Fcl

z − uSL + uSV. (A21)

Therefore, by using Fcl
z = 0 in Eq. (A16),

ξcl
z = −uSL + uSV = (−uSL) − (−uSV) (A22)

is derived as the analytical expression of ξcl
z , where the final expres-

sion is appended considering that the potential energy densities uSL
and uSV are both negative.

APPENDIX B: RELATION BETWEEN THE SL
INTERACTION PARAMETER AND THE CONTACT
ANGLE

In the main text, we summarized the results by cos θ as the
cosine of the apparent contact angle θ of the meniscus, while the
SF interaction coefficient η was varied as the parameter for the MD
simulations. As described in the main text, we defined θ by the angle
between the SF interface at x = xSF = 1.15 nm and the extended
cylindrical curved surface of the LV interface having a constant cur-
vature determined through the least-squares fitting of a circle on
the density contour of ρ = 400 kg/m3 at the LV interface excluding
the region in the adsorption layers near the solid surface. Figure 9
shows the relation between the SL interaction parameter η and the
apparent contact angle θ. The contact angle cosine cos θ monoton-
ically increased with the increase in η, and a unique relation can be
obtained between the two for the present range of η.

FIG. 9. Relation between the cosine of the apparent contact angle cos θ of the
meniscus and the SF interaction coefficient η.

APPENDIX C: THERMODYNAMIC INTEGRATION (TI)
WITH THE DRY-SURFACE SCHEME

We calculated the solid–liquid (SL) and solid–vapor (SV) works
of adhesion WSL and WSV, respectively, by the thermodynamic inte-
gration (TI)54 through the dry-surface (DS) scheme29 to compare
with the relative SL and SV interfacial tensions obtained in the
present Wilhelmy MD systems. Details of the DS scheme were basi-
cally the same as in our previous study.22 In the systems shown in
Fig. 10, the liquid or vapor was quasi-statically stripped off from the
solid surface fixed on the bottom of the coordinate system, which
had the same periodic honeycomb structure as the solid plate in
the Wilhelmy MD system. The work of adhesion was calculated
as the free energy difference after and before the above procedure,
where the coupling parameter for the TI was embedded in the SF
interaction parameter in the DS scheme.

For the calculation of WSL, a SL interface was formed between
the liquid and the bottom solid, as shown in Fig. 10(a) with a wet-
tability parameter η corresponding to the Wilhelmy MD system.
The periodic boundary condition was employed in the x- and y-
directions tangential to the solid surface. In addition, we set a piston
at z = zpis above the liquid to attain a constant pressure system. By
allocating a sufficient number of fluid particles Nf and by setting

FIG. 10. Simulation systems for the calculation of the solid–liquid and solid–vapor
works of adhesion by the thermodynamic integration (TI) through the dry-surface
(DS) scheme.
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the pressure pset above the vapor pressure, a liquid bulk with a
constant density was formed between the solid wall and the pis-
ton. We used 3000 fluid particles, and the system size was set, as
shown in Fig. 10(a). We also controlled the temperature of the fluid
particles within 0.8 nm from the top piston regarding the velocity
components in the x- and y-directions at Tc = 90 K.

We embedded a coupling parameter λ into the SF interaction
potential given in Eq. (5) as

ΦDS
sf (rij, λ) = (1 − λ)ΦLJ

sf (rij), (C1)

and we obtained multiple equilibrium systems with various λ values
with 0 ≤ λ < 1 to numerically calculate the TI described below. Each
system was obtained after a preliminary equilibration of 10 ns, and
the time average of 20 ns was used for the analysis.

