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ABSTRACT
By extending the theoretical framework derived in our previous study [Imaizumi et al., J. Chem. Phys. 153, 034701 (2020)], we success-
fully calculated the solid–liquid (SL) and solid–vapor (SV) interfacial tensions of a simple Lennard-Jones fluid around solid cylinders with
nanometer-scale diameters from single equilibrium molecular dynamics systems in which a solid cylinder was vertically immersed into a
liquid pool. The SL and SV interfacial tensions γSL − γS0 and γSV − γS0 relative to that for bare solid surface γS0, respectively, were obtained
by simple force balance relations on fluid-containing control volumes set around the bottom and top ends of the solid cylinder, which are
subject to the fluid stress and the force from the solid. The theoretical contact angle calculated by Young’s equation using these interfacial
tensions agreed well with the apparent contact angle estimated by the analytical solution to fit the meniscus shape, showing that Young’s
equation holds even for the menisci around solids with nanoscale curvature. We have also found that the curvature effect on the contact angle
was surprisingly small while it was indeed large on the local forces exerted on the solid cylinder near the contact line. In addition, the present
results showed that the curvature dependence of the SL and SV interfacial free energies, which are the interfacial tensions, is different from
that of the corresponding interfacial potential energies.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0079816

I. INTRODUCTION

As we see cap-shaped liquid droplets on solid surfaces almost
everyday, wetting behavior is one of the most common physical
phenomena in human life and is also a research target in various
scientific and engineering fields.1–5 By defining the interfacial ten-
sions and the contact angle θ, wetting is usually described by Young’s
equation6

γSL − γSV + γLV cosθ = 0, (1)

where γSL, γSV, and γLV are solid–liquid (SL), solid–vapor (SV),
and liquid–vapor (LV) interfacial tensions, respectively. Young’s
original idea of Eq. (1) in 1805 was the wall-tangential force bal-
ance of interfacial tensions exerted on the contact line (CL)—before
the establishment of thermodynamics;7 however, now, it is often
explained from a thermodynamic point of view rather than from the
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mechanical balance.1 Practically, the contact angle is used as a com-
mon measure of wettability. Various models have been proposed to
capture the details of the CL, such as including the precursor film1,8

or the microscopic contact angle9 or considering the effects of line
tension due to the contact-line curvature in Eq. (1).10,11 However, it
is difficult to experimentally validate these models mainly because
measuring the interfacial tensions γSL and γSV, which include the
solid surface, is also difficult.12,13

Wetting plays a key role in the nanoscale and from a micro-
scopic theoretical point of view, Kirkwood and Buff14 were the first
to put forward the framework of surface tension based on the statis-
tical mechanics. Recent development of molecular simulation meth-
ods including molecular dynamics (MD) and Monte Carlo (MC)
advanced the microscopic understanding of the interfaces, and the
calculation of the surface tension based on Bakker’s equation,2,3,15

which describes the relation between the stress integral through
the liquid–vapor or liquid–gas interface and the surface tension,
is used as a standard approach.16 In addition, MD or MC stud-
ies about microscopic wetting have been conducted, ranging from
simply evaluating the apparent contact angle, e.g., from the aver-
age droplet shape, to quantitatively extract the SL and SV interfacial
tensions through a mechanical manner and/or a thermodynamic
manner.17–49 For the mechanical approach, called the mechanical
route, Bakker’s equation was extended to describe the connection
between the stress integral through the SL or SV interface and
the corresponding interfacial tension (see Appendix A).23–29,49 On
the other hand, for the latter approach, called the thermodynamic
route, the SL and SV interfacial tensions were interpreted as the
interfacial free energy per interfacial area. For instance, by the
thermodynamic integration (TI) method, the SL interfacial energy
was evaluated as the free energy difference from a reference sys-
tem in which the SL interface was substituted by bare solid and
liquid surfaces quasi-statically under constant number of particles
N, temperature T, and pressure p (NpT-ensemble) or volume V
(NVT-ensemble) condition.27–36 These studies indicated that the
apparent contact angle of the meniscus or droplet obtained in
the simulations agreed well with the one predicted by Young’s
equation (1) in case the solid surfaces are flat and smooth so that
the CL pinning may not be induced in a fully relaxed equilib-
rium state.28 On the other hand, the force exerted from the solid
on the fluid should be included in Young’s equation in case the
contact line is pinned due to a chemical inhomogeneity of the
solid.29

Considering the potential applications of nano-wetting, e.g.,
a flow in a confined space such as a nanofoam50 or a carbon
nanotube (CNT),51 the solid surfaces can have a nanoscale radius
of curvature, and the interfacial tensions should depend on the cur-
vature. Regarding the water wetting on carbon nanotubes as a solid
with a nanoscale curvature, unique wetting behavior52 and a strong
diameter dependence of the capillary force were experimentally
reported.53 For the liquid–vapor interface, Tolman54 first formu-
lated the size effect of droplet surface tension with a lengthscale
called the “Tolman length,”55–57 and MD or MC simulations have
been carried out as well.38,58–62 Indeed, the LV interfacial tension
can be extracted using a strict definition of the interface position,
e.g., based on the force and momentum balances58 and the differ-
ence between the pressures inside and outside the droplet based on
the Young–Laplace equation. On the other hand, the calculation of

the SL and SV interfacial tension on a curved solid surface is not
trivial.60,63 For instance, via thermodynamic routes, if we suppose
calculation systems for the TI to calculate the SL interfacial tension
on a cylindrical solid surface with a nanoscale radius, then, the three
interface areas, i.e., the radii of the target solid–fluid (SF) , the ref-
erence bare solid, and bare liquid interfaces, should be all different,
and this difference would become critical for the evaluation of the
desired interfacial tension when the cylinder radius is comparable to
the radius differences. Another possibility is via mechanical routes,
and it is technically possible to calculate the stress distribution in
the cylindrical or spherical coordinates, although the calculation
cost significantly increases to obtain the distribution, and indeed,
precise calculation in these coordinate systems is not implemented
into the MD packages such as LAMMPS64 or GROMACS,65 and the
implementation into in-house codes is also rather complicated.58,66

Going back to the relation between the SL or SV interfa-
cial tension and the fluid stress in the interface via the mechan-
ical routes, what we need is not the stress distribution but the
stress integral. Considering this feature, in our previous study,26

we provided a theoretical framework to extract the SL and SV
interfacial tensions from a single MD simulation by using the
local forces and the local interaction potential exerted on a quasi-
two-dimensional (2D) flat and smooth solid plate immersed into
a liquid pool of a simple liquid, called the Wilhelmy plate,
and verified through the comparison between the MD results
and the interfacial works of adhesion obtained by the TI. This
modified Wilhelmy method is advantageous because it does not
require computationally demanding calculations such as the local
stress distributions and the thermodynamic integration, which
needs averaging at each discrete states along the integration
path.

