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Abstract
We investigated mechanocaloric properties of two silicone rubbers using an in-house made apparatus. Tension f  and 
temperature change ΔT  of the rubber samples in the form of tapes were measured as they were extended up to a normalized 
length � ≈ 2 at a constant rate. Endothermal and exothermal components of the thermal response were observed and 
separated. The engineering stress and (decrease of) the entropy density derived from the data were analyzed. The number 
densities of the partial chains and the coefficients of the positive (endothermal) entropy contribution were determined as 
material constants of the rubbers. Non-idealities were revealed by the large difference between the work done on the rubber 
for the extension and the heat that evolved in the process. It decreased to a considerable extent when the heat was corrected 
for the endothermal effect arising from the above-mentioned endothermal entropy contribution. This may be understood as 
an indication of hidden near-ideality of silicone rubbers. Dissipation of the work into heat is quantified using the difference 
between the temperature changes on extension and contraction.

Keywords  Rubber elasticity · Entropy of extension · Ideal rubber · Non-ideal rubber · Endothermal mechanocaloric effect · 
Exothermal mechanocaloric effect

Introduction

The temperature of a solid matter changes when it is 
deformed mechanically. The magnitude of the change 
is usually very small. Joule found back in 1859, using a 
sensitive device with a temperature resolution exceeding 
one mK, that the temperature of metals, alloys and other 
materials including various kinds of wood decreased when 
they were extended [1]. He found also that the temperature 
of the stretched material returned to the original value 
when the applied tension was removed. The thermal 
effect was reversible and hence belonged to the realm of 
thermodynamics which Joule was creating at that time with 
Kelvin and other scientists.

Rubber was exceptional among the substances Joule 
examined. The temperature change was opposite to that 

of other substances: The temperature of a rod of rubber 
increased when it was stretched and decreased when it was 
released back to the original length. He found also that the 
magnitude of the temperature change was much larger than 
those in other materials under the same experimental condi-
tion. This unusual mechanocaloric property of rubber is now 
known as an indication of the entropic origin of its elasticity.

There have been experimental works [eg. 2–4] deal-
ing with mechanocaloric properties of rubber after Joule’s 
experiment, but his work [1] was so carefully executed that 
it has been difficult to exceed and replace it for a long time.

In the meantime, rubber has become an important 
industrial material. New elastomers were synthesized and 
new experiments on mechanocaloric response [5, 6] and 
stress–strain relations reported [7, 8]. Theoretical analyses 
and further experiments on the stress–strain relation were 
also published [9, 10]. The developments both theoretical 
and experimental up to 1975 have been taken up in a mono-
graph [11]. These comprise the bases of our understanding 
of the rubber elasticity. More recent developments in this 
field are incorporated in soft matter physics [12, 13]. We 
use, in the analysis of our experimental results below, these 
new formulations.
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Recent developments in quantum chemistry, molecular 
dynamics and Monte Carlo simulations are beginning to 
produce results that can be compared with experimental 
data [14–16]. Also a new mathematical way of describing 
the state changes of elastomers has been developed to actu-
ally simulate the stress–strain relations [17]. An interesting 
problem in this direction is the distinction between adiaba-
tic and isothermal changes of the state of an elastomer. It 
seems that even for a single polymer chain we do not know 
how to describe these changes at the molecular level. It is 
desirable to have new results on the experimental side in the 
mechanical and thermal aspects of the elastomer properties. 
The mechanocaloric coupling is also an interesting mate-
rial property of a recent significance that it may be used in 
harvesting thermal energy from low level heat sources [18].

In the present paper, we describe an experiment which 
we performed recently on the mechanocaloric responses of 
two silicone rubbers of different hardness. We measured 
the temperature change and the tensile force on the rubber 
sample simultaneously as it underwent deformation, 
and derived the entropy of extension directly from the 
mechanocaloric effect. This allowed us to determine the 
heat and mechanical work involved in the deformation of 
the elastomers as a function of the extension. This type 
of experiment was started some time ago [19–21] and 
has since been improved with respect to the resolution of 
the measurement of the temperature and extension, and 
automatic recording of data. It has been further innovated by 
Suzuki and others [23] and combined with the heat capacity 
calorimetry for better understanding of the elasticity of 
rubber. In ICCT 2023, there have been presented four papers 
dealing with mechanocaloric (a.k.a. elastocaloric) properties 
of rubbers (https://​www.​chem.​sci.​osaka-u.​ac.​jp/​lab/​micro/​
icct2​023/​index.​html).

