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1. Introduction

Let QC R" be a bounded domain with smooth boundary 8Q, and H=
L*Q) be the usual L?-space. A model equation under consideration is des-
cribed by the following parabolic partial differential equation with time delays

(1.1) ﬁ“(att“x) — Au(t, %)+ Aw(t—h, x)
+ g"_h () Agu(t+s, x)ds+f(t, x), =0, x€Q,

where A,;(1=0, 1, 2) are elliptic differential operators of the second order in-
duced by the sesquilinear forms, fE€L] (R*; L¥Q)) is a forcing function,
h>0 is a delay time and a(s) is a real scalar function on [—#4,0]. The boun-
dary condition attached to (1.1) is, for simplicity, given by the Dirichlet boun-
dary condition

(1.2) Ulag=0, ¢=>0
and the initial data is given by
(1.3)  u(0,x) =g%%), u(s,x)=gYs,x) ae s€[—h0), =x=Q,

where g°€ L¥(Q), gt L (—h, 0; Hy(Q)).
Let H=LXQ), V=H(Q) and g=(g°, g e M,=H X L(—h,0; V) and A,(i=
0, 1, 2) be the realization of _4; with the boundary condition (1.2) in H=L*Q).
Then the system (1.1)-(1.3) can be included in the following general class of
abstract functional differential equation (E) in a Hilbert space H:
0

4 PO autAue—h+ | a@Aut+9dsfe), 120
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(1.5) u(0) =g°%, u(s) =g's) ae. s€[—h,0).

This type of equations having the highest order spatial derivatives in time
delayed terms has been studied by Ardito and Ricciardi [1], Ardito and Velnole
[2], Di Blasio [6], Di Blasio, Kunisch and Sinestrari [7, 8] for linear equations,
and by Yong and Pan [26] for quasi-linear equations. However, the structural
study as well as the adjoint theory for (E) as developed in Nakagiri [17], in which
general retarded equations with bounded operators in delayed terms are treat-
ed, has not been studied except for Tanabe [23], Jeong [10] and Kunisch and
Mastingek [13]. The unbounded operators acting on delayed terms of equations
studied in [13] are given by fractional powers of operators which generate analy-
tic semigroups, and the equations do not cover the case studied in [23]. In
Tanabe [23] the structural operators are first introduced for (E) and the basic
properties of structural operators and solution semigroups associated with (E)
are announced, but the detail of results is not given there. Our approach to
the basic questions such as the existence, uniqueness and wellposedness of solu-
tions is close to that in Di Blasio, Kunisch and Sinestrari [7], but our treat-
ment using the sesquilinear forms gives a more general and convenient way for
the semigroup theoretical study of (E). In fact, our solution semigroup is de-
fined on a larger product space than that in [7].

The purposes of this paper are the followings; the first is to give complete
proofs of theorems in [23], the second is to develop a further and comprehensive
study of structural properties of solution semigroups in the product Hilbert
space M, including adjoint semigroup theory.

We will carry out this work in the following manner. First of all the exist-
ence and uniqueness result of solutions is proved in the M,-space structure
of initial conditions. Nest, by introducing the fundamental solution and the
structural operator F which is unbounded and represents the effect of time
delays, a simple form of the variation of constants formula for the solutions is
established. According to the formula the structural operator G(¢) is intro-
duced to characterize the solution semigroup. It is important to develop the
adjoint theory of functional differential equations for practical applications to
control problems (cf. Nakagiri and Yamamoto [18, 19], Jeong [11], Salamon
[20]). For this the transposed equation is introduced and the adjointness of
solutions, fundamental solutions, and transposed solution semigroups is inves-
tigated. The surjectivity of the operator F' and the image of the specific opera-
tor G=G(h) are also studied. The structural operators F and G are used to
give the most useful relations between the transpsoed solution semigroup and
the adjoint solution semigroup. Finally, an application to a practical partial
functional differential equation of parabolic type as well as its transposed equa-
tion is given.
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2. Functional Differential Equations

First we shall give an exact description of the following functional differential
equation (E) on a Hilbert space H:
0

@.1) did(;)—=Aou(t)+Alu(t—h)—|—$ a(s)Aat+)dsHf(r), ae. 120

2.2) 4(0) =g°, u(s)=g's) ae. s€[—h,0).

Let H be a ‘pivot’ complex Hilbert space and V' be a complex Hilbert
space such that V is dense in H and the inclusion map i: V—H is continuous.
The norms of H, V' and the inner product of H are denoted by |-],||+|| and
{-, <> respectively. By identifying the antidual of H with H we may consider
VcHcCV*. The norm of the dual space V* is denoted by ||-||x. Let a(%, v)
be a bounded sesquilinear form defined in V"X V' satisfying Garding’s inequality

(2.3) Re a(u, u) >co||ul|*—c, |u]|?,

where ¢,>>0 and ¢, >0 are real constants. Let A, be the operator associated
with this sesquilinear form

(2.4) v, Ay = —a(u,v), u,veV,

where <+, «> denotes also the duality pairing between V' and V*. The operator
A, is bounded linear from V into V*. The realization of 4, in H, which is the
restriction of A4, to the domain D(4,)={ucsV; AucsH} is also denoted by A,.
It is proved in Tanabe [21; Chap. 3] that A, generates an analytic semigroup
et%=T(t) both in H and V* and that T(¢): V*—V for each t>0. Throughout
this paper it is assumed that each 4;(7=1, 2) is bounded and linear from V to V'*
(i-e., A, L(V, V*)) such that 4; maps 9(4,) endowed with the graph norm of
A, to H continuously. The real valued scalar function a(s) is assumed to be L*-
integrable on [—#, 0], that is, a(+)eL*(—h, 0).
For brevity of notations, we introduce a Stieltjes measure % given by

25)  n(s) = —Xicom a6 Ar— Sja(E)dEAz: VV*, se[—h 0],

where X(-.,-;1 denotes the characteristic function of (—oo, —A]. Then the
delayed terms in (2.1) are written simply by [, dn(s)u(t+-s).

In this section we give the existence and uniqueness result of solutions
and establish a variation of constants formula of solutions in terms of the fun-
damental solution.

DerFiNiTION A function u€L] (R*; V)NW A R*T; V*) is said to be a
solution of (E) if u(z) satisfies (2.1) and (2.2).
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In order to solve the existence and uniqueness problem for (E) we start with
the following proposition due to Lions [14; Chapter 3] and Tanabe [21 (see
also Lions and Magenes [15; Chapter 1]).

Proposttion 1 For any uy= H and f €L}, (R*; V*) the Cauchy problem

du(t) _

(2.6) = Au) ), e >0, u0)=u

admits a unique solution

2.7) ue L2 (R*; V)N WER*; V¥)CC(R*; H)
which is represented by

2.8) () = T(t)uo—f—S: T(t—9)f(s)ds, ¢=0.

