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ABSTRACT
In this work, we developed a calculation method of local stress tensor applicable to non-equilibrium molecular dynamics (NEMD) systems,
which evaluates the macroscopic momentum advection and the kinetic term of the stress in the framework of the Method-of-Plane (MoP),
in a consistent way to guarantee the mass and momentum conservation. From the relation between the macroscopic velocity distribution
function and the microscopic molecular passage across a fixed control plane, we derived a method to calculate the basic properties of the
macroscopic momentum conservation law including the density, the velocity, the momentum flux, and the two terms of the stress tensor,
i.e., the interaction and the kinetic terms, defined on a surface with a finite area. Any component of the streaming velocity can be obtained
on a control surface, which enables the separation of the kinetic momentum flux into the advection and stress terms in the framework of
MoP, and this enables strict satisfaction of the mass and momentum conservation for an arbitrary closed control volume (CV) set in NEMD
systems. We validated the present method through the extraction of the density, velocity, and stress distributions in a quasi-one-dimensional
steady-state Couette flow system and in a quasi-2D steady-state NEMD system with a moving contact line. We showed that with the present
MoP, in contrast to the volume average method, the conservation law was satisfied even for a CV set around the moving contact line, which
was located in a strongly inhomogeneous region.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0062889

I. INTRODUCTION

With the increasing interest in microfluidic devices and nano-
technologies, molecular dynamics (MD) simulations have become
a powerful computational tool to examine the fluid behavior for
small scale systems. In addition to the static properties of the flu-
ids and interfaces, analysis of systems with a non-zero local flow,
i.e., macroscopically dynamic non-equilibrium MD (NEMD) is one

of the topics of interest of a recent computational approach, which
directly deals with complex nanoscale flows including the contact-
line motion of simple Lennard-Jones (LJ) liquids1–4 and more realis-
tic ones including water.5 For the understanding in terms of flow
fields, the microscopic motion of individual molecules must be
averaged, and the stress tensor plays a key role in such a macro-
scopic flow. Within the framework of fluid mechanics, the stress
tensor is determined from the velocity fields through the constitutive
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equation typically including the viscosity, and the local acceleration
of the fluid is given by the gradient of the stress tensor and the exter-
nal field to satisfy the momentum conservation. On the other hand,
the molecular motion is governed by the intermolecular interaction,
and the stress tensor is defined through the average of the molecu-
lar motion and interaction. With this respect, the microscopic stress
tensor is comprised of the kinetic term and the intermolecular inter-
action (or configuration) term. The main scope of this article is
the proper description of the kinetic term of the stress in NEMD
systems.

Before the establishment of the MD method, Irving and
Kirkwood6 (IK) put forward the connection between the macro-
scopic conservation laws (for details, see Appendix A) and micro-
scopic molecular motion governed by the intermolecular interaction
through the statistical mechanical theory based on the distribution
function in the phase space and derived an expression of the local
pointwise stress comprised of kinetic and interaction parts including
Taylor series expansion of differences in delta functions to express
the microscopic particle feature.

After the introduction of numerical MD simulations,7,8 the cal-
culation of average stress in homogeneous bulk systems was enabled
based on the virial theorem, which, indeed, corresponds to the aver-
age of the IK form integrated in space and time.9,10 Regarding the
local stress implemented for equilibrium MD (EMD) simulations
with a discrete time step, a pragmatic scheme to calculate the aver-
aged stress defined on a flat plane in quasi-one-dimensional (1D)
planar systems11 and a spherical curved surface12 was proposed,
where all the momentum flux and intermolecular force across the
plane or the sphere, which divide the computational domain, were
summed up during the time integration in macroscopically static
systems. This type of stress definition is usually called the Method-
of-Plane (MoP),13–15 or Hardy16 stress, where the momentum con-
servation law with the above-mentioned MoP for quasi-1D EMD
systems was proved to be an exact consequence of Newton’s laws
for any control volume (CV) surrounded by an enclosing surface(s)
irrespective of whether the local system in the CV is homogeneous
or not. In addition, this momentum conservation is not restricted to
quasi-1D EMD systems but also applicable to quasi-2D EMD sys-
tems, e.g., the present authors adopted the MoP for a CV with a
rectangular enclosing surface set around the contact line of an equi-
librium droplet to examine the nanoscale wetting behavior through
the mechanical balance exerted on the fluid in the CV.17 Another
conventional approach to give local mean stress in space is the vol-
ume average (VA) method, where the weighted average of the pair
interaction in local CVs is included in the formulation.18–26 Regard-
ing the analysis based on the macroscopic momentum conservation,
which describes that the total momentum in the CV can be changed
by the momentum flux, i.e., the advection and stress terms, pass-
ing the surface enclosing the CV, the VA should, in principle, be
applied only for homogeneous regions because the flux on the CV
boundary without thickness cannot be calculated within its frame-
work, while stress integral can also be obtained by the VA, and
this enables the calculation of the surface tension.10,19,25,27–30 The
momentum conservation is satisfied for the whole system if the VA
is properly summed up; however, special care is needed to consider
the momentum conservation for local CVs because the VA origi-
nally was not designed to examine local momentum conservation to
be satisfied for an arbitrary CV.16,21,26 This feature is similar to the

atomic stress,31 for instance, provided as the stress/atom command
in LAMMPS package,32 often used to simply visualize the stress field
(see Appendix C).

In NEMD systems with a non-zero local flow with the macro-
scopic velocity u ≠ 0, local u must be defined on a surface S enclosing
a control volume V in NEMD systems so that the stress is consistent
with the macroscopic momentum conservation. In other words, if
one wants to examine the macroscopic mass and momentum bal-
ances with setting an arbitrary CV in a complex flow system, e.g., a
CV set around a contact line, local macroscopic properties must be
defined on a finite-sized area on a CV.