In this study, we extracted the SL and SV interfacial tensions
of a simple Lennard-Jones (LJ) fluid around solid cylinders with
nanometer-scale radii by applying the modified Wilhelmy equations
derived in our previous study26 to investigate the curvature effect67

on the SL and SV interfacial tensions. From the results, we also
examined whether Young’s equation holds even for menisci around
solids with nanoscale curvature. Finally, we discuss the difference in
the curvature dependence between the SL and SV interfacial tensions
(free energy) and the SL and SV interaction potential energies (part
of the internal energy).

II. METHOD
In this study, we employed equilibrium MD simulation sys-

tems of a quasi-axisymmetric meniscus on a hollow closed cylinder
dipped into a liquid pool of a simple fluid as shown in Fig. 1. All
the simulations were carried out by using our in-house code. Except
the boundary condition in the lateral directions, the basic setup is
similar to our previous study of the quasi-2D meniscus formed on
a hollow rectangular solid plate.26 Generic particles modeled by a
LJ potential were used as the fluid particles. The 12-6 LJ potential
given by

ΦLJ(rij) = 4ϵ
⎡⎢⎢⎢⎢⎣
( σ

rij
)

12

− ( σ
rij
)

6

+ cLJ
2 (

rij

rc
)

2
+ cLJ

0

⎤⎥⎥⎥⎥⎦
(2)
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was applied for the interaction between fluid particles, where rij
denotes the distance between the particles i at position ri and j at rj
while ϵ and σ are the LJ energy and length parameters, respectively.
This LJ interaction was truncated at a cutoff distance of rc = 3.5σ,
where quadratic functions were added so that the potential and
interaction force smoothly became zero at rc. The constant values cLJ

2
and cLJ

0 were given in our previous study.25 Hereafter, fluid and solid
particles are expressed by “f” and “s,” respectively, and correspond-
ing combinations are denoted by subscripts. Most of the simulation
parameters are the same as in our previous study, and the values are
summarized in Table I with the non-dimensional units normalized
by the corresponding standard values based on ϵff, σff, and mf.

Three solid cylinders in contact with the fluid were prepared
by using the geometrical configuration of single-walled carbon
nanotubes (CNTs) with their chiral indices of (20,0), (40,0), and
(80,0), where the solid particles were fixed on the coordinate with the
positions of the hexagonal periodic structure with an inter-particle
distance rss of 0.141 nm, i.e., the immobile solid particles formed
a hollow single-layered solid surface. Note that the present homo-
geneous solid surface is considered to be smooth with rss much
smaller than σff and σsf, and the CL is quickly relaxed without hys-
teresis effects on this surface, i.e., pinning is not induced on this
surface. The corresponding radii Rs of the cylinder are 0.777, 1.55,
and 3.11 nm, respectively. The central axis of the cylinders is set on
the z axis, i.e., the zigzag edge of the honeycomb structure was set
parallel to the xy-plane. The top and bottom parts of the cylinders
are covered by locating additional solid particles as the lid to prevent
fluid particles from entering into the cylinder. Note that the struc-
ture of these lids does not have direct effect on the simulation results
as indicated in our previous study.26

The solid–fluid interaction, which expresses the SL or SV inter-
action, was also modeled by the LJ potential in Eq. (2), where the
length parameter σsf was determined by the Lorentz mixing rule,
whereas the energy parameter ϵsf was varied in a parametric man-
ner by multiplying a SF interaction coefficient η to the base value

TABLE I. Simulation parameters and their corresponding non-dimensional values.

Property Value Unit Non-dim. value

σff 0.340 nm 1
σsf 0.357 nm 1.05
rss 0.141 nm 0.415
ϵff 1.67 × 10−21 J 1
ϵ0

sf 1.96 × 10−21 J 1.18
ϵflr

sf 0.176 × 10−21 J 0.106
ϵceil

sf 0.176 × 10−21 J 0.106
ϵsid

sf 0.192 × 10−21 J 0.115
ϵsf η × ϵ0

sf
η 0.03–0.15 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
mf 6.64 × 10−26 kg 1
Rs 0.777–3.11 nm 2.29–9.15
Rsid 9 nm 26.5
T 90 K 0.703
Nf 53 778–60 834 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

given by the Berthelot rule ϵ0
sf =
√
ϵffϵss as

ϵsf = ηϵ0
sf. (3)

Wettability was expressed by this parameter η, i.e., the con-
tact angle of a hemi-cylindrically shaped equilibrium droplet
on a homogeneous flat solid surface and η had a one-to-one
correspondence,25,28,29 and we set the parameter η between 0.03 and
0.15 so that the corresponding cosine of the contact angle cos θ is
from −0.9 to 0.9. The definition of the contact angle is shown later
in Sec. III. Note that since the solid–solid inter-particle distance rss
was relatively small compared to the LJ length parameters σff and σfs,
the surface is considered to be very smooth, and the wall-tangential
force acting from the solid on the fluid, which induces pinning of the
CL, is negligible within the framework such that the stress is defined
only by the fluid–fluid interaction and fluid motion, and solid force
is dealt with as the external force.28,29,68 Note that this condition can
be violated for wetting on a soft solid.45

We set a horizontal potential wall on the bottom (floor) of the
calculation cell fixed at z = zflr about 5.3 nm below the bottom of the
solid plate, which interacted only with the fluid particles with a one-
dimensional potential field Φ1D

flr as the function of the distance from
the wall given by

Φ1D
flr (z′i) = 4πρnϵflr

sf σ
2
sf

⎡⎢⎢⎢⎢⎣

1
5
(σsf

z′i
)

10

− 1
2
(σsf

z′i
)

4

+ cflr
2 (

z′i
zflr

c
)