Thermodynamic relations used 
in the analysis of the experimental data

In the approximation at the simplest level, the internal 
energy of a rectangular piece of rubber is given as follows.

where f  and L are, respectively, the tensile force on the 
rubber sample and its length. The other symbols are used 
in the usual meaning. This form of the internal energy 
is justified on the ground that a typical rubber material 
becomes thinner in the directions perpendicular to the 
direction of extension, so as to keep the volume of the rubber 
approximately the same. Equation 1 resulted in a satisfactory 
explanation of the entropic origin of the rubber elasticity 
[11–13]. However, our experimental data have shown that 

(1)dU = TdS + fdL

we need a next level of approximation to take the volume 
change dV  into account.

In the approximation we employ here, we assume that 
the volume of a rubber increases when it is extended. This 
assumption is equivalent to a constant value of the Poisson 
ratio ν smaller than 1/2, and explains the endothermal 
mechanocaloric response as will be shown below.

The entropy is a function of T, L, and V. Its total 
differential is equal to zero for a quasi-static adiabatic 
extension:

where dS is written as follows.

This gives the following equation on division by dL at 
constant T and V.

The temperature change in an adiabatic extension follows 
the next equation derived from Eq. 5.

where the relation CL,V = T
(

�S

�T

)
L,V

 is used, with CL,V 

defined as the heat capacity at constant length and constant 
volume. Equation 5 is further rewritten as follows.

Substitution of a Maxwell relation 
(
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in Eq. 7 gives

The LHS of Eq. (8) is the experimental measure of the 
decrease of the entropy of the rubber that occurs when 
it is extended isothermally (see Eq. 21 below). The first 
term in the parentheses on RHS represents the decrease 
of the entropy that occurs in the rubber as it is stretched 
isothermally at a constant volume. This is the main part of 
the thermal effect of the rubber elasticity and is often taken 
up in thermodynamics courses to introduce the entropy 
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as a measure of disorder. The second term describes the 
effect of extension on the entropy through the change in the 
volume that accompanies extension. The third factor of the 
second term gives the volume change of the rubber for a 
given extension, while the first and second factors together 
translate the volume change to the entropy change. The first 
factor is in a form similar to but not equal to the thermal 
expansion coefficient, � = (1∕V)(�V∕�T)p . The second 
factor is again in a form similar to but not equal to the bulk 
modulus K = −V(�p∕�V)T . The difference lies in that the 
corresponding partial differentiations in Eq. 8 are taken 
under an additional restriction L = constant.

The third factor (�V∕�L)S,p is rewritten in a form 
involving Poisson’s ratio as follows.

A rectangular rubber sample of volume V = abL is 
extended to a length L + ΔL . The sides are reduced to 
a − Δa and to b − Δb . Change of the volume ΔV  is written 
as follows,

Poisson’s ratio � is defined as follows

A similar relation holds with b in place of a . Equation 11 
shows that the volume of a material with Poisson’s ratio � 
equal to 0.5 remains the same when it is extended, whereas 
the volume of those materials with 𝜈 < 0.5 increases when 
they are extended.

In the above derivation, we disregarded the possible 
difference in the volume changes arising from adiabatic and 
isothermal changes of its length. In the analysis described 
below, this difference is absorbed in one of the least-squares 
parameter along with two other material constants (see 
Eq. 27).

The coupling Eq. 11 between L and V has an effect on the 
force given by the partial derivative of the Helmholtz energy 
with respect to L.

The second term arises from the coupling between L and 
V. Typical values in the our experiment are f = 1 ∼ 20 N 
and ab = 20 mm2 . For � = 0.4999 (a reported value for 
natural rubber [24]), the correction term is equal to 

ΔV = (a − Δa)(b − Δb)(L + ΔL) − abL

(9)≈ abΔL − aLΔb − bLΔa

(10)
ΔV

ΔL
= −aL

Δb

ΔL
− bL

Δa

ΔL
+ ab

(11)≈ −2ab� + ab = ab(1 − 2�)

(12)� =
(Δa)∕a

(ΔL)∕L
, ΔL → 0

(13)
(
�F

�L

)
T
= f − pab(1 − 2�)

0.0004 N and easily negligible in comparison with the force 
f = 1 ∼ 20 N

Equation 8 is rewritten in Eq. 14 by introducing these 
material constants. The primes on � and K indicate that these 
are partial derivatives taken under an additional restriction 
of constant L.

Further introduction of a normalized length variable 
� = L∕L0 where L

0
 is the initial length of the sample and 

division by V = abL0 changes Eq. 14 to the following form.

Here the heat capacity c
�,V and entropy s are respective 

quantities per unit volume of rubber. The experimental data 
presented below are analyzed using Eq. 15.