Further, for each T>O0 there exists a constant C; depending only on T, c,, ¢, such
that

2.9) (Sj o S: df;(tt)

[ ar)<Co(lul+ ] ISIa).

We shall solve the equation (E) by considering the following functional
integral equation

T+ (| Te—9)f()ds

W=7+ 109 [ an@ruesas, =0
g'(t) ae t€[—h0).

(2.10)

In view of Proposition 1, the solution #%(z) of the integral equation (2.10)
satisfies the equation (2.1) in the sense of vectorial distribution (cf. Barbu [3;
Chap.1}).

Theorem 1 Let fEL, (R*;V*) and g=(g° g"\€EH XL (—h,0; V). Then
there exists a unique solution u(t)=u(t; f, g) of (E) satisfying

(2.11) u€ Lig(—h, oo V)N W Z(RY; V*)CC([0, o0); H) .
Further, for each T >0 there is a constant K, such that
du(z) |P dt
xa ke
0

<K(1g1%+{ Ngeras+ [ 1FDIEdr)

(2.12) (1] tucoypae- ’
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Proof. Leg 5>0 be fixed and define the operator &:L*—h,b; V)—
LX0, b; V*) by

(2.13) (Ew)(s) = S"_h d(Eyw(sLE) ae. s€[0, 5]

for weL*(—h, b; V). Using Schwartz inequality, from 4,, A,&.L(V, V'*) and
a€ L¥(—h, 0) we have the following estimate:

(2.14)  NI€wll 20, 5; v
< [Nl oyl all v, ym 8 Alleell a5 v) o
(“Alu_[’(V,V*)+”a”Lz(“h’O)”AZH‘[(V’ V*)b‘/?) ”‘w”Lz(—h,b; V) if b>h ’

where ||al|zz(—h,0)=(J24 | a(s) |*ds)"2.
For any v €L*0,b; V) we define the operator S: L¥0,b; V)—L*0, b; V) by

215  (So)(t) = T(t)g"—}—S: T(t—s)(f(s)+-Ea(s))ds, 1[0, 5],

where the extension 9&€ L —4, b; V) of v is given by

o {v(t) a.e. t€[0, 5]
D=1 0 ae te[—h,0].

It is easily verified, by Proposition 1 and the estimate (2.14), that S is into and
the image Im & is contained in W0, b; V¥*). Let v, 0,€L¥0,b; V). If
b<<h, then by (2.9) and (2.14)

bt
180,82 llz0.6:) < ([ I, Te—9€@—0)(0)dslFdry”
< Cbl lg("'?l_'z_h)l |L2(0, b V*)
< Cblla”Lz(_h,o)”Azu-[(V’V*)bllz“7}1_7)2||Lz(0'b; V)

This implies that the operator S is a contraction and hence has a unique fixed
point uL¥0, b; V)N W**0, b; V*) for sufficiently small 5$>0. This function
u gives a unique solution to the equation (2.10) on the interval [0,5]. Com-
bining the estimates (2.9) and (2.14) via the equation (2.10) and using that 4
is small, we can verify that the estimate (2.12) for the solution holds true. By
the inclusion L¥0, b; V)N W*%(0, b; V*)C C([0, b]; H), we see easily that u(b)e
H. Hence by the step by step method using Proposition 1 and the estimate
(2.14) we have the existence and uniqueness of a global solution u(t) of (2.10)
on R* satisfying the estimate (2.12) for each 7'>0 as shown in Di Blasio,
Kunisch and Sinestrari [7;Theorem 3.3]. [

Using Theorem 1 and repeating the similar argument in [7; Theorem 3.4],
we can obtain the following theorem on the ‘strong’ solution of (E).



370 J.M. JeoNG, S. NaKAGIRI AND H. TANABE
Theorem 2. If fEWLHR*Y; V*) and g=(g°, &) satisfy
(216) FEW—h0;V), g0 =g, Ag+| mogedeH,
then the solution u of (E) satisfies
(2.17) uEWigZ(—h, o3 V)N WI(R*; V*)CCX(0, o0); H) .
According to Nakagiri [17], we define the fundamental solution W(t) of
(E) by

o [u(t0,(250), £20

(2.18) W(t)e® = Lo 0

for g'eH.

In other words, W(¢) is defined as a unique solution of

t 0
T(t)—}-SO T(t—s) S_,. d(EYW(E+s)ds, 20
(0] t<0

(2.19) W(t) =

in L(H). By Theorem 1 we see easily that W/(?) is strongly continuous in H
and W(-)g°cLL(R*; V)N W Z(R*; V*) for each g'=H.

If we want to get a stronger regularity of W(¢) like as that for 7'(¢), we have
to solve the equation (2.19) for W(¢) in the space -L(V*). For this sake we
assume the following additional condition on a(s), which is used essentially in
Tanabe [22, 24].

(2.20) a(s) is Holder continuous on [—#, 0].

Modifying Theorem 1 in Tanabe [23] on our Hilbert space setting, we have
the following lemma.

Lemma 1. Under the condition (3.20), the fundamental solution W(t) is
strongly continuous in V¥, W(t): V*¥*—V for each t>>0 and satisfies

2.21) %W(t) - A,,W(t)+$°_h dn(s)W(t+s) ace. 0.

The functions %W(t) and (Ay+c;) W(t) are strongly coniinuous in V* on each

(nh, (n+1)k], n=0,1,2, -+, and the following estimates hold for some constants C,:

[1(Ao+c1) W(t)”_[( V*= :ﬁ

(2.22) H—:;—tW(t)Il -C(V*)—ﬁi, for te(nh, (n+-1)h] .

I, (Aot <,



STRUCTURAL OPERATORS AND SEMIGROUPS 371

By virtue of Lemma 1 we can derive the next proposition which is crucial
for the variation of constants formula of solutions.

Proposition 2. Let fe L} (R; V*). Then the function v(t)= [t W(t—s)f(s)ds
solves the integral equation (2.10) with g°==0, g'=0 and satisfies

(2.23) v ELL(R*; V) NWER*; VF)CC([0, o0); H) .
Hence v(t) gives a unique solution of (E) with zero initial data.

Proof. Since W(¢#) is strongly continuous in V*, o(#) makes sense as a
Bochner integral in V* for each #>0. Noting that W(¢): V*—T and W(¢)
satisfies (2.19) in L(V*), we have for £>0

@24) o) = | We—s)f(s)ds
= | Ta—s)fs)as
+. (S T(t—s—&) A W(E—R)E ) fs)ds

+{(17 re—s—8) [ amametrird) foyds
= L+1,+1,.