2

+ cflr
1 (

z′i
zflr

c
) + cflr

0

⎤⎥⎥⎥⎥⎦
, (4)

z′i ≡ zi − zflr, (5)

where zi is the z-position of the fluid particle i and ϵflr
sf is set at

0.09ϵ0
sf. This potential wall equivalently expressed a mean potential

field formed by a single layer of solid particles with a constant area
number density ρn. Similar to Eq. (2), this potential field in Eq. (4)
was at a distance of zflr

c = 3.5σsf, and a quadratic function was added
for a smooth truncation at zflr

c . As shown in Fig. 1, fluid particles
were rather strongly adsorbed onto this plane because this roughly
corresponded to a completely wetting solid wall. With this setup, the
liquid pool was stably maintained even in case the liquid pressure is
low with a highly wettable solid cylinder or a plate, and a sufficient
liquid bulk region was kept between this wall and the bottom of the
cylinder or the plate. Furthermore, we set another horizontal poten-
tial wall on the top (ceiling) of the calculation cell fixed at z = zceil
about 4.7 nm above the top of the cylinder or the plate exerting a
repulsive potential field Φ1D

ceil on the fluid particles expressed by

Φ1D
ceil(z′′i ) = 4πρnϵceil

sf σ
2
sf

⎡⎢⎢⎢⎢⎢⎢⎣

1
5
(σsf

z′′i
)

10

+ cceil
2 (

z′′i
zceil

c
)

2

+ cceil
1 (

z′′i
zceil

c
) + cceil

0

⎤⎥⎥⎥⎥⎥⎦
, (6)

z′′i ≡ zceil − zi, (7)
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FIG. 1. (a) A bird-eye view and (b) top
and (c) side views of equilibrium molec-
ular dynamics (MD) simulation systems
of hollow solid cylinders dipped into a
liquid pool of a simple Lennard-Jones
(LJ) fluid. (d) Side view of the system
with a hollow solid plate (see Ref. 26 for
details).

where ϵceil
sf is identical to ϵflr

sf while a cutoff distance of zceil
c = σsf is

used to achieve a repulsive potential field.
In addition to these bottom and top potential walls, we also set

another cylindrical side potential wall with its axis on the z axis and
with a radius Rsid, which exerts a one-dimensional potential field on
the fluid particlesΦ1D

sid(r
xy
i ) as the function of the horizontal distance

from the wall given by

Φ1D
sid(rxy

i ) = 4πρnϵsid
sf σ

2
sf

⎡⎢⎢⎢⎢⎣

1
5
( σsf

rxy
i
)

10

− 1
2
( σsf

rxy
i
)

4

+ cflr
2 (

rxy
i

rsid
c
)

2

+ cflr
1 (

rxy
i

rsid
c
) + csid

0

⎤⎥⎥⎥⎥⎦
, (8)

rxy
i ≡ Rsid −

√
x2

i + y2
i , (9)

where rxy
i is the lateral distance of the fluid particle i from the side

potential wall. Note that this side wall was adopted to achieve a

quasi-axisymmetric 2D-meniscus instead of applying the periodic
boundary condition in the horizontal x- and y-directions as in our
previous study with a solid plate. The parameter ϵsid

sf was set at
0.0975ϵ0

sf so that the resulting contact angle at the side wall may be
roughly 90○. The radius Rsid was chosen so that a sufficiently large
LV interface could be kept, excluding the adsorption layers on the
solid cylinder and on the side wall. With this condition, we assumed
that the LV interfacial tension γLV was constant there, and we eval-
uated the apparent contact angle from the differential equation for
the shape of an axisymmetric meniscus there as described below with
Fig. 2.

The system was kept at a constant temperature T of 90 K, which
is above the triple point temperature,69 by applying velocity rescal-
ing to the fluid particles within 0.8 nm from the floor potential wall
only for the velocity components in the x- and y-directions. This
thermostat region was sufficiently away from the bottom of the solid
cylinder/plate, and no direct thermostating was applied to the region
near the solid so that this thermostat had no effects on the present
results.
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FIG. 2. (a) Half side snapshot, (b) distribution of the time-averaged fluid density,
and (c) distributions of the time-averaged downward force density acting on the
solid plate and solid–fluid (SF) potential energy density per solid surface area for
the system with the solid radius Rs = 1.55 nm and a SF interaction parameter
η = 0.15.

With this setting, an axisymmetric quasi-2D LJ liquid with a
meniscus-shaped LV interface and the CL parallel to the xy-plane
was formed as an equilibrium state as exemplified in Fig. 1, where a
liquid bulk with an isotropic density was formed above the bottom
wall by choosing a proper number of fluid particles Nf as shown in
Fig. 2. We verified that the temperature was constant in the whole
system after the equilibration run described in the following. The
velocity Verlet method was used for the integration of the New-
tonian equation of motion with a time increment of 5 fs for all
systems.

We obtained the physical properties of each equilibrium system
with various cylinder radii Rs and η values as the time average of
20 ns, which followed an equilibration run of more than 10 ns.

III. RESULTS AND DISCUSSION
A. Apparent contact angle

Similar to our previous study,26 we obtained the distribution
of force acting from the fluid on the solid particles by dividing the
solid region into equal-sized bins in the z-direction, where a bin
height of δz = 0.2115 nm was used, considering the periodicity of
the CNT structure. The average force density dξz/dz was defined
by the time-averaged total downward (in −z-direction) force from
the fluid on the solid particles in each bin divided by the solid bin
area 2πRsδz. Except at the top and bottom of the cylinder or the
plate, dξz/dz expresses the downward force per surface area. The
average SF potential energy per area usf was also calculated, which
was obtained by substituting the downward force by the SF potential
energy.

A half side snapshot and the distribution of time-averaged fluid
density ρ around the solid cylinder are shown for the system with SF

interaction parameter η = 0.15 in Fig. 2. The time-averaged distri-
butions of the downward force exerted on the solid cylinder dξz/dz
and the SF potential energy usf are also shown in the right panel. We
briefly summarize two essential features in the following, which are
qualitatively the same as in our previous study.26 (1) Multi-layered
adsorption layers were formed around the solid cylinder and the bot-
tom and side potential walls, and liquid bulk with a homogeneous
density is observed away from the cylinder, potential walls, and the
LV interface. (2) The total downward force as the integral of dξz/dz
can be clearly separated into three local parts, i.e., ξtop

z around the
top, ξcl

z around the contact line, and ξbot
z around the bottom. As indi-

cated in Fig. 2(c), ξtop
z and ξcl

z are positive, i.e., downward forces were
exerted, and ξbot

z is negative, i.e., an upward force was exerted. As in
our previous study, the distributions of dξz/dz and usf around the
top and bottom had less physical meaning because the top and bot-
tom solid lids in the bin were included, and these parts for usf are
not shown in the figure. However, the local integral of dξz/dz had
the physical information about the force around the top and bottom
parts. Note that ξz has the dimension of force per length, which is
the same as the surface tension.