Experimental apparatus

General

The sample, a pair of ca.70-mm-long tapes of rubber (see 
below for details) is held together in a temperature-stabilized 
20x20x55 cm3 wooden box shown in Fig. 1. The upper end 
of the sample is hooked on a force gauge and the lower end 
connected to the upper end of a rack whose vertical posi-
tion is controlled precisely and reproducibly by rotation of a 
meshing pinion. The axle of the pinion is rotated by a pulley 
driven by an adjustable-speed motor. The force gauge and 
pinion-and-rack mechanism are, respectively, situated above 
and below the top and bottom plates of the temperature-
stabilized box, the force being transmitted to the rubber by 
connecting wires through the plates.

The mechanical part of the apparatus has to be rigid 
and stable as it determines the accuracy, precision and 
reproducibility of the measurement of the sample length. 
This is achieved by a sturdy wooden bar (120x5x1.5 cm3) 
on which the force gauge and the bearing of the pinion are 
screwed firmly. The wooden bar itself is held firmly to an 
iron frame forming the entire sample environment. The 
wooden box surrounding the sample is held in position with 
its upper and lower plates fixed to the central wooden bar.

Measurement of the length of the sample

A ten-turn 10 kΩ potentiometer is coupled with the axle 
of the pinion. Extension of the sample rubber, determined 
by the vertical position of the rack, is encoded accurately 
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on the resistance of the potentiometer. The relation 
between the potentiometer resistance and length of the 
sample was calibrated by actually measuring the vertical 
position y of the rack as a function of the potentiometer 
resistance x. y was read against a ruler and x measured by 
a DMM. For the calibration, 26 points were taken in the 
range 10.3 mm < y < 42.9 mm. Corresponding resistances 
were 82 Ω < x < 771 Ω. The position y was a good linear 
function of x, the maximum deviation from the best-fit line 
being 0.19 mm and the correlation coefficient between x 
and y 0.999963. The coefficient relating the length to the 
potentiometer resistance was 0.0470 mm/Ω. This value was 
used in the calculation of the sample length from the heliport 
resistance value. The effective diameter of the pinion 
calculated from this coefficient was 14.96 mm against the 
nominal diameter 15.0 mm.

The sample (Fig. 2) is typically two 70-mm-long tapes of 
rubber with 10 to 15 mm width and 0.5 or 1.0 mm thickness 
(depending on the material available for the experiment). 
Two clips, made of 10x15 mm2 pieces of stainless steel, a 
phosphorus bronze plate spring of a similar size and two 
pairs of screws, are attached to both ends of the sample using 

the 10 mm end portions of the tapes. The effective length of 
the sample is ca. 50 mm.

The sample suspended down along the center bar is 
covered with an aluminum and acryl plate box (50x40x300 
mm3) for better thermal stability of the sample environment. 
The tension on the sample is transmitted by stainless steel 
wires through the holes in the end plates of the aluminum 
box.

The temperature of the air circulated in the wooden box 
by a fan is stabilized by a thermistor-controlled heating 
circuit (maximum 20 W). The air in the aluminum and acryl 
plate box, which is in direct contact with the sample and the 
reference junction of the thermocouple, is gently circulated 
with a smaller fan.

Measurement of the deformation, force 
and temperature

Three quantities are measured: the extension of the sample, 
the tension on it and its temperature change. The extension 
of the sample is translated precisely to the resistance of a 
potentiometer by a rack-and-pinion mechanism, as described 
in the previous section. The resistance is measured by a 

Fig. 1   The thermostated sample space shown with the front panel 
removed

Thermocouple

4 cm

Rubber tapes

Extension experiment

Fig. 2   The sample
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digital multimeter (DMM) to 0.1 Ω while 1 Ω is the preci-
sion needed. The entire system is shown in Fig. 3 in a block 
diagram.

The force on the sample is measured with a digital force 
gauge to 0.01 N, the zero of the force being taken as the 
mass of the rubber and two connecting clips. The initial 
length of the sample is somewhat indeterminate because of 
warping of the sample and irregularity in the fastening at 
the clips. This was corrected for by back extrapolation of the 
force vs. extension curve to the zero of the force.

For the measurement of the sample temperature, a 
chromel vs. constantan thermocouple (each 50 μm diameter) 
is inserted between the tapes of the rubber sample. The 
thermocouple voltage relative to the reference junction 
attached to the central bar (see above) and covered with a 
piece of copper plate is lead to an analog nanovolt amplifier, 
amplified by a factor of 1000 and measured on a DMM. The 
noise amplitude is typically ( ±)3 nanovolt at a sampling 
interval of 0.5 s, corresponding to a noise level of about 
50 μK.

These three digitized quantities (force, heliport resistance 
and thermocouple output signal) are recorded on a computer 
as functions of time using a LabVIEW software.

