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Peak Power Properties of Band-Limited Signals:
With Pulse Shaping Or Windowing

Hideki Ochiai, Fellow, IEEE

Abstract—The signal with high spectral efficiency tends to
suffer from high peak-to-average power ratio (PAPR), which
significantly reduces the achievable power amplifier efficiency.
Therefore, it is important to investigate the statistical properties
of band-limited signals in terms of their dynamic range. On the
other hand, the out-of-band (OOB) emission of signals can be
controlled by pulse shaping or windowing, where the latter is
generally applicable to block transmission systems such as or-
thogonal frequency-division multiplexing (OFDM). In this work,
by developing closed-form expressions of high-order moments for
the signals band-limited by the conventional raised-cosine (RC) as
well as square-root raised-cosine (RRC) filtering, we discuss the
trade-off relationship between the spectral efficiency and signal
dynamic range. In addition, an expression for the complementary
cumulative distribution function (CCDF) of the instantaneous
power in the case of filtered Gaussian signals is developed.
Based on these theoretical analyses, we elucidate the fact that as
the transmit symbols approach Gaussian for increasing spectral
efficiency, the resulting filtered signals tend to exhibit even higher
dynamic range compared to the conventional block transmission
systems such as OFDM and DFT-precoded OFDM.

Index Terms—High-order moment, orthogonal frequency-
division multiplexing (OFDM), peak-to-average power ra-
tio (PAPR), single-carrier signal, (square-root) raised-cosine filter.

I. INTRODUCTION

Future wireless communications such as the sixth genera-
tion (6G) cellular networks should support ultra high spectral
efficiency with ultra low power consumption. In order to
realize such a system, it is important to take into account the
power amplifier efficiency of the transmitter, which depends
on the dynamic range of transmit signals [1]. This naturally
motivates a fundamental study on the design of band-limited
signals with high spectral efficiency and low peak power.

Many existing high-speed communications standards adopt
orthogonal frequency division multiplexing (OFDM)-based
systems, where multiple symbols are merged into one block
(i.e., OFDM symbol) through inverse discrete Fourier trans-
form (IDFT) and transmitted simultaneously. The major draw-
back of OFDM systems over the conventional single-carrier
systems is their signal with high peak-to-average power ra-
tio (PAPR) [2], since the OFDM signal is characterized by
a band-limited complex Gaussian random process that has
unbounded signal dynamic range in principle.
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To cope with this issue, DFT-precoded (or DFT-spread)
OFDM has been adopted by the fourth generation (4G), which
is also known as single-carrier frequency-division multiple
access (SC-FDMA) as it is essentially a block transmission of
single-carrier signals based on sinc-like periodic pulse shaping
filter generated by oversampling [3].

These block transmission systems can cope with frequency-
selective channels by the use of cyclic prefix (CP), which
makes complex time-domain equalization unnecessary. The
price is its overhead of introducing CP, which may lead to
reduction of spectral efficiency.

Several variations of OFDM have been proposed, such as
generalized frequency division multiplexing (GFDM) [4] and
orthogonal time frequency space (OTFS) modulation [5]. As
a result, the PAPR properties of these signals have received
significant attention. In [6], the PAPR properties of GFDM
have been analyzed, whereas those of OTFS modulated signal
have been studied in [7, 8].

In practice, the transmit signal should be band-limited
by reducing out-of-band (OOB) emission. To this end, one
can employ the conventional pulse shaping, or windowing
in the case of block transmission [9, 10]. As a result, the
above-mentioned works [6–8] investigate the effect of the
conventional pulse shaping filters such as raised-cosine (RC)
filter with a specific roll-off factor (i.e., the excess bandwidth
parameter) α. It is important to note that for the system with
RC or square-root raised-cosine (RRC) filters, its roll-off factor
not only determines the spectral efficiency of the system, but
also affects its signal dynamic range [11]. In general, there
is a trade-off relationship between the spectral efficiency and
dynamic range of the resulting signal as well as its cost for im-
plementation. Specifically, reducing α leads to higher spectral
efficiency, but it causes severe signal envelope fluctuation as
well as increases the effective impulse response span, which
renders its practical implementation more challenging.

Based on the above observation, this work focuses on the
statistical behavior of single-carrier signals pulse-shaped by
the RC and RRC filters as they are most commonly adopted
benchmarks in the conventional communications systems with
linear modulation. In order to fully characterize their signal
dynamic range, the statistical distributions of the instantaneous
power of band-limited signals, often in the form of the comple-
mentary cumulative distribution function (CCDF), should be
examined. However, their evaluation process usually involves
numerical integration that requires some computational effort
or Monte-Carlo methods, rendering further theoretical analysis
infeasible. Therefore, as a tractable tool for statistical analysis,
the high-order moment expressions of linearly modulated
signals [12] will be adopted in this work. Unlike CCDF,
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the high-order moments are single numerical metrics that are
easy to evaluate and compare. Moreover, they can often be
expressed in closed forms.

In [6, 8], it has been identified that the use of RC filtering
for GFDM and OTFS systems will lead to higher PAPR due to
the non-stationarity of the resulting signals compared to the
conventional system without RC filtering. Nevertheless, the
dependence of pulse shaping filters and their roll-off factors
(i.e., spectral efficiency) on the signal dynamic range has not
been fully explored. We also note that the previous study
in [12] was limited to the case with α = 0, i.e., the pulse
shaping filter characterized by the ideal sinc function, practi-
cally implementable by block transmission with windowing.

According to the information theory, the optimal modulation
over an additive white Gaussian noise (AWGN) channel under
average power constraint is Gaussian. Moreover, the applica-
tion of constellation shaping with optimal coding will shift
the achievable performance of practical finite constellation
systems toward Shannon limit, but in return the transmit signal
should approach complex Gaussian distribution. In addition,
not only the conventional OFDM, but also other modern
communication systems such as GFDM, OTFS modulation,
and even non-orthogonal multiple access (NOMA) [13, 14],
make their time-domain signal samples approach Gaussian due
to the central limit theorem, since several independent signal
components are linearly combined to form each transmit sym-
bol, possibly through some precoding or spreading processes.
Therefore, it is of both theoretical and practical interest to
investigate single-carrier systems where Gaussian distributed
modulation is applied.

In this work, we will show that the optimal roll-off factor
from the viewpoint of signal dynamic range depends on the
modulation formats, and also explicitly demonstrate that when
the signal samples approach Gaussian, pulse shaping that
does not maintain signal stationarity should not be employed.
In such a case, they should be combined with rectangular
pulse, letting smooth windowing [9, 10] take care of the OOB
emission as a practical low-complexity countermeasure.

The main contributions of this work are summarized as
follows:

• We derive the fourth and sixth-order moments of con-
ventional single-carrier signals band-limited by the RC
and RRC filters of an arbitrary roll-off factor α. It
will be shown that the results are given in closed-form
expressions that can readily be evaluated without any
numerical integration.

• Based on the developed expressions, we describe how the
dynamic range of the RC and RRC-filtered signals will be
affected by the roll-off factor α from the viewpoint of the
fourth and sixth order moments. Interestingly, reducing α
does not always increase the signal dynamic range.