In this paper, we show a calculation method of the MoP-
based local stress tensor applicable to NEMD systems with a proper
definition of the density and macroscopic velocity consistent with
the mass and momentum conservation. We provide the formu-
lation for systems consisting of single-component mono-atomic
fluid molecules for simplicity, while the present framework is also
applicable to systems of multi-component or poly-atomic fluid
molecules, in which the intra-molecular interaction term (for details,
see Appendix B) gives rise to a difficulty for the stress definition
and resulting flux,33 not the kinetic term in Eq. (2) discussed in the
present study. Related to this point, the non-uniqueness problem
of the local stress/pressure tensor due to the inhomogeneity of the
liquids typically at the interface34–39 is also an issue regarding the
interaction term. For the derivation, we introduced the velocity dis-
tribution function (VDF) to give the average of physical properties
defined on a fixed control plane. To check its validity, we performed
test calculation in two systems: (1) a quasi-1D Couette flow system
and (2) a quasi-2D system with liquid–solid–vapor contact lines,
both consisted of a LJ fluid between parallel solid walls moving in
the opposite directions tangential to the wall surfaces. In the first
system, we compared the density and velocity distributions obtained
by the present method and the VA, and we calculated the distribu-
tions of the stress components and advection term. Furthermore, we
showed that the same velocity distribution was obtained on bin faces
with different normal directions, which is essential to determine the
advection term. In the second system, the density, velocity, and stress
distributions are calculated in the complex flow with liquid–vapor
interfaces and contact lines. In addition, we compared the present
MoP and VA regarding the mass conservation for a CV surrounding
the contact line.

II. THEORY
We show the derivation of the kinetic term of the stress aver-

aged on a finite bin face in a Cartesian coordinate system for a
single-component mono-atomic fluid in the following for simplic-
ity. The fluid stress tensor component τkl, which expresses the stress
in the l direction exerted on a surface element with an outward
normal in the k direction, is given by the kinetic term τkin

kl and the
intermolecular interaction term τint

kl as

τkl = τkin
kl + τint

kl . (1)

In the standard MoP for equilibrium MD systems without a
mean flow consisting of single-component mono-atomic fluid
molecules,13–15,17 the kinetic term τkin

kl in Eq. (1) on a bin face of area
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Sk with its normal vector pointing to the kth Cartesian direction is
calculated by

τkin
kl ≡ −

1
Skδt
⟨

crossing Sk

∑
i∈fluid,δt

mivi
l
vi

k

∣vi
k∣
⟩, (2)

where mi and vi
l denote the mass and l-component of the velocity

vector vi of fluid particle i, respectively. We also denote the bin face
by Sk, hereafter. The angular brackets denote the ensemble aver-
age, and the summation ∑crossing Sk

i∈fluid,δt is taken for every fluid particle
i passing through Sk within a time interval of δt, which is equal to
the time increment for the numerical integration. Considering that
we deal with single-component fluid molecules of an identical mass
m, we substitute mi with m, hereafter. A sign function vi

k
∣vi

k ∣
equal

to ±1 is multiplied with the momentum transfer mvi
l across Sk to

evaluate the kinetic effect on the stress depending on the passing
direction. Note that in static equilibrium systems, i.e., systems with-
out a macroscopic local mean flow, the advection term is zero in the
whole system. The definition of the interaction term of the MoP τint

kl ,
which is not the main scope of this article, is shown in Appendix B.
Note that technically, the fluid–solid interaction can also be
included in stress, but only the fluid–fluid interaction was taken
into account as the fluid stress, and fluid–solid contribution was
considered as an external force field.17,40,41 In addition, note that for
multi-component systems or systems with poly-atomic molecules,
difficulties mainly arise to treat the interaction force between
different kinds of molecules or the constraint force42 of the poly-
atomic molecules, where the interaction forces should be properly
implemented into the stress calculation to satisfy the conservation
laws.33

To extend the standard MoP to NEMD systems with a non-
zero macroscopic mean local flow, the streaming velocity should be
properly subtracted from the kinetic term τkin

kl in Eq. (2) so that the
macroscopic momentum flux as the advection term due to the mean
velocity u may be included not in the stress term but in the advection
term within the macroscopic description of the momentum con-
servation, i.e., in the Navier–Stokes equation. In the following, we
provide a general framework to connect a microscopic variable ξi of
particles and a macroscopic field value ξ(x, t) averaged on Sk under
non-zero mean velocity based on the local VDF in the Cartesian xyz
coordinate system.

At first, we define the VDF f (x,v, t) for the mass with a veloc-
ity v = (vx, vy, vz) at position x = (x, y, z) at time t, which gives the
local density ρ(x, t) by

ρ(x, t) = ∫
∞

−∞
dvx∫

∞

−∞
dvy∫

∞

−∞
dvz f (x,v, t)

≡∭

∞

−∞
dv f (x,v, t), (3)

where we rewrite ∫
∞

−∞
dvx∫

∞

−∞
dvy∫

∞

−∞
dvz as ∭

∞

−∞
dv. Then, a

microscopic variable ξi per mass of particle i can be related to the
corresponding macroscopic field variable ξ(x, t) as

lim
δt→0
⟨

crossing Sk

∑
i∈fluid,δt

mξi
⟩ ≡ lim

δt→0
∭

∞

−∞
dv∫

∣vk ∣δt

0
dxkSk f (x,v, t)ξ(x, t).