Using Fubini’s theorem seveial times and noting that W(t)=0O for <0, we
transform the integrals I, I; in (2.24) as

@2) L= 1e-mawe—s—nasfeds ®y s+g-8)
= ! re-p)au| ms—s—nfwanas
= T(t——s)Al(S:_h W(s—h—)f(z)dr)ds ;
(by B—>s, s—71)

t(t

(' me—m [ ar)awg—s+r)irds fs)as

S

S T(t—B)(S: S"h () AW(B—s-+7)dr £(s)ds)d
= 1e-m [ ama, S: W(B—s+-7)f(s)drds)dR

S T(t—s)(so h a(T)Az[S Y Wis+-7—8)f(£)dE]dr)ds .

s
0 - 0

(by B—>s, s—E)
Hence by (2.24)-(2.26), we can verify that o(¢) satisfies the integral equation
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227) w(t)= { [ ze—9f@ds+{ Te—9) | dn(erote+sias, =0
0 ae. te[—h,0)

in the space V. Next we shall prove (2.23). To this end we use the density
argument and Lemma 1. Let 7>>0 and assume further that f&C*[0, T]; V'*),
0< p<1, the space of Holder continuous functions in [0, 7] of exponent p with
values in V*. Let ||f]l,=supecs<i<r || f&)—f(s)llx12—s| ~®. Then by the esti-
mates (2.22), we have for t€(nh, (n+1)k], <T
(2.28) Ao+aee)lle = [ (Aut-e) W) E—)dsla
< S0 (At )W) (Ft—9)—Fe—)ael
HIf, (Aot W) (=)~ (t—nb)dsll
FEJC Ao el
HIIf, (Aota)W(o)ds fle—nh)la
gg 1A+ WE_pymll F(t—s)—f E—j)lads
7 A WOyl f(2—5)—F (t—nh)l s
FEN] At )Wl gyl Bl
+f (Aot DW=l
<Seifily 77 e—prs—inyas
+ClFll " (s—nh)ss—nyas
+ 3 CllFE—h)lla+Call Fe =Bl
Kl" +K{ sup [1f@l)
€[0,7]

(229) S (L we—) sl

G+h g

<5 W) (F(t—)—F(e—jh))dsl

I,
I L) (f(t—9)—f e~ )l
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+ 330 (Lwas) el

=0 jh

+1f, (Ewos) fe—nbla
<5

==

+ T I(CE WO syl fe—s)—fee—nh)lads

n-1 S(i+1)h

(W) syl F6—5)—F(t—sh)lads

jh

+ 35 WG+ DB =W yml FE—iB)ll
HIO— W] gyl Fe—nb)

< Kk sup 1))

for some constants K, K,. Here in (2.29) we use the uniform boundedness

(‘ggg Al _m,*))< o0
because of the strong continuity of W(¢) in V*. Since 4,+¢, is an isomorphism
from V to V*, the estimate (2.28) implies v L*0, T'; V). In view of Theorem
2 in Tanabe [22] and the estimate (2.29), v(f) is strongly differentiable in V*
and its derivative is given by

(2.30) % - f(t)+j:%W(t—s)f(s)ds, >0,
and hence
231) L e e R OTE

This estimate implies o(-)eW"*0, T; V*). Therefore, by differentiating the
integral equation (2.27) we can verify that o(¢) gives a solution of (E) with the
data f €C*([0, T']; V*) and g=0.

Now let feLi (R*; V*). Since the Holder space C*([0, T]; V*) is dense

in L0, T; V*), there exists a sequence {f,} CC?[0, T']; V'*) such that f,— f
in L(0, T; V*). Set

2.32) va(t) = S: W(t—s)f.(s)ds .
It is clear by the strong continuity of W(#) in V* that

(2.33) v,(8)—>v() in V* foreach ¢>0.
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Since v,(t)—v,(¢) give a solution of (E) with f=f,—f, and g=0, we have by
the boundedness (2.12) in Theorem 1
2
at)
*

dv,(2) _ dv(t)

2.34) ( SZ 1 |v,,(t)—v,.(t)”2dt+S: ' it at

< &({, In—fuollaar)

ie., {v,} and {dv,/dt} are Cauchy sequences in L¥0, T'; V') and in L%0, T; V'*),
respectively. Then by the closedness of differential operator d/dt in L¥0, T'; V'*),
there exists a function v,&L¥0, T'; V) N W*?(0, T'; V'*) such that

dv,

235) o, 9 in LX0, T; V), 77».‘1;;& in L0, T; V).

Combining (2.33) and the easy consequence v,(f)—>,(t) in H from (2.35), we have
vo(t)=2(t) for each t[0, T). This proves that v L*0, T; V)N W**O0, T'; V'*),
so that v gives a solution of (E) on [0, 7'] with the data fE€Li (R*; V*) and
£=0. This completes the proof of Proposition 2. []

Here we note an important consequence from Proposition 2. Let fe
Lt (R*; V*). Then by Lemma 1, we have

(2.36) S: %W(t—s) F(5)ds
— 4, S: W(t—9)f (s)ds+-A, S: W(t—s—h)f(s)ds
14, S: S°_h a(E)W(i—s-+E)E f(s)ds .

It is easily verified that all integrals in the right hand side of (2.36) make sense

as integrals in V. Hence for each ¢>0, the integral S' %W(t—s) f(s)ds makes
0

sense as an integral in V*. Thus from Proposition 2 it is calculated by stand-

ard manipulations using the Lebesgue density theorem that

a PN OF S
@3 < So W(t—9)f (s)ds = f(t)—}—So L Wit—9f()ds ae.t20.
For each >0, we introduce the operator valued function U,(+) defined by
(238) UL = Wt—s—h)A+ | Wi—s+a@)ade

s

- S-,. W(t—s+E)dn(E): V=V, ae.s€[—h,0].
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Let T>0 be arbitrary fixed. Associated with U,(+), we consider the operator
U: L(—h, 0; V)—L*0, T'; V) defined by

(2:39) W)= [ Uigs, €00, 7]

for gt L¥(—14,0; V). We want to show that €U is into and bounded for each
T>0. For this sake it is convenient to introduce the structural operator
Fy: L¥(—h, 0; V)—>L—h, 0; V*) defined by
(240)  [Fg10) = _, dn®gE—9)

— AygY(—h—s) +S-,, a(E)Ag E—s)dE ae. s€[—h,0].
By simple calculations using Schwartz inequality we see that F; is into and
bounded. Then by using Fubini’s theorem as in Nakagiri [17; Lemma 4.1],
we have

(241) W)0) = [ W+ Fg()ds
- S: W(t—s)b(s)ds a.e. s€[—h, 0],

where ¢(+)=Xp,1[F1£"](—+)EL¥0, T; V*). Hence by Proposition 2, U is into
and bounded for any 7'>0. At the same time we know Ug'e W0, T; I'*),
T7>0.