As exemplified in the density distribution in Fig. 2(b), we eval-
uated the contact angles for the plate and cylinder systems with
different SF interaction parameters to examine the curvature effects.
For the plate system, we followed the same procedure used to deter-
mine the apparent contact angle as our previous study:26 the LV
interface was defined as the least-squares fitting circle on the density
contour of ρ = 400 kg/m3 at the LV interface at height z(x) exclud-
ing the region in the adsorption layers near the solid.25,26,28,29 For the
cylinder systems, the contact angles were evaluated using the analyti-
cal formula of the macroscopic meniscus shape. For an axisymmetric
equilibrium meniscus around a z-centered cylinder with neglecting
gravity, it follows for the meniscus height z(r) given as a unique
function of the radial position r ≡

√
x2 + y2 that

1
r

d
dr
[r sin ψ(r)] = pblk

V − pblk
L

γLV
, tan ψ(r) = dz(r)

dr
, (10)

where ψ(r) denotes the angle from the r-direction. We evaluated
the three constant values in this differential equation (10) from MD
simulations: γLV was obtained from a MD system with planer LV
interfaces by a standard mechanical process,27 whereas pblk

V and pblk
L

were evaluated as the force per area on the top and bottom poten-
tial walls of the present cylinder system, respectively, both excluding
the region near the side wall. Thus, by fitting the density contour
of ρ = 400 kg/m3 at the LV interface excluding the region in the
adsorption layers formed near the solid surface and also excluding
that near the side potential wall, a numerical solution of the 2nd-
order ordinary differential equation (10) can be obtained for each
system with different cylinder radii Rs and SF interaction parameters
η. As shown by the dotted black line in Fig. 2, the meniscus shape is
well reproduced in this system. We determined the contact angle as
the angle between the extrapolated solution of the meniscus shape
and the SF-interface position in the rz-plane including the liquid
side.

We also considered a concave control volume (CV) shown in
red color in Fig. 2(b) around the bottom of the cylinder to calcu-
late the SL interfacial tension below. The bottom face and the side
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cylindrical face of the CV are in the liquid bulk, where the former
is sufficiently away from both the bottom of the system and bottom
of the cylinder, whereas the latter at r = rCV is away from the side
boundary. Analogously, the top face is at the height z = zSL suffi-
ciently away from both the bottom of the cylinder and the contact
line. On the other hand, the concave faces are set at the SL boundary
with its inner side face at r = rSF.

The density distributions around the solid cylinder with the
smallest radius Rs = 0.777 nm and the plate and the relation between
the SF interaction coefficient η and cosine of the contact angle cos
θapp are shown in Fig. 3. For the latter, we displayed the error bars
and guide lines only for the plate and for the cylinder systems with
Rs = 0.777 nm for better visualization: the error bars for the sys-
tems with other radii were comparable to those for Rs = 0.777 nm.
As shown in Fig. 3(a), the apparent meniscus shapes of the cylin-
der and plate are different, indicating that different force balances
should be adopted to properly evaluate the contact angle from the
meniscus shape. With the increase of η, the solid became more
wettable, i.e., cos θapp increased, and the cylinder with the smallest
radius Rs = 0.777 nm was less wettable, i.e., had smaller cos θapp than
the plate for all η values tested. However; we should stress that the
radius dependence of the contact angle shown in Fig. 3(b) was unex-
pectedly small even with the smallest cylinder with its radius Rs that
is comparable to σff or σsf. We discuss the reason in the following
with the comparison between the apparent contact angle θapp and the
contact angle predicted by Young’s equation (1) using the interfacial
tensions obtained by the local forces.

B. Curvature dependence of the force
around the contact line and the solid–liquid
and solid–vapor interfacial tensions

We further investigate the curvature dependence of wetting
behavior with the calculations of ξcl

z and the interfacial tensions. We
start from the extraction of the upward force Fbot

z exerted from the
solid on the liquid in the red control volume (CV) around the bot-
tom illustrated in the top-left panel of Fig. 4. Note that we evaluate
the upward force Fz on the corresponding liquid from the solid as

follows: the positive direction for Fz is +z-direction and is opposite
to that for ξz (force per length) in the −z-direction on the corre-
sponding solid from the liquid. The top face of the CV at z = zSL
is sufficiently away from both the bottom of the solid and the con-
tact line, where the liquid density ρ near the solid is constant in the
z-direction, satisfying

∂ρ
∂z
= 0 for (r − Rs)2 + (z − zSL)2 ≤ (rsf

c )2 (11)

with rsf
c the cutoff distance for SF interaction. The force of present

interest Fbot
z comes from the neighboring solid within the cutoff

range, i.e., from the red-dotted and black-dotted solid parts as indi-
cated by the blue arrows (top-left panel). On the other hand, with
the condition in Eq. (11), the sum of the upward forces on the liquid
parts in the red-solid and black-solid lines from the red-dotted solid
part (bottom-left panel) is 2πRsξbot

z , which is the reaction force on
the solid around the bottom indicated in Fig. 2. From the compari-
son of the arrows regarding the two, Fbot

z is obtained by adding the
missing force and subtracting the unnecessary force as in the bottom
panel as

Fbot
z = 2πRsξbot

z + Fdiag(SL)
z − (−Fdiag(SL)

z )

= 2πRsξbot
z + 2Fdiag(SL)

z , (12)

where the two “diagonal” forces denoted by Fdiag(SL)
z and −Fdiag(SL)

z
have an opposite sign with the same absolute value due to the
symmetry under the condition in Eq. (11).

The value of unknown Fdiag(SL)
z now must be determined.

Although this Fdiag(SL)
z can be obtained directly by MD simulations

based on the definition, in the special case where the solid is so
smooth compared to the lengthscale of SF inter-particle interaction
that the density can be considered a constant independent of the
position as the present solid with the graphene geometry, Fdiag(SL)

z
can be analytically expressed by

FIG. 3. (a) Density distributions around
the (i) solid cylinder of radius Rs

= 0.777 nm and (ii) plate and (b) relation
between the cosine of the contact angle
and solid–fluid interaction parameter for
different cylinder radii Rs and the plate.

J. Chem. Phys. 156, 054701 (2022); doi: 10.1063/5.0079816 156, 054701-6

© Author(s) 2022

 02 Septem
ber 2024 00:34:26

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 4. Schematic of the extraction of
the z-direction force from the solid on the
fluid in the red control volume around the
bottom, considering the force distribution
in Fig. 2.