(4)

The RHS denotes the integral weighted with the VDF considering an
oblique pillar of a base area Sk and a height ∣vk∣δt with its central axis
parallel to v, which is typically assumed upon the derivation of the
equilibrium pressure in the kinetic theory of gases.

With the limit δt → 0 and by rewriting the average of f (x,v, t)
and ξ(x, t) in the oblique pillar by f (Sk,v, t) and ξ(Sk, t), respec-
tively, the integral with respect to xk in the RHS of Eq. (4) writes

lim
δt→0
∫

∣vk ∣δt

0
dxkSk f (x,v, t)ξ(x, t) = lim

δt→0
Sk f (Sk,v, t)ξ(Sk, t)∣vk∣δt,

(5)
and it follows for Eq. (4) that

lim
δt→0
⟨

crossing Sk

∑
i∈fluid,δt

mξi
⟩ = lim

δt→0
Sk∭

∞

−∞
dv f (Sk,v, t)ξ(Sk, t)∣vk∣δt. (6)

Hence, by dividing both sides by Skδt,

∭

∞

−∞
dv f (Sk,v, t)ξ(Sk, t)∣vk∣ = lim

δt→0

1
Skδt
⟨

crossing Sk

∑
i∈fluid,δt

mξi
⟩ (7)

is derived as a basic equation for the connection between the macro-
scopic field variable ξ(Sk, t) and microscopic variable ξi, which
belongs to the constituent particle i upon crossing Sk.

Now, we proceed to the expressions of the macroscopic field
variables averaged on Sk. By substituting ξ(Sk, t) and ξi in Eq. (7)
with 1

∣vk ∣
and 1

∣vi
k ∣

, respectively, and using Eq. (3), we obtain

ρ(Sk, t) = lim
δt→0

1
Skδt
⟨

crossing Sk

∑
i∈fluid,δt

m
∣vi

k∣
⟩, (8)

where vi
k denotes the velocity component in the k direction of par-

ticle i. Similarly, regarding the macroscopic mass flux ρul given by

ρul(x, t) =∭
∞

−∞
dv f (x,v, t)vl, (9)

substituting ξ(Sk, t) and ξi in Eq. (7) with vl
∣vk ∣

and vi
l
∣vi

k ∣
, respectively,

leads to

ρul(Sk, t) = lim
δt→0

1
Skδt
⟨

crossing Sk

∑
i∈fluid,δt

mvi
l

∣vi
k∣
⟩. (10)

From Eqs. (8) and (10), the macroscopic velocity ul results in

ul(Sk, t) =
ρul(Sk, t)
ρ(Sk, t)

= lim
δt→0

⟨
crossing Sk

∑
i∈fluid,δt

mvi
l

∣vi
k∣
⟩

⟨
crossing Sk

∑
i∈fluid,δt

m
∣vi

k∣
⟩

. (11)

Finally, to write the kinetic contribution of the stress τkin
kl , we

use the expression in the kinetic theory of gases given by

τkin
kl (x, t) = −∭

∞

−∞
dv f (x,v, t)(vk − uk(x, t))(vl − ul(x, t)).

(12)
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By expanding Eq. (12), we obtain

τkin
kl (x, t) = −∭

∞

−∞
dv f (x,v, t)vk(vl − ul(x, t))

+ uk(x, t)∭
∞

−∞
dv f (x,v, t)(vl − ul(x, t))

= −∭

∞

−∞
dv f (x,v, t)vk(vl − ul(x, t)) + ukρul(x, t)

− ukρul(x, t)

= −∭

∞

−∞
dv f (x,v, t)vk(vl − ul(x, t)). (13)

Hence, by substituting ξ(Sk, t) and ξi in Eq. (7) with − vk(vl−ul)

∣vk ∣
and

−
vi

k(v
i
l−ul)

∣vi
k ∣

, respectively, we obtain

τkin
kl (Sk, t) = lim

δt→0

⎡
⎢
⎢
⎢
⎢
⎣

−
1

Skδt
⟨

crossing Sk

∑
i∈fluid,δt

mvi
k(v

i
l − ul(Sk, t))
∣vi

k∣
⟩

⎤
⎥
⎥
⎥
⎥
⎦

= lim
δt→0

⎛

⎝
−

1
Skδt
⟨

crossing Sk

∑
i∈fluid,δt

mvi
kv

i
l

∣vi
k∣
⟩

+ ul(Sk, t)
1

Skδt
⟨

crossing Sk

∑
i∈fluid,δt

mvi
k

∣vi
k∣
⟩
⎞

⎠

= − lim
δt→0

1
Skδt
⟨

crossing Sk

∑
i∈fluid,δt

mvi
kv

i
l

∣vi
k∣
⟩ + ρuluk(Sk, t), (14)

where Eq. (10) is used in the final equality. Note that the second term
in the rightmost-HS can be obtained by

ρuluk(Sk, t) =
ρul(Sk, t) ⋅ ρuk(Sk, t)

ρ(Sk, t)
(15)

using Eqs. (10) and (11), which correspond to the advection term
in the macroscopic momentum conservation in the Navier–Stokes

equation (for details, see Appendix A). By subtracting ρuluk(Sk, t)
from the rightmost-HS and leftmost-HS of Eq. (14), we obtain

τkin
kl (Sk, t) − ρuluk(Sk, t) = − lim

δt→0

1
Skδt
⟨

crossing Sk

∑
i∈fluid,δt

mvi
kv

i
l

∣vi
k∣
⟩, (16)

meaning that the microscopic total momentum transfer in the
RHS corresponds to the stress minus the advection term in the
LHS. Technically, the summation in the RHS of Eq. (16) is calcu-
lated during the MD simulation, and as the post-process, the stress
τkin

kl (Sk, t) is obtained by adding the advection term ρuluk to the total
microscopic momentum transfer as

τkin
kl (Sk, t) = [τkin

kl (Sk, t) − ρuluk(Sk, t)] + ρuluk(Sk, t), (17)

where the advection term is calculated by dividing ρul(Sk, t) ⋅
ρuk(Sk, t) by the density ρ(Sk, t) as in Eq. (15): all obtained as the
post-process.