• In order to investigate how dynamic range will be affected
by Gaussianity of transmit symbols, the fourth and sixth-
order moments of clipped Gaussian signals (as an exam-
ple of quasi-Gaussian signals) are also analyzed with RC
and RRC filtering.

• We prove that the case with α = 0 (i.e., ideal rectangular
filter with no excess bandwidth) is in fact optimal for

Gaussian signal, as was previously observed in [15]. To
this end, the CCDF expression of the instantaneous power
for the filtered Gaussian signals is also developed.

• Based on the above-mentioned theoretical results, we
conclude that as long as the symbol to be transmitted
is close to Gaussian, the conventional block transmission
(with sinc-like pulse shaping) should be preferable from
the viewpoint of signal dynamic range.

This paper is organized as follows. Section II introduces
notations and signal models, as well as reviews their statistical
measures such as CCDF of instantaneous power and its
connection to high-order moments. Section III describes the
properties of RC and RRC filters and analyzes the energy
loss due to truncation of their impulse responses. The CCDF
properties of single-carrier signals pulse-shaped by RC and
RRC filters are also discussed, showing that α = 0 is optimal
when the transmit symbol follows Gaussian. In Section IV,
we review the expressions of the high-order moments of
linearly modulated signals based on a linear combination of
cumulants, and then introduce clipped Gaussian signal model
as an example of quasi-Gaussian distribution. We then show
numerical examples of the fourth and sixth-order moments
for these signals with RC and RRC filtering in Section V.
Finally, Section VI concludes this work. Some of the results on
the fourth-order moment in this paper were initially reported
in [16] without rigorous proofs.

II. SIGNAL MODELS AND THEIR HIGH-ORDER MOMENTS

We start with a general description of complex baseband sig-
nals that are subject to restriction in terms of their bandwidth.
The motivation for investigating their fourth and sixth-order
moments is reviewed first.

A. Moments of Band-Limited Signals

We use s(τ) to denote a complex baseband signal where
the time-scale is normalized by the Nyquist rate, i.e., at which
one complex-valued symbol such as quadrature amplitude
modulation (QAM) is transmitted. In other words, one QAM
symbol is transmitted per the time interval [0, 1). Since our
interest is on the dynamic range of band-limited signals to
be transmitted, we will focus on the distribution of their
instantaneous power. A widely accepted metric is the CCDF
of the instantaneous power p(τ) ≜ |s(τ)|2 for a given time
instant τ , which is given by

CCDF(ζ | τ) ≜ Pr [p(τ) ≥ ζ] , (1)

where ζ corresponds to the threshold value (reference level)
of instantaneous power. When the instantaneous power of the
signal is stationary in a strict sense, one can select an arbitrary
time instant τ from [0, 1) to characterize its distribution. On
the other hand, if the signal is cyclo-stationary over the symbol
period [0, 1), then the following time-averaged CCDF should
be of interest:

CCDF(ζ)av ≜
∫ 1

0

CCDF(ζ | τ)dτ. (2)
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By Markov inequality, for any positive integer n, we have

CCDF(ζ | τ) ≤ 1

ζn
E {pn (τ)} =

1

ζn
E
{
|s(τ)|2n

}
︸ ︷︷ ︸
≜m2n(s(τ))

, (3)

for any ζ > 0, where E{·} denotes an expectation operation,
and thus m2n (s (τ)) corresponds to the 2nth-order moment
of the complex signal envelope |s(τ)|. Therefore, for a given
reference level ζ, if the nth moments of p(τ) are smaller for
n ≥ 2, then we may expect that the corresponding CCDF
value is lower, even though the above upper bound may not
be tight in general. Taking the time average of (3) over the
interval [0, 1), we may write

CCDF(ζ)av ≤ 1

ζn
m2n, (4)

where

m2n ≜
∫ 1

0

m2n (s (τ)) dτ (5)

is the time-averaged 2nth-order moment of |s(τ)|.
We are particularly interested in the above moments with

n = 2 and n = 3, i.e., the fourth and sixth-order moments of
the signal along with time averaging. The former corresponds
to a power variance [17, 18], whereas the latter is equivalent
to the cubic metric [19–21], both of which are considered
as alternative metrics for signal dynamic range that are more
tractable than the conventional distributions of PAPR or instan-
taneous power. The primary advantage of studying the high-
order moments is that they can often be expressed in closed
forms. In [22], the high-order moments of PAPR for complex
Gaussian signals are derived.

B. Pulse Shaping System

A pulse shaped baseband signal can be expressed as

sP(t) =

∞∑
k=−∞

Xk gP(t− kT ), (6)

where gP(t) is the impulse response of a given pulse shaping
filter with T corresponding to the Nyquist rate, Xk ∈ X is the
kth modulated symbol, and X is a set of constellation points,
typically chosen from a family of QAM.

Without loss of generality, we normalize the time scale by
the Nyquist rate (in accordance with the model introduced in
the previous subsection) and redefine g(τ) ≜ gP(τT ) as the
normalized impulse response. We then rewrite the signal (6)
with s(τ) ≜ sP(τT ) as

s(τ) =

∞∑
k=−∞

Xk g(τ − k). (7)

Assuming that {Xk} are independent and identically dis-
tributed (i.i.d.) with zero mean and unit variance, the second

moment of the signal defined in (3) with n = 1 is expressed
as

m2 (s (τ)) = E
{
|s(τ)|2

}
=

∞∑
k=−∞

E
{
|Xk|2

}
|g(τ − k)|2

=

∞∑
k=−∞

|g(τ − k)|2 . (8)

Since k is an integer, it follows that the second moment is
cyclo-stationary over [0, 1) in general. In practice, the time
interval of s(τ) should be finite, and thus the impulse response
of pulse shaping filter must be truncated with sufficient interval
and smoothly enough to avoid excessive OOB. The amount
of energy loss due to the truncation will be discussed in
Section III in the cases of RC and RRC filters.

C. Block Transmission System

We next define the block transmission signal as

sB(t) =

∞∑
ℓ=−∞

gw(t− ℓTs)sℓ (t− ℓTs) , (9)

where gw(t) is a windowing function that controls the sidelobe
of power spectrum of transmit signals, Ts is a block length
of the signal including cyclic prefix and postfix, and sℓ(t) is
the ℓth block with ℓ representing the block index. Let Ts =
Tex+Tu, where Tex is the length of extra part (cyclic prefix and
postfix) and Tu = NT is the effective (useful) period of each
block, with T corresponding to the Nyquist rate. The effect
of windowing on the spectral efficiency of OFDM systems is
discussed in [10]. Since windowing does not affect the peak
power property [23], we can focus only on a single baseband
block sℓ(t) with t ∈ [0, Tu).

1) OFDM: In the case of OFDM, the ℓth baseband symbol
with N subcarriers can be expressed as

sℓ (t) =
1√
N

N−1∑
n=0

Xℓ,ne
j2π(n−N−1

2 ) t
Tu , (10)

where Xℓ,n ∈ X is a transmit symbol on the nth subcarrier
of the ℓth block (i.e., OFDM symbol).