Fdiag(SL)
z = −πRsuSL. (13)

The detailed derivation is described in Appendix B. Similarly, the
diagonal force Fdiag(SV)

z on the vapor below a plane z = zSV from the
solid above the plane can also be analytically formulated by

Fdiag(SV)
z = −πRsuSV. (14)

By considering a force balance similar to that illustrated in Fig. 4 and
by also assuming that the solid is smooth and the fluid particles are
not pinned around the contact line, the downward force on the solid
ξcl

z per length is analytically given by (see Appendix C for details)

ξcl
z = −uSL + uSV = (−uSL) − (−uSV), (15)

where the final equality shows that ξcl
z is the difference in the

magnitude between the two interfacial potential energy densities,
considering that uSL and uSV are both negative as exemplified in
Fig. 2.

Figure 5 shows the dependence of SL and SV potential energy
densities −uSL and −uSV on the SF interaction parameter η for solid
plate and solid cylinders with different radii Rs and the comparison
between the downward force ξcl

z on the solid around the CL and the
difference of potential energy density −uSL + uSV. As easily expected,
−uSL and −uSV increased with the increase of η as shown in the left
panel; however, −uSL and −uSV showed opposite dependence on Rs:
−uSL was larger for the smaller cylinder radius Rs whereas −uSV was
smaller. We will discuss this interesting difference later. In the right
panel of Fig. 5, a very good agreement between ξcl

z and −uSL + uSV is
observed for the whole range of η with different radii Rs. This indi-
cates that the force from the solid on the liquid in the CV around the
bottom shown as a red concave in Fig. 4 can be properly evaluated by
Eq. (13) because the present system with solid particles located at the
position of graphene was supposed to be sufficiently smooth to meet
the condition assumed in the analytical derivation in Appendixes B
and C. In addition, due to the opposite radius dependence of −uSL

and −uSV shown in the left panel, the difference of ξcl
z for the small-

est radius and that for the plate was as large as about 10 × 10−3 N/m,

FIG. 5. (Left) dependence of SL and
SV potential energy densities −uSL
and −uSV on the solid–fluid interac-
tion parameter η for solid plate and
solid cylinders with different radii Rs.
(Right) comparison between the down-
ward force ξcl

z on the solid around the CL
and the difference of the potential energy
density −uSL + uSV.
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which is comparable to γLV. In addition, ξcl
z was much larger than

the difference of −(γSL − γS0) and −(γSV − γS0) shown later.
We now examine the relative SL interfacial tension by using the

total static force balance including the force Fbot
z on the red-solid CV

in Fig. 4,

2π∫
rCV

rSF

dr τzz(r, zSL)r + πr2
CVpblk

L + Fbot
z = 0, (16)

where the first and second terms of the LHS are the fluid stress inte-
gral on the top face and pressure from the bottom, respectively. Note
that the side boundary is set at the bulk satisfying τrz = 0 and also
that the fluid stress is zero on the faces around the concave under the
present stress definition.3,26,28,68 The first term of the LHS is related
to the relative SL interfacial tension γSL − γS0 with extended Bakker’s
equation applied for a cylindrical SL interface by (see Appendix A)

γSL − γS0 =
1

rSF
[∫

rCV

rSF

dr τzz(r, zSL)r +
(r2

CV − r2
SF)pblk

L

2
]. (17)

Thus, from Eqs. (12), (16), and (17), γSL − γS0 results in

γSL − γS0 = −
Rs

rSF
ξbot

z −
rSF

2
pblk

L −
Fdiag(SL)

z

πrSF
, (18)

where the pressure pblk
L was measured in MD systems as the nor-

mal force per area exerted on the bottom potential wall for r ≤ rCV
because this external force balances the constant bulk wall-normal
pressure.28 Under the condition that Eq. (13) holds for Fdiag(SL)

z as in
the present systems, Eq. (12) is further rewritten by

Fbot
z = 2πRs(ξbot

z − uSL), (19)

and Eq. (18) writes

γSL − γS0 = −
Rs

rSF
ξbot

z −
rSF

2
pblk

L +
Rs

rSF
uSL. (20)

Similarly, the relative solid–vapor interfacial tension γSV − γS0 writes

γSV − γS0 =
Rs

rSF
ξtop

z −
rSF

2
pblk

V +
Rs

rSF
uSV. (21)

Note that Eqs. (20) and (21) are equivalent to the derivation for the
quasi-2D Wilhelmy plate26 except the point that the radii of the solid
surface area Rs and solid–fluid interface area rSF are different for
the present Wilhelmy-cylinders. In addition, note that the menis-
cus shape including the contact angle does not explicitly appear in
Eqs. (20) and (21).

Figure 6 shows the relative SL and SV interfacial tensions cal-
culated by Eqs. (20) and (21) for different solid radii Rs with various
wettability parameters η. For a direct comparison between the two
interfacial tensions, the values −(γSL − γS0) + γLV and −(γSV − γS0)
are shown with the left vertical axis, which correspond to the works
of adhesion

WSL ≡ −(γSL − γS0) + γLV (22)

and
WSV ≡ −(γSV − γS0), (23)

FIG. 6. Dependence of the SL and SV interfacial tensions on the radius of solid
cylinders with different wettabilities.

where the value of γLV = 9.79 × 10−3 N/m obtained in our previous
study26 was used. For a flat interface, they are defined as the min-
imum works needed to strip the liquid and vapor off the flat solid
surface, respectively, under the constant temperature and pressure
condition.28,36 Note that both works of adhesion WSL and WSV are
positive, and we will discuss about them later from a viewpoint of
the free energy as well as the curvature effects. With the decrease in
the radius Rs, both −(γSL − γS0) and −(γSV − γS0) became smaller,
and the dependence was more remarkable for the larger η value. For
the smallest cylinder with Rs = 0.777 nm, −(γSL − γS0) was about
2 × 10−3 N/m smaller than that of the flat plate. However, −(γSV −
γS0)was also reduced with the decrease of Rs, and this resulted in the
rather small dependence of the contact angle on the radius shown in
Fig. 3.