The relations between the macroscopic variables in the mass
and momentum conservations and microscopic expressions are
summarized in Table I.

In practice, within the framework of MD, δt(→ 0) must be
replaced by a small non-zero time step of Δt for numerical inte-
gration. Upon this procedure without this limit, we have to assume
the following: (1) the change in the distribution function f (x,v, t)
within the distance range of ∣v∣δt is negligibly small and (2) the val-
ues of vi

k and vi
l upon “crossing” should be properly evaluated based

on the position update procedure of particles depending on the time
integration scheme. For the velocity Verlet method, which is applied
in the numerical test in Sec. III, we adopted vi

≡
xi
(t+Δt)−xi

(t)
Δt using

the positions xi
(t) and xi

(t + Δt) of fluid particle i at times t and
t + Δt before and after crossing the bin face to avoid the discrepancy
in the mass flux by the MoP calculation and by the position update.

Note that Eq. (16) without the limit δt → 0 is the same
as the RHS of Eq. (2), which simply sums up the momentum

TABLE I. Microscopic expressions for the calculation of the corresponding macroscopic properties defined as the average on
the bin face Sk in NEMD systems. The top four properties can be directly calculated from NEMD systems through the MoP
procedure, whereas the others below are derived from the four.

Macroscopic property Microscopic expression Corresponding equation(s)

ρ(Sk, t) lim
δt→0

1
Skδt ⟨

crossing Sk

∑
i∈fluid,δt

m
∣vi

k∣
⟩ Eq. (8)

ρul(Sk, t) lim
δt→0

1
Skδt ⟨

crossing Sk

∑
i∈fluid,δt

mvi
l

∣vi
k∣
⟩ Eq. (10)

τint
kl (Sk, t) − 1

Sk
⟨

across Sk

∑
(i,j)∈fluid

Fij
l

rij
k
∣rij

k ∣
⟩ Eq. (B1)

τkin
kl (Sk, t) − ρuluk(Sk, t) − lim

δt→0
1

Skδt ⟨
crossing Sk

∑
i∈fluid,δt

mvi
kv

i
l

∣vi
k∣
⟩ Eq. (16)

ul =
ρul
ρ ⋅ ⋅ ⋅ Eq. (11)

ρuluk ⋅ ⋅ ⋅ Eq. (15)
τkin

kl = (τ
kin
kl − ρuluk) + ρuluk ⋅ ⋅ ⋅ Eq. (17)

τkl = τkin
kl + τint

kl ⋅ ⋅ ⋅ Eq. (1)
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transfer across the bin face Sk with a sign function vi
k
∣vi

k ∣
. Hence,

if one locates a CV with a closed surface consisting of the MoP
bin faces, then the momentum conservation is strictly satisfied
with Eq. (16). Different choices are, indeed, possible to deter-
mine the advection term ρuluk(Sk, t) in Eq. (15) to separate the
stress τkin

kl (Sk, t) from τkin
kl (Sk, t) − ρuluk(Sk, t) by Eq. (17), and

this may sound that the definition of τkin
kl (Sk, t) is not unique.

However, by setting l = k in Eq. (10), the surface normal mass
flux is evaluated as the simple sum of the mass passage with
a sign function vi

k
∣vi

k ∣
, and this strictly satisfies the mass conserva-

tion, meaning that one can choose a unique definition of ρuluk(Sk, t)
that simultaneously satisfies the macroscopic mass and momentum
conservation.

Another point to be noted is that the final forms in Eqs. (8),
(10), and (16) are formally equivalent to the MoP expressions by
Daivis, Travis, and Todd,43 which were derived for a quasi-one-
dimensional flow through the expressions of the time derivative of
the fluxes in a CV with the Fourier transform and were, in prin-
ciple, applicable for the average on an infinite plane under a peri-
odic boundary condition. On the other hand, our non-flux-based
derivation with a definition of physical properties averaged on a face
through the VDF enables the calculation of physical properties on
a finite area. In addition, taking advantage of this non-flux-based
feature, one can calculate, for instance, the velocity component ul
on a bin face Sk(l ≠ k) tangential to the velocity component by
Eq. (11). This point will be discussed more in detail with a quasi-1D
Couette-type flow in Sec. III A as an example.

III. NUMERICAL TEST
The extended MoP was tested through the calculation of the

density, macroscopic mean velocity, and stress distributions in two
systems with a Lennard-Jones (LJ) fluid: a quasi-1D Couette-type
flow and a quasi-2D shear flow with solid–liquid–vapor contact
lines. Note that both the systems are in steady state, and we applied
time average instead of ensemble average.