We normalize the time scale of sℓ(t) as τ = t/T , where
T = Tu/N , and redefine the OFDM symbol, hereafter
dropping the OFDM symbol index ℓ for simplicity, as

s(τ) =
1√
N

N−1∑
n=0

Xne
j2π(n−N−1

2 ) τ
N

=

N−1∑
n=0

Xn ĝn(τ), 0 ≤ τ < N, (11)

where

ĝn(τ) ≜
ejφτ

√
N
ej2π

n
N τ , φ ≜ 1−N

N
π (12)

can be seen as an impulse response for the nth subcarrier,
which is simply a complex sinusoid with distinct frequency.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2024.3410398

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



4

The impulse responses {ĝn(τ)} are orthogonal over the time
interval [0, N), i.e.,∫ N

0

ĝn(τ)ĝ
∗
m(τ)dτ = δn,m, (13)

where δn,m is the Kronecker delta with δn,m = 1 if n = m
and δn,m = 0 otherwise.

Assuming that {Xn} are all zero-mean and unit-variance
(standardized) random variables, as well as i.i.d., the second
moment of the signal (11) is given by

m2 (s (τ)) =

N−1∑
n=0

|ĝn(τ)|2E
{
|Xn|2

}
= 1. (14)

Therefore, the second moment of the OFDM symbol is sta-
tionary over the symbol period [0, N). We note that the fourth
and sixth-order moments of s(τ) are also stationary (i.e., they
do not depend on τ ) over [0, N) as long as X is chosen from
the standard QAM constellations (see Theorems 11 and 13
of [12]).

2) DFT-Precoded OFDM: In the case of DFT-precoded
OFDM, let Xn in (11) be replaced by

X̃n =
1√
N

N−1∑
k=0

Xke
−j2π k

N n, (15)

where Xk ∈ X corresponds to the kth QAM symbol in
the time domain (i.e., the modulated symbol prior to DFT
precoding). Substitution of X̃n in (15) into Xn of (11) yields

s(τ) =

N−1∑
k=0

Xk
1

N
ejφτ

N−1∑
n=0

ej2π
n
N (τ−k)

︸ ︷︷ ︸
≜g̃k(τ)

, (16)

where g̃k(τ) corresponds to a complex impulse response
applied to QAM symbols {Xk}. With some algebra, we may
rewrite (16) as [3]

s(τ) =

N−1∑
k=0

Xk e
−jk(1− 1

N )π sin (π (τ − k))

N sin
(
π
N (τ − k)

)︸ ︷︷ ︸
≡g̃k(τ)

, (17)

where the impulse response g̃k(τ) of (16) can now be regarded
as a periodic sinc function (Dirichlet kernel).

From (16), we notice that

N−1∑
k=0

|g̃k(τ)|2 =
1

N2

N−1∑
n=0

N−1∑
ℓ=0

ej2π
n−ℓ
N τ

N−1∑
k=0

e−j2π
(n−ℓ)

N k

︸ ︷︷ ︸
N δn,ℓ

=
1

N

N−1∑
n=0

N−1∑
ℓ=0

ej2π
n−ℓ
N τδn,ℓ = 1. (18)

It thus follows from (17) that

N−1∑
k=0

∣∣∣∣∣ sin (π (τ − k))

N sin
(
π
N (τ − k)

) ∣∣∣∣∣
2

= 1 (19)

for any τ . In other words, similar to OFDM, we have

E
{
|s(τ)|2

}
=

N−1∑
k=0

|g̃k(τ)|2E
{
|Xk|2

}
= 1 (20)

and thus the second moment is stationary for DFT-precoded
OFDM as long as {Xk} are chosen as i.i.d. random variables.
Nevertheless, unlike OFDM, the fourth (and higher) order
moments may not be stationary. Therefore, the distribution
of their instantaneous power depends on τ .

3) PAPR and Instantaneous Power: In the case of block
transmission, the signal dynamic range is often characterized
by the peak-to-average power ratio (PAPR) of the signal
defined as

PAPR = max
0≤τ<N

|s(τ)|2 , (21)

which should grow with N , as observed in [2] for the case of
Gaussian signals. A more relevant measure in terms of power
amplifier efficiency is the distribution of the time-averaged
instantaneous power as defined in (2). In the case of OFDM,
as N → ∞, s(τ) approaches Gaussian due to the central limit
theorem for each τ . Furthermore, s(τ) has a unit variance
and thus should be stationary. The CCDF of the instantaneous
power is then expressed for any τ as

CCDF(ζ | τ) = e−ζ . (22)

On the other hand, CCDF may vary depending on τ in
the case of DFT-precoded OFDM unless {Xk} are Gaussian
distributed, since the weights of symbols {Xk} that form a
linearly combined signal may vary depending on τ [24, 25].
The CCDF property will be investigated numerically in the
next section.

III. RC AND RRC FILTERS

Theoretical analysis and practical implementation of pulse
shaping filters that satisfy Nyquist’s first criterion, commonly
referred to as Nyquist filters, have been an important area
of research that targets realization of strictly band-limited
communication systems. Among many possible descriptions
of Nyquist filters, the raised-cosine (RC) filter is a common
benchmark mainly due to its simple frequency response ex-
pression from a mathematical viewpoint. Several Nyquist (or
quasi-Nyquist) filters have been proposed that are better than
the conventional RC filter from a practical viewpoint such as
robustness against timing jitters or reduction of inter-symbol
interference (ISI) [26–28].

In practical single-carrier systems, the matched filtering
modification of the RC filter, i.e., the square-root raised-cosine
(RRC) filer, has been adopted so as to maximize the signal-
to-noise power ratio (SNR) at the receiver [29]. Similar to RC
filtering, the primary advantage of RRC filtering may be its
feasibility in terms of mathematical description as well as its
implementation. It has thus served as a common benchmark for
the square-root Nyquist filter family, and related recent studies
include filtering design suitable for the faster than Nyquist sig-
naling [30] and machine learning based waveform design [31],
where the RRC filter is adopted as their benchmark.

In this section, we review these filters as well as the
properties of the resulting signals.
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A. Frequency Response
Without loss of generality, we consider the case where

the Nyquist interval is normalized to unity for simplicity of
notation, following the signal model introduced in the previous
section. In general, the frequency response of Nyquist filters
(including their square-root forms) can be expressed by a real
and even function as

G(f) =


K, 0 ≤ |f | ≤ 1−α

2 ,

K Gtr(f),
1−α
2 < |f | ≤ 1+α

2 ,

0, |f | > 1+α
2 ,

(23)

where α ∈ [0, 1] is the roll-off factor (or excess bandwidth
parameter) that determines the bandwidth of the transmit
signals, K is a positive constant for energy normalization,
and Gtr(f) is a transition function that adjusts the spectrum
shape. Note that α = 0 corresponds to the ideal low-pass
filter. Reducing α thus enhances the spectral efficiency but at
the cost of increasing signal dynamic range (i.e., loss in terms
of peak power efficiency) as well as increasing complexity for
practical implementation associated with the effective (non-
negligible) length of impulse response.

In the cases of RC and RRC filters, we may express

Gtr(f) =

{
cos2

[
π
2α

(
|f | − 1−α

2

)]
, RC,

cos
[

π
2α

(
|f | − 1−α

2

)]
, RRC.