C. Applicability of Young’s equation
Using the relative interfacial tensions γSL − γS0 and γSV − γS0

obtained in Subsection III B, we examined whether Young’s equa-
tion holds for the present system with a curved solid surface. Figure 7
shows the comparison between the apparent contact angle cosine
cos θapp in Fig. 3 determined from the meniscus shape and that
estimated by Young’s equation (1) defined by

cos θY =
γSV − γSL

γLV
≡ (γSV − γS0) − (γSL − γS0)

γLV

= WSL −WSV

γLV
− 1, (24)

using the interfacial tensions obtained above via the mechanical
route. Note that γLV was set constant, considering that its curva-
ture dependence appeared only for a radius of curvature smaller
than about 3σff for the LJ fluid,58 which is smaller than that in the
present study. In addition, it has been shown that γLV consistent
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FIG. 7. Comparison between the apparent contact angle cos θapp and that esti-
mated by Young’s equation cos θY using the interfacial tensions obtained by the
mechanical route. The value of η ranges from 0.03 to 0.15 for each cylinder radius
Rs and plate.

with Young’s equation should be defined at a position excluding
the adsorption layers around the SL interface28 at which the radius
of curvature of the LV interface is sufficiently large and the curva-
ture effect is negligible. For the whole range of η values and radii Rs
tested, cos θapp and cos θY agreed very well, and this indicates that
Young’s equation holds for the present systems with curved solid
surfaces without pinning if the solid-related relative interfacial ten-
sions γSL − γS0 and γSV − γS0 are properly evaluated via a mechanical
route.

D. Discussion
A question arises: why was the curvature dependence of the rel-

ative interfacial tensions γSL − γS0 and γSV − γS0 shown in Fig. 6 not
so large compared to the contact-line force ξcl

z = −uSL + uSV seen in
Fig. 5? More specifically, why did −uSL in the left panel of Fig. 5
and −(γSL − γS0) in Fig. 6 show opposite dependence on Rs? To
examine the curvature dependence of −uSL, we evaluated the den-
sity field around the solid–liquid interface, where we have carried
out an additional simulation with a solid cylinder with a chiral
index (60,0) (Rs = 2.33 nm). Figure 8 shows the comparison of the
fluid density around a solid–liquid interface between the (a) cylin-
der with Rs = 0.777 nm and (b) flat plate with η = 0.15. Positions
of the solid particles are shown with small black and gray circles,
where the particles with the same color are at the same height z,
and the distance range of rsf from a black solid particle satisfy-
ing interaction potential Φsf(rsf) ≤ −ϵsf/2, as indicated by the blue
potential graph, is depicted by magenta circles. As shown in this
figure, the high density region in red corresponding to the fluid

FIG. 8. Comparison of the fluid density around a solid–liquid interface between the
(a) cylinder with Rs = 0.777 nm and (b) flat plate with η = 0.15. Positions of the
solid particles are shown with small black and gray circles, and the distance range
of rsf from a solid particle satisfying the interaction potential Φsf(rsf) ≤ −ϵsf/2 is
depicted by magenta circles.

first adsorption layer is included in this distance range more for
Rs = 0.777 nm, and this results in the higher −uSL for smaller Rs
indicated in the left panel of Fig. 5 because the fluid particles in
this distance range have the main contribution.53,67 On the other
hand, smaller −uSV for smaller Rs was due to the lower density on
a solid with a smaller radius. This is because for the fluid parti-
cles adsorbed onto the solid, the mean potential field formed by
the solid particles has a shallower well on a solid with a smaller
radius than on a flat surface, and the fluid particles can easily be
desorbed.

Different from the average SL interaction potential −uSL, the
relative interfacial tension is considered the interfacial free energy
per area, i.e., γSL − γS0 is related to the SL work of adhesion WSL in
Eq. (22), and it consists of internal energy and entropy terms,35,36

WSL = −(γSL − γS0) + γLV = −uSL − (−TΔsSL), (25)

where −TΔsSL is due to the entropy “loss” −ΔsSL induced by the den-
sity increase in the adsorption layers of the SL interface. Figure 9
shows the solid–liquid interfacial potential energy per area −uSL, the
work of adhesion WSL, and the entropy loss −TΔsSL in Eq. (25) for
various cylinder radii Rs with η = 0.15. Note that the additional data
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FIG. 9. Solid–liquid interfacial potential energy per area−uSL, the work of adhesion
WSL, and the entropy loss −TΔsSL calculated by Eq. (25) for various cylinder radii
Rs with a solid–fluid interaction parameter η = 0.15.

for a cylinder radius Rs = 2.33 nm were also shown, and the radius
for the plate was set as Rs =∞. A larger entropy loss exceeding the
potential gain in −uSL resulted in the opposite curvature dependence
between the SL interfacial potential energy −uSL and the relative
interfacial tension −(γSL − γS0) shown in Figs. 5 and 6. In addition,
it is indicated that the curvature effect could remain even for a rela-
tively large cylinder radius Rs larger than about 10σff, which is much
larger than the radius dependence range of γLV reported for the LJ
droplets.58

IV. CONCLUDING REMARKS
In this study, we successfully extracted the SL and SV interfa-

cial tensions of a simple Lennard-Jones fluid around a solid cylinder
with a nanometer-scale diameter by extending the theoretical nano-
Wilhelmy equations for a quasi-two-dimensional flat solid plate
from our previous study.26 The solid-liquid (SL) and solid-vapor
(SV) interfacial tensions were calculated from the integral of the
normal-stress in the wall-tangential direction by considering the
mechanical force balances on control volumes set around the bottom
and top ends of the solid cylinder subject to the fluid stress and exter-
nal force from the solid, where the local force on the solid around
the contact line expressed by these external forces agreed well with
the analytical expression. The theoretical contact angle calculated by
Young’s equation using these interfacial tensions agreed well with
the apparent contact angle estimated by the analytical solution to
fit the meniscus shape, showing that Young’s equation holds even
for menisci around solids with nanoscale curvature if the interfacial
tensions are properly evaluated. It was also shown that the curvature
dependence of the SL and SV interfacial tensions as the free energy

was different from that of the corresponding interaction potential
energies as a part of the internal energy, which explains the weak
curvature dependence of the contact angle in the present results.