A. Quasi-1D Couette-type flow
Figure 1(a) shows the MD simulation system of a quasi-1D

Couette-type flow, where the basic setup is a standard one similar
to our previous study.44,45 The two parallel solid walls were fcc crys-
tals, and every pair of the nearest neighbors in the walls was bound
through a harmonic potential Φh(r) = k

2(r − req)
2, with r being the

interparticle distance, req = 0.277 nm, and k = 46.8 N/m. Interac-
tions between fluid particles and between fluid and solid particles

were modeled by a 12-6 LJ potential ΦLJ
(rij) = 4ϵij[(

σij
rij
)

12
− (

σij
rij
)

6
],

where rij is the distance between the particles i and j, while ϵ and
σ denoted the LJ energy and length parameters, respectively. This
LJ interaction was truncated at a cutoff distance of rc = 3.5σ, and
quadratic functions were added so that the potential and interaction
forces smoothly vanished at rc.29 We used the following parameters
for fluid–fluid (ff) and solid–fluid (sf) interactions: σff = 0.340 nm,
ϵff = 1.67 × 10−21 J, σsf = 0.345 nm, and ϵsf = 0.646 × 10−21 J. The
atomic masses of fluid and solid particles were mf = 39.95 u and
ms = 195.1 u, respectively. Finally, the equations of motion were

FIG. 1. (a) Quasi-1D Couette-type flow system of a Lennard-Jones liquid confined between two solid walls. (b) Distributions of density ρ and velocity ux calculated by the
proposed Method-of-Plane (MoP) and the volume average (VA). Solid and dashed lines denote the results of MoP and VA, respectively, while the two lines almost overlap
in this scale. (c) Difference between the MoP and the VA regarding density ρMoP

− ρVA and velocity uMoP
x − uVA

x with their error bars depicted with semi-transparent areas
around the average.
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integrated using the velocity Verlet algorithm, with a time step
Δt of 5 fs.

The periodic boundary condition was set in the x and y direc-
tions, and 4000 LJ particles were confined between two parallel solid
walls consisting of the fcc crystal located on the bottom and top sides
of the calculation cell, which directed (001) and (001) planes nor-
mal to the z direction. Both had eight layers so that the possible
minimum distance between the fluid particle and the solid particle
in the outmost layer was longer than the cutoff distance. The rel-
ative positions of the solid particles in the outmost layers of each
base crystal were fixed, and the temperature of those in the second
outermost layers was controlled at a control temperature of 100 K
by using the standard Langevin thermostat.46 The system was first
equilibrated for 10 ns using the top wall as a piston with a con-
trol pressure of 4 MPa without shear so that a quasi-1D system
with a LJ liquid confined between fcc solid walls was achieved. After
the equilibration, a further relaxation run to achieve a steady shear
flow was carried out for 10 ns by moving the particles in the out-
most layers of both walls with opposite velocities of ±100 m/s in
the x direction, using the top wall as a piston with a control pres-
sure of 4 MPa. Finally, steady shear flow simulation was carried
out, keeping their z position constant at the average position dur-
ing the second relaxation run, where the system pressure resulted
in 3.61 MPa.

We tested the MoP expression (Table I) in the steady state,
where the local density, velocity, advection term, and stress were
obtained as a time average of 200 ns on a grid with x-normal bin
faces with a height of Δz = 0.150 nm and z-normal ones with a
width of Δx = 0.145 nm. Assuming that the system is quasi-1D, the
distribution in the x direction was averaged for bins with identi-
cal z positions. For comparison, we also obtained the density and

velocity distributions based on a standard VA, where the time aver-
age in equally divided bin volumes parallel to the solid wall with a
height of 0.150 nm was calculated.

Figure 1(b) shows the distributions of density ρ and macro-
scopic velocity in the x direction ux calculated by the proposed MoP
and standard VA as a reference. Note that these distributions by
the MoP can be calculated both on x-normal bin faces and on z-
normal ones as shown later, while only the distributions obtained
on x-normal bin faces are shown as the MoP results here. Over-
all, the MoP well reproduced the results by the VA, and the two
lines almost overlap in this scale. Regarding the density distribu-
tion, except near the walls where layered structures are observed,
a bulk liquid with almost constant density was formed. Note that
the bulk density was not completely constant because the tempera-
ture was not constant due to the viscous heat dissipation induced by
the extreme shear imposed on this system. The shear velocity pro-
files are linear throughout almost all the liquid part except in layered
structures, which can be understood by the change in local viscos-
ity there. The density and velocity differences between the MoP and
the VA are shown in Fig. 1(c). The density difference was within
10 kg/m3, which is less than 1% of the bulk density, and the veloc-
ity difference was also within 0.5 m/s, showing that the proposed
MoP can extract the density and velocity distribution consistent with
the VA.

Figure 2(a) shows the distributions of τzz(≡ τint
zz + τkin

zz ), τxx

− ρuxux[≡ τint
xx + (τkin

xx − ρuxux)], and ρuxux, where the first two were
directly obtained with simple addition based on Eqs. (B1) and (14) as
also listed in the top part of Table I, while ρuxux was obtained from
the density ρ and velocity ux. Note that τzz − ρuzuz is shown as τzz
because uz is equal to zero in the whole area of the present system. In
addition, note that the calculation of τint

kl in Eq. (B1) was the same as

FIG. 2. Distributions of (a) the diagonal stress component τzz(Sz)(≡ τint
zz + τkin