(24)

The constant K is chosen to meet the energy constraint∫ ∞

−∞
G2(f)df = 1, (25)

and thus we have

K =

{√
4

4−α , RC,

1, RRC.
(26)

B. Impulse Response
The impulse response g(τ) of a given filter can be obtained

by directly applying the inverse Fourier transform to G(f).
Since G(f) is real and even, we have

g(τ) = 2

∫ ∞

0

G(f) cos(2πf) df. (27)

Substitution of (23) with (24) into (27) yields

g(τ) =


√

4
4−α sinc (πτ)

cos(πατ)

1−(2ατ)2
, RC,

sin(π(1−α)τ)+4ατ cos(π(1+α)τ)

πτ{1−(4ατ)2} , RRC,
(28)

where sinc (x) ≜ sin (x) /x. Note that if the denominator in
(28) becomes zero, it should be replaced by the corresponding
limit using L’Hôpital’s rule [32].

By Parseval’s Theorem and (25), we have∫ ∞

−∞
g2(τ)dτ =

∫ ∞

−∞
G2(f) df = 1, (29)

indicating that the energy of the impulse responses (28) is also
normalized.

In Fig. 1, the impulse responses g(τ) are plotted for α = 0
(sinc function), 0.5, and 1.0. We observe that in the case of low
roll-off factor, the impulse response diminishes only slowly,
whereas it converges to zero quickly as α increases.

Normalized Time
0 1 2 3 4

0

1

RC
RRC

Fig. 1. Impulse responses of RC and RRC filters with roll-off factors of
α = 0 (sinc function), 0.5, and 1.0.

Truncation Window Size
100 101 102

En
er

gy
 L

os
s 

[d
B
]

-50

-40

-30

-20

-10

RC
RRC

Fig. 2. The relationship between the window size (τ0) and energy loss L(τ0)
for the RC and RRC filters with several different roll-off factors.

C. Second Moment of Filtered Signal

From (8) and Appendix A, the second moment of the filtered
signal according to G(f) of (23) can be simplified as

m2 (s (τ)) = 1 + b2 cos (2πτ) , (30)

where b2 is a constant that can be calculated by (A-8) shown
in Appendix A, and b2 = 0 if and only if G(f) has an ideal
rectangular shape (i.e., α = 0). As a result, unless α = 0, the
second moment of Nyquist-filtered signals is cyclo-stationary
with unit period.

Note that in the cases of RC and RRC filters, b2 is given
by

b2 =

{
α

4−α , RC,
2α
π , RRC,

(31)

as discussed in Appendix B.

D. Energy Loss Due to Truncation

If a pulse shaping filter of infinite support is to be applied
to block transmission system, it is necessary to truncate the
impulse response and make them periodic. Here, one major
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Fig. 3. Example signal trajectories for RC and RRC-filtered 16-QAM signals with various roll-off factors. The red points represent the constellation prior
to filtering. The upper and lower figures represent RC and RRC-filtered signals, respectively. The leftmost, middle, and rightmost figures correspond to the
roll-off factors of α = 0.1, 0.5, and 1.0, respectively.

issue is how to determine the effective length of impulse
response as it depends on the roll-off factor α. The truncation
of energy may lead to OOB spectrum emission as well as ISI,
which should be made negligible.

Let us define the energy loss due to the truncation of
the impulse response by the rectangular window of range
(−τ0, τ0) as

L(τ0) ≜ 1−
∫ τ0

−τ0

g2(τ)dτ

= 1− 2

∫ τ0

0

g2(τ)dτ. (32)

In the case of α = 0, we may express

L(τ0) = 1−
(
2Si (2πτ0)

π
+

cos (2πτ0)− 1

τ0π2

)
, (33)

where the sine integral is expressed as

Si(x) =
∫ x

0

sin t

t
dt. (34)

In Fig. 2, we demonstrate the relationship between the
window size (−τ0, τ0) and energy loss L(τ0) (in decibel scale)
for the RC and RRC filters with several representative roll-off
factors. These plots are obtained by numerical integration of
g(τ) according to (32), except for the case of α = 0 where
we apply (33). We observe that as α approaches 0, the filter
length τ0 should be increased substantially so as to maintain
the energy loss below a given level. Conversely, if we increase

α even slightly from 0, the required window size significantly
decreases. (The case of α as low as 0.03 was reported in [33]
for the RRC filter targeting practical satellite communications.)

E. CCDF Property of RC and RRC Filtered QAM Signals

As we have seen, when α increases, the impulse response
quickly converges to zero. In return, as observed from Fig. 1,
the amplitude of g(τ) around τ = 0 increases, and this may
affect the peak power property. To see this, signal trajectories
in the cases of the RC and RRC-filtered 16-QAM signals are
compared in Fig. 3. We observe that increasing α reduces
signal dynamic range significantly, but when α = 1, the signal
trajectory exhibits high peak values around the corner points
especially in the case of RRC filter, which we refer to as
an overshooting effect. Therefore, increasing α may not be
necessarily desirable from the viewpoint of signal dynamic
range.

We now investigate the property of time-averaged CCDF
defined by (2) based on simulations. In practice, we may
obtain the average by sampling J equidistant signal points
(oversampling factor of J compared to the Nyquist rate) as

CCDF(ζ)av ≈ 1

J

J−1∑
k=0

CCDF
(
ζ
∣∣∣ k
J

)
. (35)

In Fig. 4, we plot the CCDF of RC and RRC-filtered single-
carrier 64-QAM signals evaluated with J = 16, as well as
that of DFT-precoded OFDM with N = 512. The stationary
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Fig. 4. CCDF of instantaneous power of RC and RRC-filtered 64-QAM
signals (simulation) with J = 16. For DFT-precoded OFDM, we set N =
512.

Gaussian case of (22) is also plotted as an approximation to
OFDM signals. We observe that the case of DFT-precoding
is worst among the simulated curves, even though it is much
better than Gaussian case (i.e., OFDM). This is due to the fact
that DFT precoded OFDM corresponds to the single-carrier
signal with block transmission, where its impulse response
is given by the periodic sinc function as observed from (17).
Therefore, it can be seen as an approximation of single-carrier
signals with ideal rectangular filtering (α = 0).

On the other hand, while increasing α will help reducing
the peak power in general, the CCDF in the case of RRC filter
with α = 1 shows higher value than that with α = 0.5 due to
the overshooting effect as observed in Fig. 3. Therefore, we
clearly see that there should be an optimal value of α in terms
of CCDF property for the RRC filter.

We note that an upper bound of the PAPR for the RRC-
filtered single-carrier signals is analyzed in [34], and the sta-
tistical distributions of its instantaneous power are numerically
evaluated in [11, 15].

F. CCDF Property of Filtered Gaussian Signals

From the viewpoint of information theory, the optimal
signaling that achieves channel capacity over an AWGN
channel is Gaussian. Suppose {Xk} in (7) are i.i.d. circularly
symmetric complex Gaussian. Then, for any given time instant
τ , s(τ) can be complex Gaussian distributed by the fact that
linear combinations of Gaussian random variables are also
Gaussian random variables. Therefore, as discussed in [15],
s(τ) is a complex Gaussian random variable with zero mean
and variance given by (30). The CCDF is then given by

CCDF(ζ | τ) = e
− ζ

1+b2 cos(2πτ) (36)

and thus its time average is

CCDF(ζ)av =

∫ 1

0

e
− ζ

1+b2 cos(2πτ) dτ (37)

which can be easily calculated numerically.
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Fig. 5. CCDF of instantaneous power of RC and RRC-filtered Gaussian
signals (α = 0, 0.4, and 1.0). The result is shown in the range of ζ > 2
where the stationary case (α = 0) is optimal.