The accurate calculation of the interfacial tensions on curved
surfaces could explain the unique wetting behavior of water on car-
bon nanotubes (CNTs), e.g., the temperature dependence of the SV
interface structure52 and the diameter dependence of the capillary
force53 outside the CNTs as well as the phase change of water in
the CNTs70 indicated in experiments. In addition, it should enable
the exploration of the Tolman equation for the solid-related inter-
faces. Related to this, an interesting future target is the interfacial
tensions inside the curved interface from a mechanical route, which
should enable the analysis of nano-confinement effects or nanoscale
capillaries as well, e.g., in carbon nanotubes.
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APPENDIX A: EXTENDED BAKKER’s EQUATION
FOR CYLINDER

We formulate the relative solid–liquid (SL) interfacial tension
relative to the solid–vacuum (S0) γSL − γS0 between cylindrical solid
surface and liquid through the thought experiment shown in Fig. 10.
The side piston normal to the cylinder axis z is in contact only with
the liquid, i.e., the inner radius is at rSL set at the limit radius nearest
to the solid that the fluid particle can reach, whereas the outer radius
rblk

L is at the liquid bulk sufficiently away from the SL interface. The
axis-normal stress defined by

τzz(r) ≡ −pz(r) (A1)

is a function of the radial position r, and it satisfies

pz(r) = pblk
L = const. (r ≥ rblk

L ). (A2)

On the other hand, the top piston is set at the liquid bulk on which
homogeneous pressure identical to the bulk pressure pblk

L is exerted.
We suppose a virtual infinitesimal displacement δz of the side piston
with a simultaneous downward displacement of the top piston so
that the liquid volume may not change. If the operation is quasi-
static at a constant temperature, the change in the Helmholtz free
energy δF is equal to the work δW exerted on the system given by

δF = δW = pblk
L δV − 2πδz∫

rblk
L

rSL

dr pz(r)r, (A3)
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FIG. 10. Thought experiment for the connection between relative solid–liquid
interfacial tension and pressure distribution around the solid cylinder.

where the volume increase and decrease δV due to the motions of
side and top pistons, respectively, writes

δV = 2πδz∫
rblk

L

rSL

dr r = π[(rblk
L )2 − r2

SL]δz. (A4)

The free energy change δF in Eq. (A3) is uniquely defined as long as
rblk

L is set in the bulk satisfying Eq. (A2). From a macroscopic point
of view, the SL interface is increased and the S0 interface is reduced
with this operation. By assuming that the SL interface is at rSL, it
follows that

δF = 2πrSL(γSL − γS0)δz. (A5)

By equating Eqs. (A3) and (A5), the following relation is derived as
extended Bakker’s equation for a cylindrical SL interface:

γSL − γS0 =
1

rSL

⎡⎢⎢⎢⎣
∫

rblk
L

rSL

dr τzz(r)r +
pblk

L [(rblk
L )2 − r2

SL]
2

⎤⎥⎥⎥⎦
, (A6)

where Eq. (A1) is used as well. Equation (A6) means that the rela-
tive SL interfacial tension is obtained with the stress integral, bulk
pressure, and the interface position.

The relative solid–vapor (SV) interfacial tension is expressed as
well by

γSV − γS0 =
1

rSV

⎡⎢⎢⎢⎣
∫

rblk
V

rSV

dr τzz(r)r +
pblk

V [(rblk
V )2 − r2

SV]
2

⎤⎥⎥⎥⎦
. (A7)

APPENDIX B: EXTRACTION OF THE INTERACTION
FORCE BETWEEN THE LIQUID AND SOLID ACROSS
A z-NORMAL PLANE AT A SL INTERFACE

We derive the interaction force Fdiag(SL)
z exemplified in the

bottom panels of Fig. 4, namely, the interaction force between the
solid above a z-normal plane z = zSL and liquid below that plane.
The plane z = zSL is at a height around which the fluid density
is independent of the position z because the plane is sufficiently

away from the contact line and the bottom of the cylinder.
Taking into account that the solid is supposed to be smooth

for the fluid particles because the inter-particle distance parameters
σff and σsf are sufficiently large compared to rss between solid par-
ticles, the solid–liquid interaction force can be analytically modeled
by assuming the mean fields of the fluid and solid. The mean number
density per volume ρf

V(rf) (= ρ/mf) of the fluid is given as a function
of the radial position rf of the fluid, whereas a constant mean num-
ber density per area ρs

A of the solid at r = Rs is used considering the
present system with a solid cylinder of zero-thickness without vol-
ume; however, the following derivation can easily be extended for
a system with a solid with a volume and density per volume in the
range r ≤ Rs.

We start from the potential energy on a solid particle at position
(Rs, ϑs, zs) due to a fluid particle at (rf, ϑf, zf), both in the cylindrical
rϑz-coordinate, given by Eq. (2). Assuming that the fluid particles
are homogeneously distributed in the azimuth direction ϑ with a
number density ρf

V(rf, zf) per volume, the mean potential field from
an infinitesimal fluid volume segment of dzf × 2πrfdrf on a solid
particle is defined by using ρf

V(zf, rf) and the mean local potential
ϕ(z′f, r′f) as ρf

V(zf, xf)dzfdrf ⋅ ϕ(z′f, r′f), where ϕ(z′f, r′f) is given by

ϕ(z′f, r′f) ≡ ∫
2π

0
ΦLJ(rsf)rfdϑf, (B1)

where we define

rsf =
√
(rf cos ϑf − Rs cos ϑs)2 + (rf sin ϑf − Rs sin ϑs)2 + z′2f ,

(B2)
and

z′f ≡ zf − zs ≡ −z′s , r′f ≡ rf − Rs. (B3)

Then, the local force in the z-direction f s
z(z′f, r′f)dzfdrfdzs exerted

on the solid cylinder in [zs, zs + dzs] with an area number density of
the solid particles ρs

A(zs) from the present fluid volume segment is
given by

f s
z(zs, zf, rf)dzfdrfdzs = −ρf

V(zf, rf)
∂ϕ(z′f, r′f)

∂zs

× dzfdrf ⋅ 2πRsρs
A(zs)dzs, (B4)

where

f s
z(zs, zf, rf) = −2πRsρs

A(zs)ρf
V(zf, rf)

∂ϕ(z′f, r′f)
∂zs

(B5)

denotes the axial force density on the solid given as a function of zs,
zf, and rf.

Since ΦLJ(rsf) is truncated at the cutoff distance rc in the
present case,
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ϕ(z′f, r′f) = 0,
∂ϕ(z′f, r′f)

∂zs
= 0

for
∣z′f∣ ≥

√
r2

c − r′2f ≡ zc(r′f) or r′f ≥ rc (B6)

holds, where zc(r′f) as a function of r′f denotes the cutoff with
respect to z′f. This cutoff is not critical as long as ϕ(z′f, r′f) quickly
vanishes with the increase of r, but we continue the derivation
including the cutoff for simplicity. With the definition of rSF as the
limit that the fluid could reach, it follows that

ρf
V = 0 for rf < rSF. (B7)

In addition, considering that ϕ(z′f, r′f) is an even function with
respect to z′f, i.e.,

ϕ(z′f, r′f) = ϕ(−z′f, r′f), (B8)

it follows for the mean local potential ϕ that

∂ϕ(z′f, r′f)
∂zs

= −∂ϕ(−z′f, r′f)
∂zs

(B9)

and
∂ϕ(z′f, r′f)

∂zs
= −∂ϕ(z

′

f, r′f)
∂zf

, (B10)

where Eq. (B3) is applied for the latter. This corresponds to the
action–reaction relation between solid and fluid particles under a

simple two-body interaction, i.e.,

f f
z(zs, zf, rf) = − f s

z(zs, zf, rf)

= −2πRsρs
A(zs)ρf

V(zf, rf)
∂ϕ(z′f, r′f)

∂zf
(B11)

holds for the tangential force density on the fluid f f
z .