The following variation of constants formula of solutions are fundamental
in our structural study for (E) (cf. Nakagiri [17]). Recently Yong and Pan
[26] have derived a similar formula in a slightly different form under some ab-
stract assumptions on the delay terms.

Theorem 3. For fELi(R*; V*) and g=(g° ¢)EHX L (—h,0; V), the
solution u(t)=u(t; f, g), t=0 of (E) is represented by
0 t
@4 usfe) = Woe+| Ueged| we—areas.
Proof. Now it is obvious from the definition of fundamental solution

and Proposition 2 that, by the uniqueness of solutions in the class LI (R*; V)N
Wi R V)

t
(2:43) u(t:, (&, 0) = Wog+ |, We—s)f)ds
Thus, it is left to prove that for g'eL*(—h, 0; V)

(2.44) ut;0, (0,89 = [ U9g s = (U ).



376 J.M. Jeong, S. NakaGIri AND H. TANABE

Since Ugte L0, T; V)N W*0, T'; V*) for each T>0, it is sufficient to verify
that

{ (UVg)®), 20
o(t) =
g ae. t€[{—h,0)

satisfies the integral equation (2.10) with g°=0, f=0. Let us set ¢(s)=

Xto,s[F1£'1(—s). Then we can write v(f) as S‘ W(t—s)p(s)ds for t>0. If we set
0

t=>0

, then as proved in Proposition 2, #i(£) satisfies
a.e. t€[—h, 0) P P @

ﬂ(t) == {3(07

S: T(t——s)tlw(s)ds—{-S: T(t—5) Ay D(s—h)ds

o(t) = +S: T(t—s)( S"_h a(r)A0(s+7)dr)ds, =0
0 a.e. t€[—h,0).

Hence for t>0, by defining T(¢)=0O for ¢< 0 for simplicity, we have

o) = [ Te—9)Fg)(—9)ds
+{ 1= atrpsets-t s
+{ 1= Aots—n+[ amap(strands
= [\ Te—9 g~y ar)agis+r)anyas
+{ 1e=9([_ atmasstryinas
+{ 15[, dntryo (s+m)dn)ds
— S: T(t——s)(So_h dn(r)o(s+r)dr)ds, 20
o(t) = gt) ae t[—h,0).

This proves (2.44). Thus, we show the formula (2.42). [

3. Solution Semigroups and Structural Operators

As in previous researches [4-8, 16, 17-19, 20, 22, 23, 25] we take a product
state space approach to study the properties of solution smeigroups and the
adjoint semigroups associated with the functional differential equations. Our
main concern is to establish the relations between the semigroups and structural
operators F, G(t) introduced in Nakagiri [17] and Tanabe [23] (see also Bernir
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and Manitius [4], Delfour and Manitius [5], Manitius [16] for those in
Euclidean spaces and Kunisch and Mastingek [13] in Hilbert spaces). In
what follows we assume the condition (2.20) on a(s).

Let M,=HXL*—h,0;V) be the state space of the equation (E). M,
is a product Hilbert space with the inner product

0
<& ko =< B>+ (" <), Bidv as,
g=(&"g), k=, K)EM,,
where <{-, +>, denotes the inner product of V.
Let g&M, and u(t; g) be the solution of (E) with f=0. The segment #,
is given by u,(s; g)=u(t+s;g), s€[-—h,0]. The solution semigroup S(z) as-
sociated with (E) is defined by

CAY) S(t)g = (u(t; 8), wi(+38)), t=0, gEM,.

Then we have the following theorem which follows from Thoerem 1 and
and Theorem 2 as shown in Di Blasko, Kunisch and Sinestrari [7].

Theorem 4. (i) The family of operators {S(t); t=0} is a Cy-semigroup
on M,.
(i1) The infinitesimal generator A of S(t) is characterized by

3.2) DA) = {2 = (&8 €W (—h,0; V),
[}
g0 =g, Ap+| dog)dseh)
0
(3.3) Adg= (Aog°—|—S_h dn(s)g'(s)ds, ")  for g= (g g)ED4),
where g* denotes the distribution derivative dg*|ds.

In order to decompose the semigroup S(¢) on the basis of the variation
of constants formula of solutions, we introduce the structural operators F and

G(t). The structural operator F: M,—M¥ is defined by F= (é g) i.e.,
1

(3.4) [Fgl' =g, [Fgl'=Fg', for g=(g'g)EM,,

where F| is given in (2.40). As is seen before F is into and bounded.
For >0, the structural operator G(¢): M$—M, is defined by

[COSTE) = W+ +[ Wets+of@dE se[—h,0],
[GOST = [GOTO), f= (P pemt.

In view of Proposition 2 we see that G(t) is also into and bounded. We define

(3.5)
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the structural operator G: M¥—M, by
(3.6) G=G(h).

Proposition 3. The semigroup S(t) is represented by
3.7) S(t) = G(t)F+«(), t=0,
where «(t); M,— M, is given by
(3.8)  [k(®)gl' =0, [£®)g]'(s) = Xi-1,-a(5)g'(t+s) ae. s&[—A0].
In particular, S(h) has the following decomposition
(3.9 S(#) = GF .

Proof. This proposition follows immediately from the equality
W)+ | Wets+BFPEE, 14520
g\ (t+s) t+s<0,

(3.10)  u(t+s;8) =

which is proved by Theorem 3 and (2.41), via the definition (3.5).

Using the trivial relation 4S(¢2)=S(t)4 on 9(A) and Proposition 3, we can
derive the following useful commutative relation between W(#) and A, 7.
A direct proof of the relation is given in Tanabe [23].

Corollary 1. For any g€V, the following relation holds :
(3.11) AW+ (s W(e5)g°
_ W(t)Aog°+-So_h W(t+s)dn(s)®  for all t€R*.
Proof. By improving the proof of Bernir and Manitius [4; Lemma 4.1],
we shall show this corollary. For each g W*¥(—h, 0; V) it is calculated that

(3.12) %[Fg]l(s) = a(s)A,8'(0)—[F51{(s) a.e. s€[—h, 0]

and %[Fg]l, a(+)A4,8'(0), [FEI' €L’ (—h, 0; V*). Let g=(g%g)ED(A). Then
by (3.3), (3.5), (3.7) and noting that W (s)=0 if s<0,
(.13)  [AS@gP

= AgSOer+{ dn(s) S

= AW +4, | We+BIFLNE)aE
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0
Ny We+9g+ | We+s+OIFP@E, t+520
gt +s) t+s5<<0
0
= AW+ | dnls)Wit-+)

{ [ AWe+9iFe st | dnsge+s)
+

[[, A+ oLFer s
+So_,d’7(s)<8i,. W(t+‘+f)[Fg]‘(E)dE) if OSt<h}

0 0
+S-,. dn(s) (S_h Wie+s+OIFLPEE) it
and, by using Fubini’s theorem and changing variables

(3.14) [4S(2)g]°
= AW+ o Wir+s)e°
[ (4wt aneymets+8) Fads
+ 0 0
[0 (4mwets+( a@mets+8) Feras

+g::d7;(s)g‘(t—|—s) if 0<t<h

+0 if t>h
On the other hand, by (3.3), (3.7) and (3.12),

(315)  [S@)eP
= W) A+ dnlsg )+ WP e)as

= WA+ W) [ dnls)g )+ (. Wit+oa(s) 4,8/0)ds

—S"_h W(t-+s) (%[Fg]‘(s)) ds.