In Fig. 5, we plot the theoretical as well as simulated CCDF
of instantaneous power for the RC and RRC-filtered Gaussian
signals with several representative values of roll-off factor α.
It is observed that the optimal α that gives the lowest CCDF
value is α = 0 for the selected range, i.e., ζ > 2 (6 dB). In
fact, the following theorem holds for any (including square-
root) Nyquist filter of the form (23):

Theorem 1: For s(τ) of (7) with {Xk} given by i.i.d.
complex Gaussian with zero mean and unit variance, the time-
averaged CCDF is bounded as

CCDF(ζ)av ≥ e−ζ for ζ > 2 + ε, (38)

with given ε ≥ 0, and the equality in (38) holds if and only
if the filter is ideal low-pass and in this case ε = 0.

The proof is given in Appendix C.
The above theorem states that in the case of Gaussian

signals, the optimal filter in terms of CCDF of instantaneous
power is the ideal rectangular shape (α = 0), where the
optimality holds for the region with ζ > 2, i.e., the threshold
instantaneous power ζ is above 6 dB, which is often of
practical interest. This behavior can be intuitively explained
as follows: When the input symbol is Gaussian and α = 0, it
becomes stationary as discussed in [12], i.e., the distribution
of s(τ) becomes identical for any value of τ . In general cases
with α ̸= 0, on the other hand, it is strictly cyclo-stationary
and thus the distribution may vary depending on the value of
τ in the range of [0, 1), resulting in higher CCDF values than
that of the stationary case when it is averaged over one period.

Remark: Even though the system with α = 0 is infeasible
in practice, it can be implemented through block transmission
as described in Section II-C. Also, if the transmit symbol is
close to Gaussian, there would be no benefit of applying DFT-
precoding over frequency-selective channels. Therefore, we
may conclude that the block transmission through OFDM with
channel coding should be a well-motivated practical approach
in view of error performance over frequency-selective fading
channels, complexity of transmitter/receiver, as well as signal
dynamic range, provided that ISI caused by time-selectiveness
of channel should be negligible.
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IV. HIGH-ORDER MOMENT EXPRESSIONS FOR LINEARLY
MODULATED SIGNALS

The previous section has shown that CCDF of instantaneous
power of filtered signals varies depending on its roll-off
factor as well as signal constellations, but the results can
be analyzed only through numerical evaluation, which offers
less theoretical insight. In this section, we analyze high-order
moments of RC and RRC-filtered signals by developing their
closed-form expressions.

As discussed in Section II-A, higher-order moments serve
as theoretical benchmarks for their signal dynamic range, i.e.,
higher values of moments tend to yield higher signal dynamic
range, leading to lower efficiency of power amplifiers. Thus,
investigating higher-order moments of various filtered signals
may offer an insight on their applications to the systems
that require high power amplifier efficiency as well as high
spectral efficiency. Furthermore, unlike CCDF based analysis,
these moments can be efficiently formulated in closed forms
if we exploit the cumulants of signal constellation [12]. Thus,
we start with a brief review of cumulants, followed by its
application to the clipped Gaussian case (as an example of
quasi-Gaussian constellations).

A. Review of Cumulants

For a complex random variable X ∈ C, the even-order
cumulants of X (up to the sixth-order) can be derived in terms
of its moments as [12, 35]

c2(X) = m2(X)− |µ1(X)|2 , (39)

c4(X) = m4(X)− 2m2
2(X)− |µ2(X)|2 , (40)

c6(X) = m6(X)− 9m4(X)m2(X) + 12m3
2(X)

+ 18m2(X) |µ2(X)|2 − 6ℜ
{
µ2(X)µ∗

2,2(X)
}

− |µ3(X)|2 − 9 |µ2,1(X)|2 , (41)

where [12]

m2n(X) ≜ E
{
|X|2n

}
,

µ2n,m(X) ≜ E
{
|X|2nXm

}
,

µm(X) ≜ E {Xm} ,

with n and m representing non-negative integers. For many
constellations with symmetry of interest, we have

µ2,1(X) = µ2,2(X) = µ1(X) = µ2(X) = µ3(X) = 0. (42)

Therefore, the cumulants are simplified as

c2(X) = m2(X), (43)

c4(X) = m4(X)− 2m2
2(X), (44)

c6(X) = m6(X)− 9m4(X)m2(X) + 12m3
2(X). (45)

The cumulants of some representative modulation formats,
with its second moment normalized to unity, are listed in
Table I. Note that c4(X) may take a negative value according
to the relationship (44), whereas c2n(X) = 0 for n ≥ 2 if X
is a circularly symmetric complex Gaussian random variable,
i.e., X ∼ CN (0, 1).

TABLE I
CUMULANTS OF REPRESENTATIVE MODULATION FORMATS

X QPSK M2-QAM Gauss
c2(X) 1 1 1

c4(X) −1 − 3
5

M2+1
M2−1

0

c6(X) 4 12
7

M4+M2+1
(M2−1)2

0

B. Cumulants for Clipped Gaussian Case

We investigate a special case of Gaussian signal where its
amplitude is controlled to be finite. More specifically, let X
denote a complex Gaussian random variable with zero mean
and unit variance, i.e., CN (0, 1). We consider the clipped
Gaussian signal, which can be generated as follows:

X̃ =

{
γej argX , if |X| > γ,

X, otherwise,
(46)

where γ corresponds to the clipping ratio [36].
We now derive the cumulant expressions for X̃ . The signal

envelope R ≜ |X| before clipping follows Rayleigh distribu-
tion with its probability density function (PDF) given by

pR(r) = 2re−r2 , (47)

and that after clipping, i.e., R̃ ≜
∣∣∣X̃∣∣∣, is expressed as

pR̃(r) = 2re−r2u(γ − r) + e−γ2

δ(r − γ), (48)

where δ(x) is the Dirac delta function and u(x) is the unit
step function with u(x) = 1 if and only if x > 0 and u(x) =
0 otherwise. Using the above expression, we can obtain the
following closed-form solution for its high-order moments:

m2n(X̃) = E
{
R̃2n

}
=

n!(
1− e−γ2

)n
{
1− e−γ2

n−1∑
k=0

1

k!
γ2k

}
. (49)

Note that we may express X̃ = R̃ejϕ, where ϕ is uniformly
distributed by assumption. Therefore, from (44) and (45), we
have c4(X̃) and c6(X̃) as

c4(X̃) =
2e−γ2(

1− e−γ2
)2 (1− γ2 − e−γ2

)
, (50)

c6(X̃) =
3e−γ2(

1− e−γ2
)3

×
{(

2− 4γ2 + γ4
)
− 6e−γ2

(1− γ2) + 4e−2γ2
}
.

