



|              |                                                                           |
|--------------|---------------------------------------------------------------------------|
| Title        | On nonsingular FPF-rings. II                                              |
| Author(s)    | Kobayashi, Shigeru                                                        |
| Citation     | Osaka Journal of Mathematics. 1985, 22(4), p. 797-803                     |
| Version Type | VoR                                                                       |
| URL          | <a href="https://doi.org/10.18910/9785">https://doi.org/10.18910/9785</a> |
| rights       |                                                                           |
| Note         |                                                                           |

*The University of Osaka Institutional Knowledge Archive : OUKA*

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Kobayashi, S.  
Osaka J. Math.  
22 (1985), 797-803

## ON NON-SINGULAR FPF-RINGS II

SHIGERU KOBAYASHI

(Received October 24, 1984)

In [2], we have proved that a right non-singular ring  $R$  is right FPF (=every finitely generated faithful right  $R$ -module generates the category of right  $R$ -modules) if and only if (1)  $R$  is right bounded, (2) The multiplication map  $Q \otimes_{\mathbb{Z}_R} Q \rightarrow Q$  is an isomorphism and  $Q$  is flat as a right  $R$ -module, where  $Q$  means the maximal right quotient ring of  $R$ , (3) For any finitely generated right ideal  $I$  of  $R$ ,  $Tr_R(I) \oplus r_R(I) = R$  (as ideals), where  $Tr_R(I)$  means the trace ideal of  $I$  and  $r_R(I)$  means the right annihilator ideal of  $I$ . This characterization implies a following result of S. Page. "Let  $R$  be a right non-singular right FPF-ring and  $Q$  be the maximal right quotient ring of  $R$ . Then  $Q$  is also right FPF and is isomorphic to a finite direct product of full matrix rings over abelian regular self-injective rings." However, as we can see from an example in section 1, not all non-singular right FPF-rings arise in this fashion.

Therefore, in this paper, we shall give a necessary and sufficient condition for a non-singular right FPF-ring to split into a finite direct product of full matrix rings over FPF-rings whose maximal right quotient rings are abelian regular self-injective rings. More precisely, we shall prove the following theorem.

**Theorem 1.** *Let  $R$  be a non-singular right FPF-ring. Then the following conditions are equivalent.*

- (1)  $R \cong \prod_{i=1}^t M_{n(i)}(S_i)$ , where each  $S_i$  is a non-singular right FPF-ring whose maximal right quotient ring is an abelian regular self-injective ring.
- (2)  $R$  contains a faithful and reduced FPF idempotent and  $R$  satisfies general comparability.

By Y. Utumi [5], non-singular (right) continuous rings are shown to be (Von Neumann) regular, and S. Page has determined the structure of regular (right) FPF-rings. Therefore we are interested in the structure on non-singular right quasi-continuous, right FPF-rings. In section 2, as an application of Theorem 1, we shall determine the structure of non-singular right quasi-continuous right FPF-rings.

## 0. Preliminaries

Throughout of this paper, we assume that a ring  $R$  has identity and all modules are unitary.

Let  $R$  be a ring. Then we say that  $R$  is right FPF if every finitely generated faithful right  $R$ -module is a generator in the category of right  $R$ -modules. If  $R$  is a right non-singular right FPF-ring, then  $R$  is also left non-singular by Theorem 3 of [4]. Therefore, we simply call  $R$  a non-singular right FPF-ring.

Let  $e$  be an element of  $\text{id}(R)$  (=the set of all idempotents of  $R$ ), where  $R$  is a non-singular right FPF-ring. Then we say that  $e$  is a faithful and reduced FPF idempotent if the right  $R$ -module  $eR$  is faithful and the ring  $eRe$  is a non-singular right FPF-ring whose maximal right quotient ring is an abelian regular self-injective ring, where a regular ring  $R$  is said to be abelian if every idempotent of  $R$  is central.

A ring  $R$  satisfies general comparability provided that for any  $e, f$  in  $\text{id}(R)$ , there exists  $h \in B(R)$  (=the set of all central idempotents of  $R$ ) such that  $h(eR) \leq h(fR)$  and  $(1-h)(fR) \leq (1-h)(eR)$ , where  $h(eR) \leq h(fR)$  means that  $h(eR)$  is isomorphic to a direct summand of  $h(fR)$ .