zz ), advection term ρuxux(Sx), and τxx(Sx) − ρuxux(Sx)[≡ τint
xx + (τkin

xx − ρuxux)], and
(b) diagonal and off-diagonal stress components τxx(Sx), τzz(Sz), τzx(Sz), and τxz(Sx).
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that in equilibrium systems without a macroscopic flow. As clearly
observed, τxx − ρuxux including the advection and τzz are different
away from the solid walls, indicating that the flow effect should be
removed to properly evaluate the fluid stress. Figure 2(b) displays the
distributions of the stress component τxx, τzz , τzx, and τxz , where τzz
and τzx were calculated on z-normal bins, whereas the others were
obtained on x-normal bins. As explained above, the stress value τxx
was calculated by adding ρuxux to τxx − ρuxux, whereas the advec-
tion terms for the others can be neglected considering uz = 0. In the
bulk region sufficiently away from the walls, τxx = τzz and τzx = τxz
are satisfied as expected from the solution of a laminar Couette flow,
and the former indicates that the stress τxx is adequately calculated
by the proposed MoP with the resulting value −τxx(= −τzz) equal to
the external pressure value of 3.61 MPa. The wall-tangential diago-
nal stress τxx fluctuates near the walls as typically observed also in
equilibrium systems,17,29 because of the layered structure of the liq-
uid as displayed in the density distribution in Fig. 1(b). On the other
hand, τzz was constant except near the walls, where the solid–liquid
(SL) interaction acts as the external force on the liquid. Regarding
the off-diagonal components τzx(= τxz), they were constant except
just around the walls, where friction from the solid is included in the
force balance even in the laminar flow.

In addition to the normal velocity component uk on the MoP
plane Sk, the calculation of ul(l ≠ k) tangentially to Sk is needed for
the separation of τkin

kl (Sk) − ρuluk(Sk) in Eq. (17) to properly define
the stress in general flows with ul ≠ 0 and uk ≠ 0. Including this tan-
gential velocity, we compared the distributions of the density ρ, the
mass flux ρux, and the velocity ux averaged on x-normal and z-
normal bin faces as another numerical test in the present system in

Fig. 1. More concretely, the densities ρ(Sx) and ρ(Sz) averaged on
x-normal and z-normal bin faces Sx and Sz , respectively, were calcu-
lated by Eq. (8) with setting k = x and k = z, whereas the macroscopic
mass fluxes ρux(Sx) and ρux(Sz)were obtained by Eq. (10) with l = x
on Sx and Sz , respectively. With these definitions, ux(Sx) ≡

ρux(Sx)

ρ(Sx)

on Sx and ux(Sz) ≡
ρux(Sz)

ρ(Sz)
on Sz can be obtained as in Eq. (11).

Note that in the present laminar flow system with uz = 0, the cal-
culation of ux is practically not needed for the stress separation of
τkin

zz , τkin
zx , and τkin

xz in Eq. (17). Figure 3 shows the distributions of
the (a) density ρ, (b) mass flux ρux, and (c) velocity ux defined on
x-normal and z-normal bin faces in the system in Fig. 1, where
the values averaged on each bin face of x-normal and z-normal are
plotted with setting the z position at the center of each bin face,
respectively, i.e., they are staggered by Δz/2. In the bulk, ρ, ρux, and
resulting ux averaged on bin faces with different normal directions
agreed well, indicating that the separation of the stress and advec-
tion terms in Eq. (17) is possible with the velocity values properly
evaluated by the proposed method. The difference seen around the
top and the bottom is due to the layered structures around the two
walls, i.e., the values on Sz are the average on a surface parallel to
the layered structure, whereas those on Sx are the average across the
layers.

B. Quasi-2D shear flow with solid–liquid–vapor
contact lines

The top panel of Fig. 4 shows the MD simulation system of a
quasi-2D Couette-type flow, where the basic setups are the same as

FIG. 3. Comparison of the time-averaged distributions of the (a) density ρ, (b) mass flux ρux , and (c) velocity ux averaged on x-normal and z-normal bin faces Sx and Sz ,
respectively.
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FIG. 4. (Top) Quasi-2D Couette-type flow system of a Lennard-Jones liquid confined between two solid walls. (Middle) Distributions of density ρ(Sx), velocity u, and off-
diagonal stress component τzx(Sz). The black arrow denotes the macroscopic velocity calculated by the proposed Method-of-Plane. The rectangle set around the contact
line shown in magenta is the control volume, for which mass conservation is checked in Table II. (Bottom) Distributions of diagonal stress components τxx(Sx) and τzz(Sz).

those in the quasi-1D system. The periodic boundary condition was
set in the x and y directions, and 20 000 LJ particles were confined
between two parallel solid walls with a distance of about 10.4 nm and
a dimension of x × y = 39.2 × 3.92 nm2 so that the LJ fluid may form
two quasi-2D menisci with contact lines on the walls upon the pre-
liminary equilibration at a control temperature of T = 85 K without
shear. The static contact angles on both top and bottom walls were
about 57○. After the equilibration, further relaxation runs to achieve
a steady shear flow with asymmetric menisci were carried out for
10 ns by moving the particles in the outmost layers of both the walls
with opposite velocities of ±10 m/s in the x direction.

After the relaxation run, the density, velocity, and stress dis-
tributions were obtained by the present MoP expression in the
steady state with a time average of 500 ns on x-normal bin faces
with a length of Δz = 0.149 nm and z-normal ones with a length of
Δx = 0.150 nm.

The middle panel of Fig. 4 shows the distributions of density
ρ(Sx) calculated on the x-normal bin faces, the velocity vector with
components calculated on each bin face corresponding the compo-
nent direction, and a stress component τzx(Sz) calculated on the
z-normal bin faces, where those for ρ(Sx) and τzx(Sz) are displayed
only for half of the system with respect to the center of mass of
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the fluid considering the symmetry. A clockwise caterpillar-like flow
is clearly captured by the present method, where the shear stress
τzx(Sz) distribution in the liquid phase shows the non-uniformity
of the viscous stress. The strong tensile stress seen in the τzx(Sz)

distribution around the liquid-vapor (LV) interfaces is due to the
LV interfacial tension. The bottom panel of Fig. 4 shows the distri-
butions of diagonal stress components τxx(Sx) and τzz(Sz). Layered
structures are observed for τxx(Sx) near the SL interfaces due to the
adsorption layers in the density distribution. The relation between
the density layers and stress distribution near the solid walls is quali-
tatively the same as that in our previous study of the static droplet:17

negative stress was seen in the adsorption layers, i.e., the adsorption
layers were compressed, whereas tensile stress appeared between the
layers.