Since W(#) is differentiable and dW/(¢)/dt is piecewise strongly continuous on any
bounded interval in R* by Lemma 1, we use the integration by parts and
(2.40) to obtain
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¢16) [ Weto) (Lirere)
S°_' W(t—}-s)(%[Fg]‘(s))ds if 0<t<h
2{5"_,, W(t-+) (-LFel(o)ds if t>h ‘
W+ FLO— [ LW+ Febds it 09<k}

[W-+Fgl N~ L We+s)Felo)ds i t2h

I

w) So_hdﬂ(s)g‘(s)—S:: dn(s)g(t+s) if 0<t<h

w() So_hd’?(s)gl(s)’—W(t-—h)Algl(O) i t>h }
Si,;‘;i;W(“ﬂ)[Fg]‘(s)ds if 0<t<h

—{go_,,gt—w(tﬂ)[ﬁ‘g]‘(s)ds if t>h }

From (3.15) and (3.16), we have

(3.17)  [S(2)4gl
- W(z)Aog°+S‘ih W(t-+5)a(s) A" ds

{ [ angeta+{

%W(t—}—s)[Fg]l(s)ds if OSt<h£

W(t-—h)A,g‘(O)—]—S %—W(t—}—s)[Fg]‘(s)ds it £>h

- W(t)Aog"—l—So_h W(t+5)dn(s)g°ds
{S:%W(t—ks)[Fg]‘(s)ds i 03t<h}

So_,,:f;W(“r [Feli(s)ds if t>h

+

S:: dn(s)gtds)  if OSt<h}
0 it t>h

Here we note that all integrals containing [Fg]! in (3.16) and (3.17) make sense
by [Fgl'€LX—h,0; V*) and Lemma 1. Since W(¢) satisfies the equation (2.21)
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the sum of the last two terms in (3.17) equals the sum of the last two terms of
(3.15). Consequently, the trivial equality [4S(z)g]’=[S(z)Ag]’ for geD(A)C
W44 (—h, 0; V) implies the commutative relation (3.11) for any g’cV. O

The following useful ‘quasi-semigroup’ property for W(t) is verified by
the semigroup property S(:,+12,)=S(#,)S(2;) (cf. Nakagiri [17]).

Corollary 2. The fundamental solution W(t) satisfies
(3.18) W(ti+t,)
0
— W(tl)W(tz)J,—s_h W(ti+5)[Fs Wity ))(5)ds 150,

where
s

(319 [EWEt 0L = | @ Wte—aede, #eH.

Proof. Let g°€H. Then by (3.7) the relation [S(t;+12,)(g°% 0)]°=
[S(#)S(2,) (&% 0)]° implies the equality (3.18). [J

Next we shall study the adjoint semigroup S*(#) on the adjoint space of
M,, which plays important role in the control theory involving functional dif-
ferential equations. The ajoint space M¥ of M, can be identified with the
product space HXL*—h,0; V*) via the duality pairing (we use the same
bracket as that of inner product)
0
(320) <& Pou=< 1>+ &), s,
g= (& eEM,, f= (fo’fl)ejuai"g .

By identifying the second dual V** of V' with itself, the second adjoint space
M#* is identified with M, That is, M, is reflexive in this identification.
Hence, by the reflexiveness, the adjoint semigroup S*(#) is strongly continuous
in M¥ (cf. Hille and Phillips [9]). Further the infinitesimal generator of S*(#)
is given by the adjoint A* and is characterized precisely by the following theo-
rem. For relevant results concerning abstract functional differential equations
we refer to Webb [25], Nakagiri [17] and Kunisch and Mastinsek [13].

Theorem 5. The infinitesimal generator A* of S*(t) is given by

(321)  PA*) =A{f=(/" 1) f'EV, freWr (—h,0; V),
ASf+O)EH, fi(—h) = AIf%}

(3.22) A*f = (ALf'+SN0), a()ALS*—f(+)) for f= (ff)eD4Y).
Proof. We follow the argument in [17; Prop. 3.3]. Let (f° f)e9(4*)
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and A*(f°, f)=(¥, B)€M¥. Then for each (¢°, g") = D(4),

(3.23) CA, 8, (1% Fw, = (88, (O )y

that is, by (3.3)

(24) <A +AG—H+[  aAg s, o+ &6, FO>ds
=< +[ <o), B ds.

First we assume f°&V. Let @ be a scalar function such that

(3.25)  @EW(—h,0), p(—h) =0, @(0)=1, go_ha(s)cp(s)ds=0.

For g'€9)(4,) it is clear that §=(g° @(+)g")ED(4). We substitute this 7 to
(3.24) and obtain

(326) <A’
=< +<8, [ oI — < | o)y .

The linear form [(g%)=<{4,¢% > on D(A4,) defined by the right hand side
of (3.26) can be extended to a bounded form 7 on V¥ by the density of 9(4,) in
V (note that Ay+¢;: V—V* is an isomorphism), and then J=A¥f°V*. This
means

(3.27) f°EV and <Ag’, f = <g% 4¥f>  forany g'eV.
Next we set
M) =" weae, No=atr+| agasrea, ser-no.

It is easy to see MW" (—h,0; V*), NeCY[—h,0]; V*). For any yE
W3 (—h, 0; D(A,)), we have by using integration by parts

¢28) [ G0, Mepas
= <50, MO = <05), B> ds;

(629 [ 56, Nopas
= <3(0), N> —<y(—h), N—m> = <05), Nop> ds
— <3(0), NO—<(—h), 41>~ <05), atc) 1> ds.
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Then by (3.28), (3.29) and taking adjoints, we find
7 <o), £~ N+ M@ s+ <Aay(0), 1%
= 7 <360, 6> ds—<3(0), NOD+<y(—h), 417
+{° <59, ats)atr™ ds+<5(0), MO
—[" <ot6), BD>ds+<ay(0), 1
= CAuy(O)+ A~y +_ al)days)as, 1+ <306, pio)>s
—<50), = <506), B s
+<3(0), B—NO+M(O)>.
Hence if y& 9)(A4), then by (3.24)

(3.30) [0 <3063, 16— V() + M(s)> ds-+-<Aap(0), 1%
= <3(0), F—N(0)+M(0)> .