Let  $M$  be a right  $R$ -module. Then we use  $r_R(M)$  to denote the right annihilator ideal of  $M$ , and we use  $L_r(M)$  to denote the lattice of all submodules of  $M$ .  $M$  is said to have the extending property of modules for  $L_r(M)$ , provided that for any  $A$  in  $L_r(M)$ , there exists a direct summand  $A^*$  of  $M$  such that  $A \subseteq_e A^*$ , where  $A \subseteq_e A^*$  means that  $A$  is an essential submodule of  $A^*$ .

We say a ring  $R$  is right quasi-continuous if (1)  $R$  has the extending property of modules for  $L_r(R)$ , and (2) for  $A$  and  $B$  in  $L_r(R)$ , which are direct summand of  $R$  with  $A \cap B = 0$ ,  $A \oplus B$  is also a direct summand of  $R$ .

## 1. Proof of Theorem 1

In this section, we shall prove Theorem 1. First we show the following lemma.

**Lemma 1.** *Let  $R$  be a non-singular right FPF-ring whose maximal right quotient ring is an abelian regular self-injective ring. Then for any positive integer  $n$ ,  $M_n(R)$  satisfies general comparability.*

Proof. First we assume that  $n=1$ . Since  $Q$ , the maximal right quotient ring of  $R$ , is an abelian regular ring,  $B(Q)=B(R)$ , hence  $\text{id}(Q)=\text{id}(R)$ . Let  $e$  and  $f$  are idempotents of  $R$ . Then  $eR \cap fR = efR$  and  $ef$  is idempotent since  $\text{id}(R)=B(R)$ . So  $fR \cap eR \leq fR = f(fR)$  and  $(1-f)(fR) (= 0) \leq (1-f)(eR)$ . Therefore  $R$  has general comparability. Next let  $n \geq 1$ , and assume that the Theorem holds for  $n-1$ . Let  $e$  and  $f$  are idempotent of  $M_n(R)$ . Then we note

that  $eR$  and  $fR$  are isomorphic to  $e_1 \oplus \cdots \oplus e_n R$  and  $f_1 R \oplus \cdots \oplus f_n R$  as right  $R$ -modules, where  $e_i$  and  $f_i$  ( $i=1, 2, \dots, n$ ) are idempotents of  $R$ . We set  $A = e_1 R \oplus \cdots \oplus e_n R$  and  $B = f_1 R \oplus \cdots \oplus f_n R$ , and set  $A' = e_2 R \oplus \cdots \oplus e_n R$  and  $B' = f_2 R \oplus \cdots \oplus f_n R$ . By induction hypothesis, there exist central idempotents  $h_1, h_2$  such that  $h_1(e_1 R) \leq h_1(f_1 R)$ ,  $(1-h_1)(f_1 R) \leq (1-h_1)(e_1 R)$ , and  $h_2 A' \leq h_2 B'$ ,  $(1-h_2)B' \leq (1-h_2)A'$ . Now we set that  $t_1 = h_1 h_2$  and  $t_2 = (1-h_1)(1-h_2)$ . Then  $t_1$  and  $t_2$  are in  $B(R)$ , and  $t_1 t_2 = 0$ . Moreover we see that  $t_1(e_1 R) \leq t_1(f_1 R)$  and  $t_1 A' \leq t_1 B'$ . Hence  $t_1 A \leq t_1 B$ . Similarly,  $t_2 B \leq t_2 A$ . Further we set  $g_1 = h_1(1-h_2)$ ,  $g_2 = h_2(1-h_1)$  and  $g = g_1 + g_2$ . Then since  $h_1(e_1 R) \leq h_1(f_1 R)$ , we have  $g_1(e_1 R) \leq g_1(f_1 R)$  and  $g_1(f_1 R) \cong g_1(e_1 R) \oplus D_1$  for some  $D_1$ . Similarly, we obtain that  $g_2(e_1 R) \cong g_2(f_1 R) \oplus C_1$  for some  $C_1$ . Furthermore we have that  $g_2 B' = g_2 A' \oplus D_2$  and  $g_1 A' = g_1 B' \oplus C_2$  for  $D_2, C_2$ . We see that  $gA \cong (g_1(e_1 R) \oplus g_2(f_1 R) \oplus g_1 B' \oplus g_2 A') \oplus (C_1 \oplus C_2)$  and  $gB \cong$  some  $(g_1(e_1 R) \oplus g_2(f_1 R) \oplus g_1 B' \oplus g_2 A') \oplus (D_1 \oplus D_2)$ . On the other hand, since  $C_1 \leq g_2(e_1 R) \leq g_2 R$  and  $C_2 \leq g_1 A' \leq (n-1)(g_1 R)$ ,  $C_1 \oplus C_2 \leq (n-1)(g_1 + g_2)R \leq (n-1)gR$ . Similarly,  $D_1 \oplus D_2 \leq (n-1)gR$ . Hence by induction hypothesis, there exists a central idempotent  $k$  of  $R$  such that  $k(C_1 \oplus C_2) \leq k(D_1 \oplus D_2)$  and  $(1-k)(D_1 \oplus D_2) \leq (1-k)(C_1 \oplus C_2)$ . Set  $t_3 = gk$  and  $t_4 = g(1-k)$ . Then  $t_3, t_4$  are in  $B(R)$  and  $t_3 t_4 = 0$  and  $t_3 + t_4 = g$ . We see that  $t_3 A \leq t_3 B$  and  $t_4 B \leq t_4 A$ . Now we set  $e = t_1 + t_3$ . Then  $eA \leq eB$  and  $(1-e)B \leq (1-e)A$ . Therefore  $M_n(R)$  has general comparability.