Based on these properties, we now derive the analytical expres-
sion of the force exerted on the solid above a z-normal plane z = zSL

from the liquid below that plane, i.e., the force of interest Fdiag(SL)
z

given by

Fdiag(SL)
z = ∫

rc

0
dr′f∫

0

−zc(r′ f)
dz′f∫

zc(r′ f)

−z′ f

dz′s f f
z

= −∫
rc

0
dr′f[∫

0

−zc(r′ f)
dz′f(∫

zc(r′ f)

−z′ f

dz′s f s
z)], (B12)

where the double integral in the square brackets corresponds to the

top-left region in Fig. 11. Let the density ρf
V for zSL − zc < zf < zSL

+ zc be given as a unique function of rf by

ρf
V(zf, rf) = ρf(SL)

V (rf). (B13)

Then, it follows for the double integral in the square brackets in
Eq. (B12) that

∫
0

−zc

dz′f(∫
zc

−z′ f

dz′s f s
z) = −2πRs∫

0

−zc

dz′fρ
f(SL)
V (r′f)[∫

zc

−z′ f

dz′sρ
s
A(zs)

∂ϕ(z′f, r′f)
∂zs

]

= −2πRs∫
0

−zc

ρf(SL)
V (r′f)dz′f{[ρs

A(zs)ϕ(z′f, r′f)]
zc

z′s=−z′ f
− ∫

zc

−z′ f

dz′s
dρs

A(zs)
dzs

ϕ(z′f, r′f)}

= 2πRs∫
0

−zc

dz′fρ
f(SL)
V (r′f)[ρs

A(−z′f)ϕ(−z′f, r′f) + ∫
zc

−z′ f

dz′s
dρs

A(zs)
dzs

ϕ(z′f, r′f)],

= 2πRs∫
0

−zc

dz′fρ
f(SL)
V (r′f)ρs

A(−z′f)ϕ(z′f, r′f)

+ 2πRs∫
0

−zc

dz′fρ
f(SL)
V (r′f)[∫

zc

−z′ f

dz′s
dρs

A(zs)
dzs

ϕ(z′f, r′f)], (B14)

where ϕ(zc, r′f) = 0 and Eq. (B8) are used for the fourth equality.
With an additional assumption of

ρs
A = const., (B15)

the second term of the right-hand side becomes zero, and it follows

∫
0

−zc

dz′f(∫
zc

−z′ f

dz′s f s
z) = 2πRsρs

A∫
0

−zc

dz′fρ
f(SL)
V (r′f)ϕ(z′f, r′f)

= πRsρs
A∫

zc

−zc

dz′fρ
f(SL)
V (r′f)ϕ(z′f, r′f), (B16)

considering that ϕ is an even function with respect to z′f for the
second equality. By inserting Eq. (B16) into Eq. (B12), it follows

Fdiag(SL)
z = −πRsρs

A∫
rc

0
dr′f∫

zc(r′ f)

−zc(r′ f)
dz′fρ

f(SL)
V (r′f)ϕ(z′f, r′f). (B17)

Indeed, the RHS of Eq. (B17) can be expressed using the following
SL potential energy density uSL given by
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FIG. 11. Region for the double integral of the mean field to calculate the interac-
tion between the solid cylinder above zs = zSL and liquid below zf = zSL (top-left
triangle in the solid blue line). The geometrical relation is shown in the inset. The
cutoff distance zc for ∣zf − zs∣ depends on the relative radial position r f − Rs.

uSL ≡ ρs
A∫

rc

0
dr′f∫

zc(r′ f)

−zc(r′ f)
dz′fρ

f(SL)
V (r′f)ϕ(z′f, r′f), (B18)

which represents the SL potential energy per solid area at the SL
interface away both from the CL and from the bottom of the solid
plate. With uSL, Eq. (B17) writes

Fdiag(SL)
z = −πRsuSL, (B19)

which corresponds to Eq. (13) in the main text.

Similar to Fdiag(SL)
z , the interaction force Fdiag(SV)

z between the
solid above a z-normal plane z = zSV and the vapor below that plane
writes

Fdiag(SV)
z = −πRsuSV, (B20)

where the SV potential energy density uSV is given by

uSV ≡ ρs
A∫

rc

0
dr′f ρ

f(SV)
V (r′f)∫

zc(r′ f)

−zc(r′ f)
dz′f ϕ(z′f, r′f). (B21)

APPENDIX C: EXTRACTION OF THE FORCE EXERTED
ON THE SOLID AROUND THE CONTACT LINE

We can formulate the downward force on the solid around
the contact line 2πRsξcl

z from the fluid as the reaction force, i.e.,
the upward force on the liquid from the solid, from the force bal-
ance similar to that displayed in Fig. 4. Let Fcl

z be the force on the
liquid around the contact line, 2πRsξcl

z can be obtained by adding
Fdiag(SL)

z − Fdiag(SV)
z and subtracting −Fdiag(SL)

z + Fdiag(SV)
z as

2πRsξcl
z = Fcl

z + 2(Fdiag(SL)
z − Fdiag(SV)

z ), (C1)

as illustrated in Fig. 12. In case the solid surface is smooth and flat
and no pinning is induced,

Fcl
z = 0 (C2)

holds because the average surface lateral force on each fluid parti-
cles from the solid is zero.26,28,29,36 This condition is applicable to the
present systems. By inserting Eqs. (13), (14), and (C2) into Eq. (C1),

ξcl
z = −uSL + uSV = (−uSL) − (−uSV) (C3)

is derived as the analytical expression of ξcl
z in Eq. (15) in the main

text, where the final expression is to emphasize that the potential
energy densities uSL and uSV are both negative.

FIG. 12. Schematic of the extraction of
the z-direction force on the solid around
the contact line from the fluid.
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