Even with the VA, it is, indeed, possible to give the density
and streaming velocity values on a bin face, e.g., through the interpo-
lation of these values of adjacent bin volumes; however, to remove
the advection term from the momentum transfer in Eq. (17), such
formulation would cause an inconsistency with the local mass
conservation for a CV when its boundary is set at a position with
inhomogeneous density. To show this point, we set a rectangular CV
surrounding the contact line shown in magenta in the middle panel
of Fig. 4 and calculated the mass balance. The x-normal right and
left faces are at xR = 39.2 nm and xL = 32.3 nm, respectively, and the
z-normal bottom and top faces are at zB = 0.0 nm and zT = 5.1 nm,
respectively, where zT is higher than the limit where the fluid
particle can reach.17,40,41,47 Considering that the mass flux on the top
face is zero with the present setting, we calculated the mass flow rates
on the left, right, and bottom faces given by

ṁL ≡ ∫

zT

zB

dzρ(xL, z)ux(xL, z), (18)

ṁR ≡ ∫

zT

zB

dzρ(xR, z)ux(xR, z), (19)

and
ṁB ≡ ∫

xR

xL

dxρ(x, zB)uz(x, zB), (20)

respectively, by the present MoP and VA. For the calculation with
the MoP, the average density ρ and velocity u defined on each bin
face consisting of the CV faces are used for the numerical integration
in Eqs. (18)–(20), whereas for the VA, the averages of the molecular
momentum in adjacent bin volumes with Δz = 0.149 nm and
Δx = 0.150 nm sandwiching the CV face, corresponding to the MoP
bin face, are used as shown in Fig. 5. For the right and left CV faces,
these interpolated values can be viewed as the average values for bins
of Δx = 0.300 nm and Δz = 0.149 nm, and for the bottom CV face,
these interpolated values can be viewed as the average values for bins
of Δx = 0.150 nm and Δz = 0.298 nm. Based on the mass conserva-
tion which describes that the total mass in the CV should be changed
by the mass flux (for details, see Appendix A), we compared the total
mass flow rate ṁR − ṁL − ṁB with the time derivative of the mass in
the CV given by

ṀCV ≡
∬CVdVρ(x, tend) −∬CVdVρ(x, tinit)

tend − tinit
, (21)

where ∬CV denotes the volume integral for the present CV, and the
RHS was calculated by counting the difference in the number of fluid

FIG. 5. VA bin volumes shown in dark blue around the control volume (CV)
shown in magenta (identical to the CV in Fig. 4). The mass fluxes on the CV
face were obtained by the interpolation of the values of adjacent VA bin volumes
and compared with the mass flux calculated by the MoP on the bin face shown in
magenta.

particles in the CV between the sampling interval tinit and tend. Note
that ṀCV is not exactly zero even under steady state because the
contact line is microscopically fluctuating with time.3,48

Table II shows the comparison between the MoP and VA
regarding the mass flow rate across the three CV faces. Although
the error bar is still large even with the average for about 500 ns,
the mean time derivative in Eq. (21) is considered to be equal to the
total mass flow rate with the MoP, which is in contrast to the VA
that does not seem to satisfy the mass conservation for the present
finite-sized VA bin volume. Specifically, this inconsistency is mainly
caused on the left face of the CV where strong inhomogeneity exists
due to the liquid–vapor interface, while no inconsistency is shown
on the other faces set in the vapor phase of no strong inhomogene-
ity. Of course, this inconsistency would vanish in the limit that the
size of the VA bin approaches zero without considering the compu-
tational cost, whereas the MoP can guarantee the conservation with
a bin of finite-sized area.

TABLE II. Mass flow rates ṁL, ṁR, and ṁB, respectively, on the left, right, and bottom
faces of the control volume (CV) and the time derivative of the mass ṀCV in the CV
shown in magenta in the middle panel of Fig. 4.

Propertya MoP VA

ṁL 4.3 ± 1.8 6.0 ± 1.8
ṁR 5.5 ± 0.3 5.5 ± 0.2
ṁB 0.8 ± 0.2 0.8 ± 0.2
ṁR − ṁL − ṁB

b 0.5 ± 1.9 −1.3 ± 1.8

−ṀCV ⋅ ⋅ ⋅ 0.5 ± 1.8

aDefined by Eqs. (18)–(21), all in units of ×10−7 kg/m s.
bMass flux on the top face at the fluid–solid interface is zero.
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Indeed, apparent flow features as shown in Fig. 4 can be qualita-
tively visualized by other methods such as atomic stress,31 as shown
in Appendix C, but the present method provides the distributions
of physical properties defined on a surface establishing a direct link
with the conservation laws for the arbitrary CV, as shown in Table II,
and is generally applicable to a wide range of nanoscale systems
with a liquid flow. One of our future research targets is dynamic
wetting,3,4,49 for which we plan to examine the mechanical balance
exerted on the fluid around a CV set around the moving contact
line as in Fig. 4. Through the comparison with the static case,17 this
would enable the analysis of advancing and receding contact angle
from a mechanical point of view.