### Proof of Theorem 1.

(1)  $\Rightarrow$  (2); By Lemma 1,  $R$  has general comparability, and it is easily seen that  $R$  contains a faithful and reduced FPF idempotent.

(2)  $\Rightarrow$  (1); Let  $g$  be a a faithful and reduced FPF idempotent of  $R$ . We claim that  $g$  is a faithful abelian idempotent of  $Q$ . Set  $H = r_Q(gQ)$ , then since  $Q$  is right self-injective regular,  $H = eQ$  for some central idempotent  $e$  of  $R$ . Further by Theorem 1 of [3],  $B(R) = B(Q)$ , so  $e$  must be zero since  $gR$  is faithful. Hence  $gQ$  is a faithful right  $Q$ -module. We note that  $gQg$  is a maximal right quotient ring of  $gRg$ . Thus  $g$  is a faithful abelian idempotent of  $Q$ . Since  $Q$  is also right FPF by [4, Theorem 2],  $Q \leq n(gQ)$  for some positive integer  $n$ . For each  $t=1, 2, \dots, n$  let  $e_t$  be the supremum of all  $e \in B(R)$  for which  $(eQ)_Q \leq t(egQ)$ . By [2, Theorem 10, 15],  $e_t Q \leq t(e_t gQ)$ . Then  $e_1 \leq e_2 \cdots \leq e_n = 1$ , and we define that  $f_1 = e_1$ , and  $f_t = e_t - e_{t-1}$  for all  $t=2, \dots, n$ . Note that the  $f_t$ 's are pairwise orthogonal, and  $\bigvee f_t = \bigvee e_t = 1$ . Therefore  $Q = \prod_{t=1}^n f_t Q$ , and since  $B(R) = B(Q)$ , we see that  $R = \prod_{t=1}^n f_t R$ . Thus it only remains to show that each of the rings  $f_t R$  is isomorphic to a  $t \times t$ -matrix ring over a FPF-ring whose maximal right quotient ring is an abelian regular self-injective ring. Since  $f_1 Q \leq f_1 g Q \leq gQ$  and  $gQg$  is abelian, we see that the ring  $f_1 Q$  is abelian. Furthermore,  $f_1 Q$  is a maximal right quotient ring of  $f_1 R$ . Now consider any integer  $t \in \{2, \dots, n\}$ . Note that  $f_t Q$  is a regular ring of index  $t$ . We have that  $f_t \leq e_t$