(51)

If the hard envelope limiter is applied, i.e., γ → 0, it follows
that

lim
γ→0

c4(X̃) = −1, lim
γ→0

c6(X̃) = 4, (52)

which agree with those of QPSK listed in Table I, whereas if
no clipping is applied, i.e., in the case of γ → ∞, we have

lim
γ→∞

c4(X̃) = 0, lim
γ→∞

c6(X̃) = 0, (53)
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which agree with those of Gaussian as expected.
Note that the clipped Gaussian signal model with ideal

(sinc-function) filtering (α = 0) serves as a good approxi-
mation for OFDM system with Nyquist-rate clipping, which
was investigated in [37].

C. Moment Expressions Using Cumulants

The cumulant has the following important property: If
{Xk} are mutually independent and {βk} are complex-valued
constants, we may express

c2n

(∑
k

βkXk

)
=
∑
k

|βk|2n c2n(Xk). (54)

The above property indicates that the cumulants for complex
random variables are invariant for any constant phase shift.

If the input signals {Xk} of s(τ) in (7) are i.i.d. and
meet the condition (42), which are the cases for the standard
QAM, circularly symmetric Gaussian, as well as clipped
Gaussian [12], then the fourth-order moment of s(τ) can
be expressed, based on the relationships (43)-(45), as [12,
Eq.(50)]

m4 (s (τ)) = 2a22(τ) + a4(τ) c4(X) (55)

and its sixth-order moment as [12, Eq.(62)]

m6 (s (τ)) = 6a32(τ) + 9a4(τ) a2(τ) c4(X)

+ a6(τ) c6(X), (56)

where

a2n(τ) ≜
∞∑

k=−∞

|g(τ + k)|2n (57)

for a given normalized impulse response g(τ).
With time averaging, it follows that

m4 = 2a22 + a4 c4(X), (58)

m6 = 6a32 + 9a4a2 c4(X) + a6 c6(X), (59)

where an, amn , and anam are the time averaged values of
an (τ), amn (τ), and an (τ) am (τ), respectively, for given
positive integers n and m.

In the case of RC and RRC filters, all the coefficients that
appear in (58) and (59) can be expressed in closed form and
they are summarized in Appendix B.

V. NUMERICAL RESULTS

Given general expressions of high-order moments of lin-
early modulated signals with i.i.d. input symbols, in this
section we numerically evaluate their dependence on the roll-
off factors in the case of RC and RRC filters as practical
examples.

Based on the above closed-form expressions of the fourth
and sixth-order moments developed in the previous section,
along with the coefficients derived in Appendix B, we compare
them for various modulation formats as a function of roll-off
factor α.

A. QAM Cases

The time-averaged fourth and sixth-order moments for
QPSK, 16-QAM, 64-QAM, as well as Gaussian constellation
are compared in Fig. 6. Those obtained by the corresponding
Monte-Carlo simulations are also plotted for several repre-
sentative cases of α, where they perfectly match with the
theoretical values. We clearly observe that the best roll-off
factor depends on the modulation format as well as the type of
filter, and DFT-precoded OFDM (corresponding to the single-
carrier case with α = 0) has higher moments than the RC and
RRC-filtered single-carrier systems of the same modulation
format provided that α is chosen from its practical range (i.e.,
α ≤ 0.5).

Furthermore, in the case that the modulated symbol is
Gaussian, we observe that the stationary case (i.e., α = 0),
which corresponds to the conventional OFDM with block
transmission, is optimal in view of high-order moments. This
observation agrees with the consequence from Theorem 1,
which states that the CCDF of the instantaneous power of
filtered Gaussian signal is minimized if and only if the ideal
rectangular filter of α = 0 is employed.

B. Clipped Gaussian Cases

Finally, we compare the time-averaged fourth and sixth-
order moments for clipped Gaussian cases with several repre-
sentative values of clipping ratio γ in Fig. 7. Those based on
the corresponding Monte-Carlo simulations are also plotted,
where we observe perfect agreement as well. By increasing
the parameter γ, the constellation approaches Gaussian. As γ
increases, we observe that the optimal value of α approaches
zero, which confirms the fact that when the signal approaches
Gaussian so as to achieve higher spectral efficiency, it justifies
the use of block transmission (i.e., α = 0), rather than filtering,
from the viewpoint of power amplifier efficiency.

VI. CONCLUSION

We have investigated the statistical behavior of RC and
RRC-filtered single-carrier signals with various modulation
formats in terms of the fourth and sixth-order moments as a
function of spectral efficiency (i.e., the roll-off factor). It has
turned out that if the modulated symbol is close to Gaussian,
the best approach in view of minimizing signal dynamic
range is to employ OFDM-based block transmission schemes
since the generated signal becomes stationary and thus time-
averaged CCDF of its instantaneous power can be minimized.

The major assumption in this work is that the transmit
symbols are i.i.d. such that they can be readily analyzed in
terms of high-order moments. In order to efficiently reduce
PAPR of transmit signals, common approaches are to make
the transmit symbols correlated such that the resulting signal
will have lower fluctuation than those without correlation. For
example, the clipping of oversampled OFDM signals [36] is
one effective approach for PAPR reduction. Other approaches
include shaping of the continuous symbols such that they can
generate signals with low dynamic range [38, 39]. Theoretical
analysis of these correlated signals should be challenging,
but worth investigating as we aim at the ultimate wireless
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Fig. 6. Time-averaged moments for RC and RRC-filtered QAM/Gaussian
signals. (a) Fourth order. (b) Sixth order.

communication systems with high spectral efficiency as well
as high power amplifier efficiency.

Another possible extension of this work would be the
high-order moment analysis of other Nyquist filters of recent
interest, such as better-than raised-cosine (BTRC) filters [26].

APPENDIX A
DERIVATION OF COEFFICIENTS

We will derive general expressions of a2n(τ) expressed
by (57) for n = 1, 2, and 3 as well as the related coefficients
when the frequency response of the filter is given by the form
of (23). We then find the specific closed-form expressions for
the cases of RC and RRC filters in Appendix B.

In what follows, we denote the time domain function by a
lowercase letter, e.g., z(τ), and its Fourier transform by the
corresponding uppercase letter, i.e., Z(f). They are related by

Z(f) = F {z(τ)} ≜
∫ ∞

−∞
z(τ)e−j2πfτdτ (A-1)

and we write its inverse function as z(τ) = F−1 {Z(f)}.
Let G(f) denote a real and even function corresponding

to the frequency response under the energy constraint of (25)
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Fig. 7. Time-averaged moments for RC and RRC-filtered signals with clipped
Gaussian input. (a) Fourth order. (b) Sixth order.

with its bandwidth limited to
[
− 1+α

2 , 1+α
2

]
for α ∈ [0, 1] such

that

G(f) = 0, |f | > 1 + α

2
. (A-2)

Let g(τ) = F−1 {G(f)} represent the corresponding impulse
response, which is also a real and even function. We may
redefine (57) in this case as

a2n(τ) ≜
∞∑

k=−∞

g2n(τ + k), (A-3)

and define Λ(f) ≜ F
{
g2(τ)