IV. CONCLUDING REMARKS
In this work, we developed a calculation method of local stress

tensor applicable to non-equilibrium molecular dynamics (NEMD)
systems, which evaluates the macroscopic momentum advection
and the kinetic term of the stress in the framework of the Method-
of-Plane (MoP), in a consistent way to guarantee the mass and the
momentum conservation. From the relation between the macro-
scopic velocity distribution function and the microscopic molecular
passage across a fixed control plane, we derived a basic equation to
connect the macroscopic field variable and the microscopic molec-
ular variable. Based on the connection, we derived a method to
calculate the basic properties of the macroscopic momentum con-
servation law including the density, velocity, and momentum fluxes
as well as the interaction and kinetic terms of the stress tensor
defined on a surface with a finite area. Any component of the stream-
ing velocity can be obtained on a control surface, which enables
the separation of the kinetic momentum flux into the advection
and stress terms in the framework of the MoP, and this guaran-
tees the mass and momentum conservation strictly satisfied for an
arbitrary closed control volume (CV) set in NEMD systems. The
present MoP method was validated through the extraction of the
density and velocity distributions in a quasi-1D steady-state Cou-
ette flow system, seeing that the stress tensor distribution by the
MoP satisfies the solution of a laminar Couette flow in the bulk,
indicating that the flow effect, i.e., the advection term, was removed
to evaluate stress properly. Furthermore, we showed the density,
velocity, and stress tensor distributions by the MoP even in a quasi-
2D system with a moving contact line. We showed that with the
present MoP, in contrast to the volume average method, the con-
servation law was satisfied even for a CV set around the mov-
ing contact line, which was located in a strongly inhomegeneous
region.
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APPENDIX A: MACROSCOPIC CONSERVATION LAWS

The macroscopic equation of continuity given with the density
ρ(x, t) and velocity vector u(x, t) both as functions of position x and
time t writes

∭
V

dV
∂ρ
∂t
= −∬

S
dSρuknk, (A1)

satisfied for an arbitrary volume V in an enclosing surface S, where
nk is the k direction component of the outward unit normal vector
n with respect to the infinitesimal surface element dS. The Einstein
notation is used with a dummy index k for the vectors. Similarly, the
macroscopic momentum equation, the Navier–Stokes equation for
an arbitrary volume V enclosed by S writes

∭
V

dV
∂ρul

∂t
= −∬

S
dSρuluknk +∬

S
dSτklnk +∭

V
dVρFl,

(A2)
where the fluid stress tensor component τkl expresses the stress in
the l direction exerted on a surface element with an outward nor-
mal in the k direction and Fl denotes the external force per mass.
Equation (A2) means that the total momentum in V in the LHS
can be changed by the momentum flux passing the surface S as
well as the impulse due to the stress exerted on the surface S, with
ρ, u, and τkl defined on S, and the external force exerted on the
volume V , which corresponds to the first, second, and third terms in
the RHS, respectively. Specifically, note that the advection ρuluk and
stress τkl in the first and second terms of the RHS, respectively, are
separated.

APPENDIX B: INTERACTION TERM FOR TWO-BODY
POTENTIAL IN THE MoP

The intermolecular interaction term τint
kl in Eq. (1) in the case of

a simple two-body potential is calculated by

τint
kl = −

1
Sk
⟨

across Sk

∑
(i,j)∈fluid

Fij
l

rij
k

∣rij
k ∣
⟩, (B1)

where rij
k and Fij

l denote the k-component of the relative position
vector rij

≡ xj
− xi and the l-component of the force vector Fij on

particle j at position xj from particle i at position xi, respectively.
The summation∑across Sk

(i,j)∈fluid is taken for all line segments of the inter-
particle interaction between xi and xj, which cross Sk based on the
definition of the IK contour with the straight line connecting each

particle pair.6,26 A sign function rij
k
∣rij

k ∣
is multiplied for this interaction

term to evaluate the force effect depending on the force direction.

APPENDIX C: STRESS DISTRIBUTION CALCULATED
BY THE ATOMIC STRESS

In this section, we compare the stress distribution obtained by
the atomic stress with that calculated by the present MoP method.
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FIG. 6. (Top) Distributions of density ρ and velocity u cal-
culated by the VA and off-diagonal volume averaged atomic
stress component τatm

zx . The black arrow denotes the macro-
scopic velocity calculated by the VA. (Bottom) Distributions
of the diagonal volume averaged atomic stress components
τatm

xx and τatm
zz .

Atomic stress for mono-atomic molecules interacting with a pair
potential is defined as a pointwise stress tensor per atom given by

Ti
kl = −m(vi

k − ui
k)(v

i
l − ui

l) −
1
2∑j≠i

Fij
l rij

k , (C1)

where Ti
kl is the atomic stress tensor of particle i, the first and second

terms on the RHS are the kinetic and interaction terms, respectively,
and ui

k and ui
l denote the macroscopic velocity components at the

point of the particle. Note that the interaction term is equally allo-
cated to the pair of pointwise atoms i and j in Eq. (C1), in contrast to
the MoP that allocates the interaction force on the bin faces through
which the interaction force segment between i and j passes.

Figure 6 shows the time-averaged density, velocity, and the
stress distributions calculated by volume averaging. The stress τatm

kl
was obtained as the average of the atomic stress Ti

kl divided by the
local bin volume of δV , where the averaged velocity of the local
volume was used as the macroscopic velocity ui in Eq. (C1). The
size of the bins is the same as that for the MoP and VA. No clear
difference was observed between Figs. 4 and 6 in the density and
velocity distributions, whereas layered structures appeared only in
the distribution of τatm

zz . This unphysical feature is caused by the
pointwise approximation of the atomic stress in Eq. (C1).
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