and  $e_t Q \leq t(e_t g Q)$ , whence  $f_t Q \leq t(f_t g Q)$ . Since  $R$  has general comparability, there exists a central idempotent  $e$  of  $R$  such that  $(t-1)(egR) \leq eR$  and  $(1-e)R \leq (t-1)(1-e)gR$ . Then  $(1-e)Q \leq (t-1)(1-e)gQ$ , so  $1-e \leq e_{t-1}$ . Thus  $f_t \leq 1-e_{t-1} \leq e$ . Therefore  $(t-1)(f_t g R) \leq f_t R$ . We have that  $f_t R = (t-1)(f_t g R) \oplus A$  for some  $A$ . Next by general comparability of  $R$ , there exists a central idempotent  $h$  of  $R$  such that  $h(f_t g R) \leq hA$ , and  $(1-h)A \leq (1-h)(f_t g R)$ . Then  $hA = h(f_t g R) \oplus B$  and  $(1-h)(f_t g R) \cong (1-h)A \oplus C$  for some  $B$  and  $C$ . Now  $f_t R \cong t(hf_t g R) \oplus B \oplus t((1-h)A) \oplus (t-1)C$ . Hence there exist idempotents  $k_i$  ( $i=1, 2, 3, 4$ ) of  $f_t R$  such that  $k_1 R \cong t(hf_t g R)$ ,  $k_2 R \cong B$ ,  $k_3 \cong t((1-h)A)$ , and  $k_4 R \cong (t-1)C$ . We claim that each  $k_i$  is central. If  $k_1$  is not central, then  $\text{Hom}_Q(k_1 Q, (f_t - k_1)Q) \cong (f_t - k_1)Qk_1 \neq 0$ , whence  $\text{Hom}_Q(hf_t g Q, (f_t - k_1)Q) \neq 0$ . Let  $\varphi$  be a nonzero element of  $\text{Hom}_Q(hf_t g Q, (f_t - k_1)Q)$ . Then  $\varphi(hf_t g)$  is nonzero and  $\varphi(hf_t g)Q$  is a direct summand of  $(f_t - k_1)Q$ . In particular,  $\varphi(hf_t g)Q$  is a projective and hence we have that  $hf_t g Q = E \oplus \text{Ker } \varphi$  for some  $E$ . Since  $E \cong \varphi(hf_t g)Q$ , we have that  $E \leq hf_t Q$ . But then  $hf_t Q$  contains a direct sum of  $t+1$  nonzero pairwise isomorphic right ideals, which contradicts the index of  $f_t Q$ . Therefore  $k_1$  is central. Likewise for  $k_2, k_3, k_4$ . Next we show that  $k_2$  and  $k_4$  are zero. It is easily seen that  $k_2$  is zero since  $f_t g R$  is a faithful right  $f_t R$ -module. Since  $C \leq (1-h)(f_t g R)$ ,  $R \cong (t-1)C \leq (t-1)(1-h)f_t g R$ . Hence  $(1-h)f_t k_4 R \leq (t-1) \cdot (1-h)f_t k_4 g R$ , so  $(1-h)f_t k_4 \leq e_{t-1}$ . But since  $e_{t-1} = e_t - f_t$ ,  $e_{t-1}$  is orthogonal to  $f_{t-1}$ . Thus  $k_4 = (1-h)f_t k_4 = 0$ . Consequently,  $f_t R = k_1 R \oplus k_2 R \cong t(hf_t g R) \oplus t((1-h)A) \cong t(hf_t g R) \oplus t((1-h)f_t g R) \cong t(f_t g R)$ . Thus  $f_t R = M_t(f_t g R f_t g)$  as rings, since  $f_t g Q f_t g$  is a maximal right quotient ring of  $f_t g R f_t g$  and is an abelian regular right self-injective ring. Thus the proof is complete.

EXAMPLE. There exists a non-singular two-sided FPF-ring  $R$ , which is not isomorphic to a full matrix ring of non-singular FPF-ring whose maximal right quotient ring is an abelian regular self-injective ring.