Let g€9D(4,). Applying y(s)=g€Wr*(—h, 0; D(4,)) N D(A) to (3.30), we
get

Ao, % =< B—atpe—(" apatrae+ | w@a,
so that by the extension and (3.27),
(31 R=diprarrt| apara-( wedeH.
Since W3 (—h, 0; D(4,)) ND(A) is dense in W (—h,0; V), it follows from
(3.30) and (3.31) that
(3.32) fA(s) = N(s)—M(s)

= atr+| a@atrae—| wedE, se[-h0,

and
(3.33) FlEW A (—h, 0; V*), f(—h)= A%0°.

Therefore by (3.31)-(3.33), D(A¥*) is contained in the right hand side of (3.21).
The reverse inclusion can be verified analogously. So the proof is complete. []

Finally in this section we note that the condition (2.20) on a(s) is not nece-
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sary in Theorem 4 and Theorem 5.

4. Adjoint Theory for Transposed Equations

The purpose of this section is to give an elementary adjoint theory for trans-
posed equations and study the relations between transposed semigroups, adjo-
int semigroups and structural operators.

The ‘transposed’ equation (Er) in H with an initial data (¢’ @')EM, and
a forcing function A€ L (R*; V*) is defined by

(4.1) i’%’l_g_‘.).zAg‘v(t)+Afv(t—h)+S°_h a(s) A¥o(t+s)ds+h(t), ae. 10

(4.2) 2(0) = @°, o(s) = @'(s) ae. s€[—Ah0),

where A¥ denote the adjoint operator of 4, (¢:=0, 1, 2).

It is well known (cf. Hille and Phillips [9] and Tanabe [21]) that the adjoint
operator AF generates an analytic semigroup T*(¢), which is the adjoint of
T(t), both in H and V* and that T*(¢): V*—V for each £>>0. Then we can
construct the fundamental solution Wy(¢) of (Er), which is strongly continuous
both in H and V* and Wi(f): V*—V, t>0 satisfying the same estimates in
Lemma 1. For simplicity we use the adjoint Stieltjes measure »*(s) defined by

(4.3) n*(s):—X(_,.,__,,](s)A'l*—Sja(E)dEA’z":V—>V*, s€[—h, 0].

Hence, as shown in Theorem 1 and Theorem 3 the solution v(z) of (Er) exists
uniquely and is represented by

44 o) = WT(t)¢°+Sih V,(s)q;‘(s)ds—l—s: Wi(t—s)h(s)ds £>0,
where

*5) Vi) = Si,, Wo(t—s+E)dg*(E): V=V, ae.s&[—h,0].

Now we denote the adjoint of W(#) by W*(#). First we shall show the
following important relationship in the adjoint theory.

Lemma 2. For tER,
(4.6) Wi(t) = W) .

Proof. By the identification of V** with V, it is obvious that W*(¢): V*—
V for t>0. The commutative relation (3.11) in Corollary 1 implies, by taking
adjoint, the adjoint relation
0

@) AW+ [ ar W) = WAt +[ | We+arare).
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On the other hand, taking adjoint of (2.21), we have that W*(¢) satisfies

4
dt
so by (3.11),

4.8) WH(t) = W*(t)As“—i—So_h W(t+-s)dn*(s), ae. 10,

4.9) %W*(t) — AFWH)+ f’h A (S)WH(i+s), ae. t>0.

This shows that W*z) is the fundamental solution of (Er). Hnece by unique-
ness of solutions the assertion (4.6) follows. [

Calculating the adjoints of F and G(¢) straightforwardly by means of the
pairing (3.20) and using Lemma 2, we can deduce the following representation
formulas.

Proposition 4. (i) The adjoint F*: My—M¥ of F is given by
(410)  [F*g) =g, [F*gl'=Ffg, for g=(&8)EM,,

where F¥: Ly(—h,0; V)—>Ly—h, 0; V*) denotes the adjoint of F, and is repre-
sented by

s

(4.11) [F¥gt(s) = g_h dg*(E)g(E—s) ae. s€[—h,0].

(i) The adjoint G*(t): M¥—M, of G(t) is given by

[GHOF) = Walt+9f+ [ Walt-+s+Of(E)dE s<[—h, 0],
[G*OfT = [C*ATO), f=(rfHemt.

By Proposition 4, we see that the solution v(¢)=v(¢; @) of (Et) with A=0
is written as

(4.12)

0
(4.13) ot; @) = WT(t)¢°+j_h Wo(t--5)[F*@](s)ds .
Let us denote by {Sy(f)}:so the transposed C,-semigroup on M, associated

with the transposed equation (Er) and by A; its infinitesimal generator. Now
the following proposition is immediate from (4.13) and Proposition 4.

Proposition 5. The semigroup Sy(t) is expressed by
(4.14) Sy(t) = G*)F*+«(t), t=0,

where «(t): My—>M, is given by (3.8). In particular, Si(h) has the following
decomposition



386 J.M. JeoNG, S. NakAGIRI AND H. TANABE

(4.15) Sy(h) = G*F* .

The adjoint semigroup of S7(¢) and its infinitesimal generator are denoted
by S¥(¢) and A%, respectively. Taking adjoints of S(f) and Sp(#) and using
Proposition 3 and Proposition 5, we have the following result.

Proposition 6. For t>0, the semigroups S*(t) and S¥(t) are represented
by
(4.16) S*(2) = F*G*(t)+«*(t), S¥E) = FG@)+«*@),
where the adjoint k*(t): M¥—M¥ of «(£) is given by
(#17) [*OF =0, [*OFI6) = Fl—Xnamnls) ace. s€[—h,0]
for f=(f°, fyeM¥%. In particular,

(4.18) S*(h) = F*G*, S%¥(h)= FG.

On the ranges and the invertibility of the operators G, G*, we have the
following characterizations.

Proposition 7. (i) ImG equals ImG* and is given by
4.19) W(—h, 0) = {pEM,; '€ W**(—h, 0; V¥)NL (—h,0; V),

@'(0) = p"€H}.
(i) G: MF—>HW(—h,0) is bijective and the inverse G=*: W(—h, 0)—MF is given
explicitly by

0
[G-915) = ¢ (—s—h)— Ao (—s—h)— (| dn(®)p E—s—h)
(4.20) a.e. sS€[—h, 0]
[G™'o]’ = @}(—h), e = (9" @)EW(—1,0).
G*: Mf—>W(—h,0) is also bijective and the inverse (G*)~*: W(—h, 0)—>M¥ is
given by the formula (4.20) in which Ay, n(E) are replaced by A¥, n*(E), re-
spectively. In particular,

4.21) KerG=KerG*={0}; Cl(ImG)= Cl(Im G*)= M,.