The work of adhesion WSL is defined by the minimum work
needed to strip the liquid from the solid surface per area under con-
stant NpT, and it can be calculated by the TI along a reversible path
between the initial and final states of the process. In the present
DS scheme, this was achieved by at first forming a SL interface
and then by weakening the SF interaction potential through the
coupling parameter. We obtained equilibrium SL interfaces with a
discrete coupling parameter λ varied from 0 to 0.999. Note that
the maximum value of λ was set slightly below 1 to keep the SF
interaction to be effectively only repulsive. This value is denoted by
1− hereafter. The difference of the SL interfacial Gibbs free energy
ΔGSL ≡ GSL∣λ=1− −GSL∣λ=0 between systems at λ = 0 and λ = 1− under
constant NpT was related to the difference in the surface interfacial
energies as

WSL ≡
ΔGSL

A
= γS0 + γL0 − γSL

≈ γS0 + γLV − γSL, (C2)

where the vacuum phase was denoted by a subscript “0” and γS0
and γL0 were the solid–vacuum and liquid–vacuum interfacial ener-
gies per unit area. Note that γL0 was substituted by the liquid–vapor
interfacial tension γLV in the final approximation considering that
the vapor density was negligibly small. Using the NpT canonical
ensemble, the difference of the SL interfacial Gibbs free energy ΔGSL
in Eq. (C2) was calculated through the following TI:

ΔG = ∫
1−

0

dG(λ)
dλ

dλ = ∫
1−

0
⟨∂H
∂λ
⟩dλ

= −∫
1−

0
⟨

Nf

∑
i∈fluid

Nw

∑
j∈wall

Φfw⟩dλ, (C3)

ΔGSL = ΔG − Apset(⟨zp∣λ=1−⟩ − ⟨zp∣λ=0⟩), (C4)

where H is the Hamiltonian, e.g., the internal energy of the system,
and Nw is the number of wall molecules. The ensemble average was
substituted by the time average in the simulation and was denoted by
the angle brackets. Note that to obtain ΔGSL, the work exerted on the
piston Apset(⟨zp∣λ=1−⟩ − ⟨zp∣λ=0⟩) was subtracted from the change
in the Gibbs free energy of the system ΔG including the piston in
Eq. (C4).

For the calculation of the SV work of adhesion WSV, we
investigated the interfacial energy between the saturated vapor and

corresponding solid surfaces set on the bottom of the simulation
cell by placing an additional particle bath on the top, as shown in
Fig. 10(b). The setup regarding the periodic boundary conditions
employed in x- and y-directions, temperature control, and place-
ment conditions for the solid surface were the same as the SL system,
whereas the particle bath was kept in a place by a potential field at a
fixed height sufficiently far from the solid surface. This potential field
mimicked a completely wettable surface with an equilibrium con-
tact angle of zero with the present potential parameters, e.g., a liquid
film was formed on the particle bath. With this setting, a solid–vapor
interface with the same density distribution as that in the Wilhelmy
MD system was achieved. We formed multiple equilibrium systems
with various values of the coupling parameter λ with the same recipe
as the SL systems.

Similar to the calculation of WSL, the SV interface at λ = 0 was
divided into S0 and V0 interfaces at λ = 1−, as shown in Fig. 10(b),
while the calculation systems for WSV were under constant NVT.
Thus, the solid–vapor work of adhesion WSV was given by the dif-
ference of the Helmholtz free energyΔF per unit area and was related
to the difference in the surface interfacial energy as

WSV ≡
ΔF
A
= γS0 + γV0 − γSV

≈ γS0 − γSV, (C5)

where γV0 was set zero in the final approximation. Using the NVT
canonical ensemble, ΔF in Eq. (C5) was calculated through the TI as

ΔF = ∫
1−

0

∂F(λ)
∂λ

dλ = ∫
1−

0
⟨∂H
∂λ
⟩dλ

= −∫
1−

0
⟨
Nf

∑
i

Nw

∑
j
ΦLJ

fw(rij)⟩dλ. (C6)

Figure 11 shows the SL and SV works of adhesion WSL and
WSV calculated by the TI as a function of the solid–fluid interaction

FIG. 11. Works of adhesion WSL and WSV calculated by the TI as a function of the
solid–fluid interaction coefficient η.
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coefficient η. These values were used for the results shown in Fig. 7
through the η-cos θ relation in Fig. 9.
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The data that support the findings of this study are available
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