Proof. Let  $D$  be a *Prüfer* domain which is not a principal ideal domain and let  $I$  be a non-principal finitely generated ideal of  $D$ . We set  $R = \begin{pmatrix} D & I \\ I^{-1} & D \end{pmatrix}$ .

It is easy to see that  $R$  is non-singular FPF-ring, and  $R$  does not satisfy general comparability. Hence by Theorem 1,  $R$  is not isomorphic to a full matrix ring over a non-singular FPF-ring whose maximal right quotient ring is an abelian regular self-injective ring.

## 2. Non-singular quasi-continuous FPF-rings

In this section, as an application of Theorem 1, we shall determine the structure of non-singular quasi-continuous FPF-rings. First we recall that a ring  $R$  is right quasi-continuous if (1)  $R$  has the extending property of modules for  $L_r(R)$ , and (2) For any  $A, B$  in  $L_r(R)$ , which are direct summand of  $R$  with

$A \cap B = 0$ ,  $A \oplus B$  is also a direct summand of  $R$ .

In [3], K. Oshiro has studied quasai-continuous modules, and proved the following.

**Proposition 1** ([3, Propositions 1.5 and 3.1]). *Let  $M$  be a right  $R$ -module. Then the following conditions are equivalent.*

(1)  *$M$  is right quasi-continuous.*

(2) (i)  *$M$  has the extending property of modules for  $L_r(M)$ .*

(ii) *For any  $A$  and  $B$  in  $L_r(M)$  such that  $B < \oplus M$  i.e.  $B$  is a direct summand of  $M$ , and  $A \cap B = 0$ , every homomorphism of  $A$  to  $B$  is extended to a homomorphism of  $M$  to  $B$ .*

(3) *Every decomposition  $E(M) = E_1 \oplus E_2 \oplus \dots \oplus E_n$  implies that  $M = (E_1 \cap M) \oplus (E_2 \cap M) \oplus \dots \oplus (E_n \cap M)$ , where  $E(M)$  denotes the injective hull of  $M$ .*

In order to determine the structure of non-singular quasi-continuous FPF-rings, we shall need the following lemma.

**Lemma 3.** *Let  $R$  be a non-singular right quasi-continuous right FPF-ring. Then  $R$  satisfies general comparability.*

**Proof.** Let  $e$  and  $f$  are idempotents of  $R$ , and consider an exact sequence  $0 \rightarrow eR \cap fR \rightarrow fR \rightarrow (1-e)fR \rightarrow 0$ . Since  $R$  is right quasi-continuous,  $R$  has the extending property of modules for  $L_r(R)$ ,  $(1-e)fR$  is projective. Thus  $eR \cap fR$  is a direct summand of  $fR$ . Similarly,  $eR \cap fR < \oplus eR$ . Hence  $eR = (eR \cap fR) \oplus e_1R$  and  $fR = (eR \cap fR) \oplus f_1R$ . It follows that if there exists a central idempotent  $h$  of  $R$  such that  $h(e_1R) \leq h(f_1R)$  and  $(1-h)(f_1R) \leq (1-h)(e_1R)$ , then  $h(eR) \leq h(fR)$  and  $(1-h)(fR) \leq (1-h)(eR)$ . Hence  $R$  satisfies general comparability. Therefore, we may assume that  $eR \cap fR = 0$ . Let  $X$  denote the collection of all triples  $(A, B, \varphi)$  such that  $A \subseteq eR$ ,  $B \subseteq fR$ , and  $\varphi: A \rightarrow B$  is an isomorphism. Define a partial order on  $X$  by setting  $(A'', B'', \varphi'') \leq (A', B', \varphi')$  whenever  $A'' \leq A'$ ,  $B'' \leq B'$ , and  $\varphi'$  is an extension of  $\varphi''$ . By Zorn's lemma, there exists a maximal element  $(A', B', \varphi')$  in  $X$ . Since  $R$  has the extending property of modules for  $L_r(R)$ , there exist direct summands  $A^*$ ,  $B^*$  of  $R$  such that  $A' \subseteq_e A^*$ ,  $B' \subseteq_e A^*$ . Then since  $R$  is right quasi-continuous, by the condition (2) of Proposition 1, we have homomorphisms  $\varphi: A^* \rightarrow B^*$ , and  $\psi: B^* \rightarrow A^*$ , which are extensions of the isomorphisms  $\varphi'$  and  $(\varphi')^{-1}$  respectively. We show that  $\varphi$  is an isomorphism. Let  $m$  be an element of  $A^*$  such that  $\varphi(m) = 0$ . Then since  $A' \subseteq_e A^*$ ,  $J = \{r \in R \mid mr \in A'\}$  is an essential right ideal of  $R$  and  $\varphi'(mr) = 0$  for any  $r \in J$ . Thus  $mJ = 0$  since  $\varphi'$  is an isomorphism, and  $m = 0$ . Hence  $\varphi$  is a monomorphism. Next let  $m$  be any element of  $B^*$ . Then for any element  $r$  of  $H = \{r \in R \mid mr \in B'\}$ ,  $\varphi \cdot \psi(mr) = \varphi'(\varphi')^{-1}(mr) = mr$ , where  $\varphi$  is an epimorphism. Therefore  $\varphi$  is an isomorphism. On the other hand, by the maximality of  $(A', B', \varphi')$ ,  $(A', B', \varphi') = (A^*, B^*, \varphi)$ , hence  $A'$  and  $B'$  are direct summand of