Proof. Since the inclusion Im G C 9P (—h, 0) is clear form Theorem 1 and
Proposition 2, it sufficies to show the reverse inclusion Im GO 9Y(—h, 0). Let
o=(9'0), @")EW(—h, 0) and define k=(k°, k') by the right hand side of (4.20).
It is easy to see k& M¥. If we set u(t)=o'(t—h), t<[0, k] and w(0)=o'(—h),
u(s)=0 a.e. s&€[—h, 0], then from (4.20) u(-)€ W0, k; V*)NL*O0, k; V) gives
a solution of (E) on [0, %] with g°=@'(—h), g'=0, f(t)=Fk(—1) a.e. tE]0, k]
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(note that @'(—k)EH, f€L¥0, k; V*)). Thus, by the uniqueness of solution
and the variation of constants formula,

t
u(t) = Weg—hy+ |, Wit—s)f(—s)ds
= [GR]'(t—h) = @'(t—h), t<][0,4],
u(h) = [GR]'(0) = [GK]’ = #'(0) .
This implies Gk=¢, and hence Im G=9(—h, 0). At the same time we see
that G is bijective and the inverse G~! is given by (4.20). The proof for G* is

quite same. Now the first relation in (4.21) is obvious and the second one fol-
lows readily from D(A4)CW(—h,0). [

Related to the operators F, F* we have the following Proposition

Proposition 8. (i) If 4;: V—=V* has a bounded inverse AT': V*¥—V, then

(4.22) Im F = Im F* = M¥
and
(4.23) Ker F = Ker F* = {0}.

(i) If A,=0, acC'[—h,0], a(—h)*+0 and A,: V—->V* has a bounded inverse
AzY: V*—V, then

(4.24) Ker F = Ker F* = {0}.

Proof. (i) Let f=(f°%fHeMf, g=(gg)EM, In order to show
Im F=M?%, we shallsolve the equation Fg=f. Since A exists, this equation
is equivalent to g°=f° and
(4.25) g‘(—h—s)—l—s_h a(E)AT A, 8N E—s)aE = AT (s) ae. s€[—h,0].
The equation (4.25) for g' is a Volterra integral equation of the second kind, so
by the contraction mapping principle, we have a unique solution g'€ L —h,0; V).
Hence we can construct a unique solution g& M, of the equation Fg=f. This
proves Im F==M% and Ker F={0}. Since 4, is boundedly invertible if and
only if the adjoint AF is boundedly invertible (cf. Kato [12; p. 169]), as seen as
above we have Im F*=M¥ and Ker F*= {0}.
(if) Assume 4,=0 and let g=(g°% g")EM, satisfy Fg=0. Then g"°=0 and
&' satisfies the Volterra integral equation of the first kind

(4.26) S;, a(E)Apg (E—s)dE =0 ae. s€[—h, 0].

Since a(s) is continuously differentiable, we differentiate the equality (4.26) and
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apply Az! to obtain

4.27) a(—h)gl(——h—s)—i—ss_h%Eg)g‘(ij——s)ds=0 ae. s€[—h, 0] .

The Volterra integral equation (4.28) is of the second kind by a(—#%)=0, and
so this equation admits a trivial solution g'(s)=0, and hence g=(g° g')=0. This
shows Ker F={0}. Noting Kato [12; p. 169] again, we see Ker F*= {0} readi-
ly. O

The next Proposition extends the key relation G(¢+k)=S(¢)G proved in
Nakagiri [17; Prop. 3.7], which plays a central role in the structural study of
retarded functional differential equation (E).

Proposition 9. (i) For t,,1,>0,
(4.28)  S(t)G(t) = Gti+1)E), St)G*(t) = G¥(t+H)E®),
where E(t;): M¥—M¥ is given by
(429) [E@fT=[") [E@)f16) = Xi-ru(9)f'(s) ae. s€[—h,0].
(ii) For t,, £,>0,
(4.30) G*(t,)S*(t,) = E*(t,)G*(t,+1,), G(t,)S*(t,) = E*(t,)G(t,+1,),
where E*(t,): My— M, is given by
(4.31)  [E*(2)g]) = &' [E*(2)g]'(s) = X-1,1(8)8"(s) a.e. s€[—h, 0].
(ii) For ;=0 and t,>h,
(4.32)  S(4,)G(t,) = G(t,)S$(t)) S(t)G*(t,) = G*(t,)S*(t,) -

Proof. (i) Let f=(f° f))€M¥. By definitions of S(¢), G(¢) and (3.10),
we have for #;-+s>0,

(+33)  [SECESTO
— Wi 9lGEIT+ (| Wtts+8)| FIGEIN | @0

= (Wrtowr+ [ Wots+OIFEWe+-)rIE)e)
+7 W gw+f @

+" Wets+ o) FIf Wit + a)f@da | @
= I1+12+I3 .
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By the change of variables a—£, the term I; is calculated as
[}

#39) L= [ wotstomn [ mutatr-ariedad
[ Wekera) |7 dney W+ £-+r—ada i)
=" ([., Metst IEW £+ (@)de) FiENE,

so that

#35)  Lh=[ WatgWets)

+7 Witts+ ) lE Wt £+ N@)da) PE)E

Noting that W(t,+£)=0 if t,4+£<0 and applying the quasi-semigroup pro-
perty (3.18) of W(t) we obtain that
(4.36) [S(#H)G(#)f1(s)
0
= Wt tto)f'+ (| Wttt +Of€)de
0

= Wittt + [ Wittt s+ O fEVE

= [G(ty+1) E(t) f1(5) -
On the other hand, we have for #,+5s<<0,
(4.37) [S(#)G(2)f1(s)

= [G(t)f1'(t+5)

0
= Wtk + [ Wttt +OF (@)
[
= Wittt )f*+ [ Wittt s+ 8)Xern fAE)E
= [Gti+1)E(®)f](s) -
Substituting s=0 in (4.36) we have [S(t,)G(%,)f]’=[G(¢,+1,)E(t,)f]°. Hence
S(t)G(t,)=G(t,+1,)E(t;) is proved. Similarly we have Sp(4,)G*(t,)=G*(t,+
)E(t,).
(ii) Taking adjoints of the equalities in (4.28) and changing ¢, and #,, we have
the relations (4.30).
(i) The assertion (4.32) follows from (i), (ii) and that E(k) is the identity
operator on M¥.