}
. Since Λ(f) = G(f) ⋆ G(f),

where ⋆ denotes convolution, it follows that

Λ(f) =

∫ ∞

−∞
G(ν)G(ν − f)dν (A-4)

with

Λ(f) = 0, |f | > 1 + α. (A-5)

Furthermore, the energy constraint (25) leads to Λ(0) = 1.
With reference to (A-3), we will derive alternative expres-

sions of a2n(τ) in terms of Λ(f) for n = 1, 2, and 3 in what
follows.
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A. For n = 1

The Fourier transform of a2(τ) is expressed by a Dirac
comb as

A2(f) =

∞∑
k=−∞

Hk(f) ⋆ Hk(f)

= Λ(f)

∞∑
k=−∞

ej2πkf

= Λ(f)

∞∑
k=−∞

δ(f − k), (A-6)

where Hk(f) ≜ G(f)e−j2πkf is the Fourier transform of
g(τ−k) and Λ(f) is expressed by (A-4). Considering the fact
that Λ(f) is real and symmetric, and also bounded according
to (A-5), the inverse Fourier transform of (A-6) is given by

a2(τ) = F−1 {A2(f)}

=

∞∑
k=−∞

Λ(k)ej2πkτ

= Λ(0) + 2

∞∑
k=1

Λ(k) cos(2πkτ)

= a2 + b2 cos(2πτ), (A-7)

where a2 = Λ(0) = 1 corresponds to the time average of
a2(τ), and the coefficient of the cosine term b2 can be defined
as

b2 ≜ 2Λ(1) = 2

∫ ∞

−∞
G(f)G(f − 1)df. (A-8)

Note that b2 = 0 if and only if G(f) does not overlap with
G(f − 1), i.e., G(f) is the ideal rectangular filter with α = 0.
As a result, from (A-7), we may express a22 and a32 in (58)
and (59) as

a22 =

∫ 1

0

a22(τ)dτ = 1 +
1

2
b22, (A-9)

a32 =

∫ 1

0

a32(τ)dτ = 1 +
3

2
b22. (A-10)

B. For n = 2

Likewise, the Fourier transform of a4(τ) is given by

A4(f) =

∞∑
k=−∞

Hk(f) ⋆ Hk(f) ⋆ Hk(f) ⋆ Hk(f)

=

∞∑
k=−∞

(
ej2πfkΛ(f)

)
⋆
(
ej2πfkΛ(f)

)
=

∞∑
k=−∞

ej2πfk
∫ ∞

−∞
Λ(ν)Λ(ν − f)dν

=

∞∑
k=−∞

δ(f − k)

∫ ∞

−∞
Λ(ν)Λ(ν − f)dν. (A-11)

As a result, we have

a4(τ) = F−1 {A4(f)}

=

∞∑
k=−∞

ej2πkτ
∫ ∞

−∞
Λ(ν)Λ(ν − k)dν

=

∫ ∞

−∞
Λ(ν)Λ(ν)dν + ej2πτ

∫ ∞

−∞
Λ(ν)Λ(ν − 1)dν

+ e−j2πτ

∫ ∞

−∞
Λ(ν)Λ(ν + 1)dν

= a4 + b4 cos (2πτ) , (A-12)

where

a4 ≜ 2

∫ 1+α

0

Λ2(ν)dν (A-13)

corresponds to the time average of a4(τ), and

b4 ≜ 2

∫ 1+α

−α

Λ(ν)Λ(ν − 1)dν (A-14)

is the coefficient of the cosine term that will be averaged out.
From (A-7) and (A-12), we may express a4a2 in (59) as

a4a2 =

∫ 1

0

a4(τ)a2(τ)dτ = a4 +
1

2
b2b4. (A-15)

C. For n = 3

Similar to the cases with n = 1 and n = 2, we may express

A6(f) =

∞∑
k=−∞

(
ej2πfkΛ(f)

)
⋆
(
ej2πfkΛ(f)

)
⋆
(
ej2πfkΛ(f)

)
=

∞∑
k=−∞

ej2πfk
∫ ∞

−∞

∫ ∞

−∞
Λ(ν)Λ(ν − µ)Λ(µ− f)dνdµ

=

∞∑
k=−∞

δ(f − k)

∫ ∞

−∞

∫ ∞

−∞
Λ(ν)Λ(ν − µ)Λ(µ− f)dνdµ.

(A-16)

Therefore, we have

a6(τ) = F−1 {A6(f)}

=

∞∑
k=−∞

ej2πkτ
∫ ∞

−∞

∫ ∞

−∞
Λ(ν)Λ(ν − µ)Λ(µ− k)dνdµ

=

∫ ∞

−∞

∫ ∞

−∞
Λ(ν)Λ(ν − µ)Λ(µ)dνdµ

+ ej2πτ
∫ ∞

−∞

∫ ∞

−∞
Λ(ν)Λ(ν − µ)Λ(µ− 1)dνdµ

+ e−j2πτ

∫ ∞

−∞

∫ ∞

−∞
Λ(ν)Λ(ν − µ)Λ(µ+ 1)dνdµ

= a6 + b6 cos (2πτ) , (A-17)

where

a6 ≜
∫ 1+α

−(1+α)

∫ 1+α

−(1+α)

Λ(µ)Λ(ν)Λ(ν − µ)dνdµ (A-18)
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corresponds to the time average of a6(τ) and

b6 ≜ 2

∫ 1+α

−(1+α)

∫ 1+α

−(1+α)

Λ(µ)Λ(ν)Λ(ν − µ− 1)dνdµ

(A-19)

is the coefficient of the cosine term that will be averaged out.
Note that the calculation of b6 in (A-19) is not required as long
as one is interested in identifying the time-averaged moments
up to the sixth order, which is the case with this work.

APPENDIX B
CLOSED-FORM EXPRESSIONS OF RELATED COEFFICIENTS

FOR RC AND RRC FILTERS

In this appendix, we derive closed-form expressions for b2,
a4, b4, and a6, in the cases of RC and RRC filters, which
are necessary to evaluate (58) and (59). Note that once the
above terms are given, a22, a23, and a4a2 can be calculated
by (A-9), (A-10), and (A-15), respectively. In the subsequent
development, to simplify the final equations, we introduce the
following notations:

ϵ0 ≜ π(3α− 1), (B-1)

ϵ1 ≜ π(2α− 1), (B-2)

ϵ2 ≜ π(3α− 2). (B-3)

A. Coefficient b2
Substituting G(f) of (23) into (A-8), and performing inte-

gration, we may find b2 as shown in (31).

B. Coefficient a4
The function Λ(f) can be calculated according to (A-4)

based on which the term a4 in (A-13) can be obtained. The
results are classified by the value of α and expressed as

a4 =

{
B0, 0 ≤ α < 1

2 ,

B0 + ψ1,
1
2 ≤ α ≤ 1,

(B-4)

where the constants B0 and ψ1 will have different values
depending on the type of filters.