$R$ . Thus  $eR = A' \oplus e_1R$  and  $fR = B' \oplus f_1R$ . Set  $I = r_R(e_1R)$ . Since  $R$  is right FPF, there exists a central idempotent  $h$  of  $R$  such that  $I = hR$  by [3, Theorem 1]. In this case, we have that  $h(eR) = h(A') \cong h(B') \leq h(fR)$ . Next we show that  $f_1R(1-h) = 0$ . If  $f_1R(1-h) \neq 0$ , then there is a nonzero element  $x \in f_1R(1-h)$ . Since  $xR$  is non-singular,  $xR$  is projective, so that there exists an idempotent  $t$  of  $R$  such that  $xR \cong tR$  by the extending property to  $R$ . We note that  $tRh \cong xRh = 0$ . Since  $t \neq 0$ , it follows that  $t \notin hR$ . Then  $yt \neq 0$  for some  $y \in e_1R$ . We have an exact sequence  $xR \rightarrow tR \rightarrow ytR \rightarrow 0$ , and that  $ytR$  is projective. Thus there exists a monomorphism  $g: ytR \rightarrow xR$ . Since  $yt \in e_1R$  and  $x \in f_1R$ , we obtain that  $(A' \oplus yiR, B' \oplus g(ytR), \varphi' \oplus g) \in X$ . But this contradicts the maximality of  $(A', B', \varphi')$ . Therefore  $f_1R(1-h) = 0$ . Now  $(1-h)(fR) = (1-h)(B') \cong (1-h)(A') \leq (1-h)(eR)$ . Therefore  $R$  satisfies general comparability.

**Theorem 2.** *Let  $R$  be a non-singular right FPF-ring and  $Q$  be the maximal right quotient ring of  $R$ . Then the following conditions are equivalent.*

- (1)  $R$  is right quasi-continuous.
- (2)  $\text{id}(R) = \text{id}(Q)$ .
- (3)  $R \cong R_1 \times \prod_{i=1}^t M_{n(i)}(S_i)$ , where  $R_1$  is a non-singular right FPF-ring whose maximal right quotient ring is an abelian regular self-injective ring, and each  $S_i$  is an abelian regular self-injective ring and  $n(i) \geq 2$ .