The following result gives the interconnected property between the struc-
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tural operator G and the semigroup S(¢).
Theorem 6. The following relations on G hold :
(4.38) St)G = GS¥(t), G*S*@t)= S;(1)G*, t=>0;
(4.39) GYA¥)CDA) and AG = GA¥ on DA¥);
(4.40) G*PA*)CD(Ar) and G*A* = A,G* on D(A4*).
Proof. Substituting t,=¢ and #,=# in (4.32) we get (4.38). It is well

known that the first and the second equalities in (4.38) are equivalent to (4.39)
and (4.40), respectively (cf. Salamon [20; Lemma I. 3.8]). [

Theorem 7. The following relations on F hold :
(4.41) FS(t) = S¥@)F, S*@)F* = F*Sy¢t), t=>0;
(4.42) FPA) CDAF) and FA=AFF on DPA);
(4.43) F*PAr)CD(A*) and A*F* = F*A;, on D(A,).
Proof. It is sufficient to prove (4.41). By (4.38) and (3.9),
G(S¥(t)F) = S(t)GF = GFS(t) = G(FS(z))

and, by Ker G={0} in (6.21), the equality S$(¢#)F=FS(¢) follows. The second
equality in (4.41) can be proved similarly. [

5. Examples

In this section we give an application of the results obtained in the pre-
ceding sections to practical partial functional differential equations.

Let QC R* be a bounded domain with smooth boundary 8Q. We set H=
L¥(Q) and V=H(Q). Let a(u,v) be the sesquilinear form in H3(Q)Xx H(Q)
defined by

G.1) a(, v)= S y 6" :” xeq.
Here in (5.1) we assume that the real valued coefficients a;;, b;, ¢ satisfy

a;,€CYQ), beC(Q), ceL>(Q),
a;;=a;, (1<i,j<n) and the uniform ellipticity
.-.,Zi @ (®)yiy;zv|y1* ¥ =y ER

for some positive ». As is well known (see e.g. Tanabe [21; Chap.2]) this
sesquilinear form is bounded and satisfies the Garding’s inequality (2.3). The
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operator Ay: Hy(Q)—H Q) defined through (2.4) in this case has the follow-
ing realization in L%(Q). Let

(5.2) A= _.?21 7y 9 (a ,,(x)—_)+z:b(x) PRCHIER

be the associated uniformly elliptic differential operator of second order. Then
the realization of —A in L*Q) under the Dirichlet boundary condition is
exactly A4,, i.e.,

DAy) = WQ)NHy(Q) ,

Ap = —Au for ueQ(4,).

It is not difficult to verify that Aw=—JAu for ucHy(Q) in the sense of dis-
tribution and #|,=0 for u=H;}(Q) also in the sense of distribution (cf.

Lions and Magenes [15]).
Next, let 4,, ¢=1, 2, be the restriction to H3(Q) of the second order dif-

ferential operator A,, ¢=1, 2, given by

(5.3) A, =— Z ( .,(x) )—]—Z‘, bi(x —l—c‘(x) x€Q,

where
a,; =a;eC'(Q), beC (@), el Q).

It is clear that each 4,: Hj(Q)—H Q) is bounded without the ellipticity con-
dition. The kernel function a(s) is assumed to be an element of L*—4,0).
Now we consider the following parabolic partial functional differential equation

(5.4) 6”_(6‘})_ — gt %)+ Agi(t—h, %)
+S°_h a(s) Agi(t+s, ))ds-+f(t, %), 0<t<T, x€Q,

having the Dirichlet boundary condition

(5.5) #laa=0, 0<t<T,

and the initial data given by

(5.6) u(0, x) = g%x), u(s, x) =g'(s,x) ae. s€[—h0), x€Q.
Here in (5.4) and (5.6) we suppose that

(5.7) fELL(R*; HT(Q))

(5.8) gLeli(Q), geLl—h0;HyQ)).

Under the above conditions the system (5.4)-(5.6) takes the abstract equation
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form (E). Thus by applying Theorem 1, we have the following result.

Theorem 8. Under the conditions (5.7) and (5.8) there exists a unique
solution u(t,x) of the system (5.4)-(5.6) such that t—u(t,+) belongs to
LZ(—h, oo; Hy(Q) N WZ(R*; H(Q)) and satisfies the equation (5.4) and the
boundary condition (5.5) in the sense of distribution and also satisfies the initial
data (5.6). Further, for each T >0 there is a constant Ky such that

ou(t, +)
ot

2

dt)
7-1(Q)
0

T
< Ke{llglrart | g6 st 1A - de)

(5.9 ([} e, s+

Next, we shall introduce the transposed system of (5.4)-(5.6) in the space
L¥ Q). Let a(u, v) be the sesquilinear form given in (5.1) and the adjoint oper-
ator A¥: Hy(Q)—H Q) be defined through the equation
(5.10) <u, Afv) = —a(u,v), u,vEV.

The realization of AF in L*Q) is characterized as follows. Let us denote the
formal adjoint of A in (5.2) by A*, that is,

n n 6
O ! a?c,. (@) a‘z’_)—g} o (@) e Q.

The realization of — A* in L* Q) under the Dirichlet boundary condition coin-
cides with the realization of A¥ in L¥Q). That is to say,

DA¥) = W Q)N Hy(Q) .
A¥u= —A*u  for usP4,).

The adjoint operators A¥ of A,, t=1, 2, are given by the restrictions to H(Q)
of the following formal adjoint operators of 4,, ¢=1, 2,, respectively:

ij=1

(5.12) M= — 3 O (a0 i) )Lew xeQ.

Ox; Ox; " i=1 O,
Evidently, A¥: Hy(Q)—H Q) is bounded.

The transposed system of (5.4)-(5.6) is now given by the following system
of equations
(5.13) ﬁ?(ath)_ — Afo(t, x)+ AFo(t—h, x)
+S° a(s) AFo(t+-s, x)ds+h(t, x), 120, x€Q,
-h

(5.14) v]ea=0, >0,
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(5.15) (0, x) = @%(x), (s, x) = P'(s, ) a.e.s€[—h,0), xEQ.
In (5.13) and (5.15) it is assumed that
hELi (R HYQ), Q€IXQ), eli—h 0;HYQ)).

Under the above condition the system (5.13)-(5.15) can be considered as the
transposed equation (Er). Hence as shown in Theorem 8, we have the similar
existence, uniqueness and well posedness result for the transposed system
(5.13)~(5.15) as for the system (5.4)-(5.6).

Finally we give an explicit form of the fundamental solution for some spe-
cial case. Let 6;=0, i=1, -+, z in (5.2) and assume that A;=A and A,=0.
Then it is easy to see that A4, is selfadjoint with compact resolvent in L*Q),
and generates an analytic semigroup T'(¢) both in LYQ) and H-}Q). Further,
there exists a set of eigenvalues and eigenfunctions {\,, ¢,} .1 of 4, such that

MZAp = vo0 Z2N,~>—00 pP—>00 ;
A(ﬁ" = 7\‘”¢ﬂ ’ <¢m ¢m>L2 = 8,,,,, n,m= 1, 2, e s

and

T = 3 e™<u, ¢ D2, 120, ucL¥Q),

where {u, $>2=[g u(x)p(x)dx and 3§,, denotes the Kronecker’s delta. Hence,
in this special case the fundamental solution W(¢) is given by

t€[(m—1)h, mh], w€DAY), m=1,2, .
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