1) RC Filter:

B0 =
128π2 + 192

(
8− π2

)
α2 −

(
1359− 150π2

)
α3

12π2(4− α)2
,

(B-5)

ψ1 =
−1

6π3(4− α)2

×
{
8ϵ1
(
ϵ21 − 24α2

)
+ 9α

(
2ϵ21 − 35α2

)
sin
(π
α

)
+ϵ1

(
ϵ21 − 123α2

)
cos
(π
α

)}
. (B-6)

2) RRC Filter:

B0 =
1

6π3

{
4π3 − 12(π − 4)π2α+ 12π

(
40− 16π + π2

)
α2

−
(
1536 + 102π − 192π2 + π3

)
α3
}
, (B-7)

ψ1 =
1

6π3

{
−48ϵ21α+ 1536α3 + ϵ1

(
ϵ21 − 348α2

)
sin
( π
2α

)
−6
(
5ϵ21 − 256α2

)
α cos

( π
2α

)}
. (B-8)

C. Coefficient b4

Likewise, from (A-14), we may classify b4 as

b4 =

{
C0, 0 ≤ α < 1

2 ,

C0 + η1,
1
2 ≤ α ≤ 1,

(B-9)

where the constants C0 and η1 will have different values
depending on the type of filters.

1) RC Filter:

C0 =
16π2 + 48

(
π2 − 8

)
α2 +

(
453− 50π2

)
α3

3π2(α− 4)2
, (B-10)

η1 =
7

24π3(4− α)2

×
{
8ϵ1
(
ϵ21 − 24α2

)
+ 9α

(
2ϵ21 − 35α2

)
sin
(π
α

)
+ϵ1

(
ϵ21 − 123α2

)
cos
(π
α

)}
. (B-11)

We note that η1 of (B-11) is related to ψ1 of (B-6) by η1 =
− 7

4ψ1.

2) RRC Filter:

C0 =
1

3π3

{
π3 + 6 (4− π)π2α+ 12 (2− π)

2
πα2

+2
(
180− 48π + 9π2 − 4π3

)
α3
}
, (B-12)

η1 =
1

24π3

{
8ϵ1
(
ϵ21 + 48α2

)
+ 36α

(
3ϵ21 − 70α2

)
sin
( π
2α

)
+ϵ1

(
5ϵ21 − 876α2

)
cos
( π
2α

)}
. (B-13)

D. Coefficient a6

Finally, we obtain a6 from (A-18) as

a6 =


D0, 0 ≤ α < 1

3 ,

D0 + δ1,
1
3 ≤ α < 1

2 ,

D0 + δ1 + δ2,
1
2 ≤ α < 2

3 ,

D0 + δ1 + δ2 + δ3,
2
3 ≤ α ≤ 1,

(B-14)

where the constants D0, δ1, δ2, and δ3 will have different
values depending on the type of filters.
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1) RC Filter:

D0 =
1

160π4(4− α)3
{
5632π4 − 7680π2

(
π2 − 8

)
α2

+ 15360
(
84− 18π2 + π4

)
α4

−5
(
348705− 58485π2 + 2389π4

)
α5
}
, (B-15)

δ1 =
1

128π5(4− α)3
{
32ϵ0

(
ϵ40 − 120ϵ20α

2 + 2520α4
)

− 45α
(
ϵ40 − 210ϵ20α

2 + 3003α4
)
sin
(π
α

)
−ϵ0

(
ϵ40 − 885ϵ20α

2 + 54495α4
)
cos
(π
α

)}
, (B-16)

δ2 =
3

64π5(4− α)3
{
32ϵ1

(
ϵ41 − 120ϵ21α

2 + 2520α4
)

+ 45α
(
ϵ41 − 210ϵ21α

2 + 3003α4
)
sin
(π
α

)
+ϵ1

(
ϵ41 − 885ϵ21α

2 + 54495α4
)
cos
(π
α

)}
, (B-17)

δ3 =
−1

320π5(4− α)3
{
32ϵ2

(
ϵ42 − 120ϵ22α

2 + 2520α4
)

− 45α
(
ϵ42 − 210ϵ22α

2 + 3003α4
)
sin

(
2π

α

)
−ϵ2

(
ϵ42 − 885ϵ22α

2 + 54495α4
)
cos

(
2π

α

)}
. (B-18)

2) RRC Filter:

D0 =
11

20
+

(
11

π
− 11

4

)
α+

(
11

2
+

124

π2
− 56

π

)
α2

−
(
11

2
− 768

π3
+

492

π2
− 96

π

)
α3

+

(
11

4
+

6336

π4
− 4224

π3
+

852

π2
− 56

π

)
α4

−
(

33

160
+

55296

π5
− 14823

2π4
− 5088

π3
+

4707

8π2
− 1

π

)
α5,

(B-19)

δ1 =
20ϵ0
π5

(
ϵ20 − 144α2

)
α2

+
ϵ0
π5

(
1

128
ϵ40 −

545

32
ϵ20α

2 +
22005

8
α4

)
sin
( π
2α

)
− α

π5

(
35

64
ϵ40 −

585

2
ϵ20α

2 +
45045

4
α4

)
cos
( π
2α

)
,

(B-20)

δ2 =
5α

π5

(
ϵ41 − 384ϵ21α

2 + 12672α4
)

− ϵ1
π5

(
3

64
ϵ41 −

1515

16
ϵ21α

2 +
60885

4
α4

)
sin
( π
2α

)
+

α

π5

(
25

8
ϵ41 −

12885

8
ϵ21α

2 + 63360α4

)
cos
( π
2α

)
,

(B-21)

δ3 =
α

π5

(
−ϵ42 + 288ϵ22α

2 − 8064α4
)

+
α

π5

(
−1

4
ϵ42 +

1359

8
ϵ22α

2 − 8064α4

)
sin
(π
α

)
− ϵ2
π5

(
1

320
ϵ42 −

141

16
ϵ22α

2 +
7119

4
α4

)
cos
(π
α

)
.

(B-22)

APPENDIX C
PROOF OF THEOREM 1

Proof: The time-averaged CCDF of (37) can be expressed
as

CCDF(ζ)av = Eτ

{
e
− ζ

1+b2 cos(2πτ)

}
, (C-1)

where τ is a uniform random variable distributed over [0, 1)
and the notation Ex {·} explicitly indicates that the expectation
is taken over x. By changing the random variable as u =
cos(2πτ), we have

CCDF(ζ)av = Eu

{
e−

ζ
1+b2u

}
. (C-2)

Let us define the function f(u) as

f(u) ≜ e−
ζ

1+b2u . (C-3)

By differentiating f(u) with respect to u twice, we have

f ′′(u) =
b22e

− ζ
1+b2u ζ {ζ − 2(1 + b2u)}

(1 + b2)
4 . (C-4)

Therefore, if ζ > 2 + 2b2u, f(u) is a convex function, and
otherwise it is concave. Since u ≤ 1, f(u) is always convex
in the region of ζ > 2+2b2. Therefore, by Jensen’s inequality
we have

CCDF(ζ)av = Eu {f(u)} (C-5)
≥ f (Eu {u}) (C-6)

= e−ζ (C-7)

for ζ > 2 + 2b2, since Eu{u} = 0. Note that the equality
in (C-6) holds if and only if b2 = 0, in which case f(u) does
not depend on u. Consequently, the CCDF value in the region
of ζ > 2+2b2 is minimized if and only if b2 = 0. Since b2 = 0
is equivalent to α = 0 as shown in Appendix A, Theorem 1
follows with ε ≜ 2b2.
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