**Proof.** (1)  $\Rightarrow$  (3); Since  $Q$  is a regular self-injective ring of bounded index,  $Q$  has an faithful and abelian idempotent  $e$ , i.e. the right  $Q$ -module  $eQ$  is faithful and the ring  $eQe$  is abelian regular. Then  $Q = eQ \oplus (1-e)Q$ . Thus by the condition (3) of Proposition 1,  $R = e'R \oplus e''R$  for some idempotents  $e', e''$  of  $R$ . We show that  $e'$  is a faithful and reduced FPF-idempotent. Let  $I = r_R(e'R)$ . Then since  $R$  is right FPF, by Theorem 1 of [3], there exists a central idempotent  $f$  of  $R$  such that  $I = fR$ . Set  $J = \{r \in R \mid er \in R\}$ . Then we obtain that  $eJ \subseteq eQ \cap R = e'R$  and  $eJf = 0$ , so  $ef = 0$  since  $J$  is an essential right ideal of  $R$ . While since  $eQ$  is faithful,  $f$  must be zero. Hence  $e'R$  is faithful. Furthermore,  $eQe$  is clearly, a maximal right quotient ring of  $e'Re'$ . Therefore  $e'$  is a faithful and reduced FPF idempotent. Moreover, by Lemma 2,  $R$  satisfies general comparability. Therefore it follows from Theorem 1 that  $R \cong \prod_{i=1}^t M_{n(i)}(S_i)$ , where each  $S_i$  is a non-singular right FPF-ring whose the maximal right quotient ring is an abelian regular self-injective ring. We claim that if  $n(i) \geq 2$ , then each  $S_i$  is a self-injective regular ring. To prove this, we set  $R = M_n(S)$  ( $n \geq 2$ ), where  $S$  is a non-singular right FPF-ring whose the maximal right quotient ring  $Q(S)$  is abelian regular. Assume that  $Q(S) \neq S$  and let  $w$  be any element of  $Q(S) - S$ . Set  $\bar{e} = \begin{pmatrix} 1, 0, \dots, 0, w \\ 0 \end{pmatrix}$ . Then clearly,  $\bar{e}Q = \begin{pmatrix} Q(S), Q(S), \dots, Q(S) \\ 0 \end{pmatrix}$  and

$(1-e)Q = \{ \begin{pmatrix} wx_1, wx_2, \dots, wx_n \\ Q(S), Q(S), \dots, Q(S) \\ \dots \\ x_1, x_2, \dots, x_n \end{pmatrix} \mid x, x, \dots, x_n \in Q(S) \}$ . In this case  
 $eQ \cap R = \begin{pmatrix} S, S, \dots, S \\ 0 \end{pmatrix}$  and  $(1-e)Q \cap R = \{ \begin{pmatrix} wy_1, wy_2, \dots, wy_n \\ S, S, \dots, S \\ \dots \\ y_2, y_1, \dots, y_n \end{pmatrix} \mid y_1, y_2, \dots, y_n \in J \}$   
 $= \{r \in S \mid wr \in S\}$ . Hence  $(eQ \cap R) \oplus ((1-e)Q \cap R) = \begin{pmatrix} S, \dots, S \\ S, \dots, S \\ J, \dots, J \end{pmatrix} \neq R$ . But this  
contradicts that  $R$  is right quasi-continuous. Therefore  $Q(S) = S$ , so  $S$  is regular self-injective.  
(3)  $\Rightarrow$  (2); Since idempotent of  $R_1$  are central,  $\text{id}(R_1) = \text{id}(Q_{\max}(R_1))$ . Therefore  $\text{id}(R) = \text{id}(Q)$ .  
(2)  $\Rightarrow$  (1); By the condition (3) of Proposition 1, it suffices to show that if  $Q = e_1Q \oplus e_2Q \oplus \dots \oplus e_nQ$  for some idempotents  $e_i$  of  $Q$ , then  $R = (e_1Q \cap R) \oplus (e_2Q \cap R) \oplus \dots \oplus (e_nQ \cap R)$ . But since  $\text{id}(R) = \text{id}(Q)$ , this is clear.

---

### References

- [1] K.R. Goodearl: Von Neumann regular rings, Pitmann Press, London, 1979.
- [2] S. Kobayashi: *On non-singular FPF-rings I*, Osaka J. Math. **22** (1985), 787–795.
- [3] K. Oshiro: *Continuous modules and quasi-continuous modules*. Osaka J. Math. **20** (1983), 681–694.
- [4] S. Page: *Semprime and non-singular FPF-rings*, Comm. Algebra **10** (1982), 2253–2259.
- [5] Y. Utumi: *On continuous rings and self-injective rings*, Trans. Amer. Math. Soc. **118** (1965), 158–173.

Department of Mathematics  
Osaka City University  
Osaka 558, Japan