The samples

Silicone Rubber1: Manufactured by WAKI Sangyo, Osaka, 
Japan, bought in 2020. It was cut in tapes 10.1 mm wide 

and 70 mm long. Two of them were held together and their 
ends caught by clips. The thickness of the two tapes were 
2.1 mm. The effective length was 53 mm. Chemical analysis 
is not available.

Silicone Rubber 2: Manufactured by Shin-etsu Silicone, 
bought in 2014. It was used in the experiment reported in 
2016 [21] and had been kept in a dark place. It was cut in 
tapes, width 12.0 mm and length 70 mm, thickness 1.0 mm 
in double. The effective length was 51  mm. Chemical 
analysis gave 2.88:1 for the number ratio H:C vs. the ideal 
value of 3:1.

Experimental procedure

When the sample was set up in the apparatus, the three 
quantities were recorded properly and the temperature 
sufficiently stable, the sample was extended at a chosen 
speed. The tensile force increased and the temperature 
decreased for a short time. If the extension was continued, 
the temperature changed to increasing and continued to 
increase until the extension was stopped at the desired 
length of the rubber. The length of the sample was kept 
constant for some time while the tension and temperature 
were continually recorded. The tension decreased 
exponentially for a short time just after the extension was 
stopped, indicating a process of relaxation taking place in 
the stressed rubber. The magnitude of the relaxation was 
ca. 0.3 N when the tension was 15 N (close to the largest 

Fig. 3   The data acquisition and 
recording system
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tension in the present experiment for Silicone 1). We took, 
as the equilibrium tension corresponding to the length of the 
sample recorded, the tension value read when the transient 
effect had died out.

When the transient change of the force became 
sufficiently small and the trend of the temperature change 
was recorded sufficiently stably, the motor driving the pinion 
was turned on in reverse to decrease the sample length to the 
original value. The tension decreased, and the temperature 
also decreased (if the extension had been sufficiently large), 
reached a minimum and then approached the final value 
from below. The measurement was continued for a while to 
record the trend of the temperature change. This concluded 
one cycle of measurement in which a triple of data, the 
length, tension and temperature were determined. The cycle 
of measurement may be repeated with a different value of 
extension, or the measurement may be ended.

The length of the sample L is usually given in a reduced 
form λ = L/L0 where L0 is the length of the sample in the free 
state. The force f  is also normalized to the unit sectional 
area A0 of the unstrained sample. The stress thus normalized 
is known as the engineering stress. �e = f∕A0 . Extensions up 
to λ = 2.0 and 2.5 were studied for Silicone 1 and Silicone 
2, respectively.

Experimental results

In Fig. 4 where a set of data on Silicone 1 is plotted, the 
upper trace shows the temperature change and the lower 
one the tension on the rubber sample both against time. The 

λ value is also given for each of the peaks. In this small 
λ region, the temperature decreased when the sample was 
extended. We notice that the response is very fast, almost 
instantaneous in the present experimental condition (two 
readings in a second). The fast response indicates that the 
temperature of the rubber decreases uniformly over the 
entire body of the sample, which means that heat conduction 
through rubber (a bad conductor of heat) is not involved in 
the thermal response process. The thermocouple is sensing 
the temperature of the rubber in direct contact with it.

At larger extensions, a positive temperature change 
becomes noticeable. Figure 5 shows the case in which the 
endothermal and exothermal effects closely balance out. We 
show below that the magnitude of the endothermal effect 
is proportional to (� − 1) , whereas the exothermal effect 
to (� − 1)2 . Hence, the positive effect becomes increas-
ingly stronger at larger extensions. In Fig. 5, the decreasing 
part of the first dip of the temperature corresponds to the 
endothermal effect that became gradually canceled out by 
the exothermal effect as λ increased. The central portion 
of the curve corresponds, at λ = 1.296, to the equilibrium 
temperature which happened to be the same as the temper-
ature at which the sample had been in equilibrium in the 
un-stretched state. The temperature decreased slightly with 
time for a reason not known at present. The second dip of 
the temperature in Fig. 5 shows the temperature of the rub-
ber tracing back the course of the temperature change in the 
opposite direction as λ decreased from 1.296 to 1.0. The 
similar shapes of the two dips can be taken as an indication 
of a good reproducibility and the quasi-static nature of the 
extension-contraction cycle.

The tension on the sample increased nonlinearly with 
time and decreased also nonlinearly, as shown by the lower 
trace in Fig. 5. The nonlinearity is more evident for larger 
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extensions. The nonlinearity is a general property of rubber 
as is discussed below (Eq. 19).

In Fig. 6, we plot three curves (A), (B) and (C) against 
time for an extension of Silicone 1 to � = 1.888 . Curve (A) is 
the force (tension) on the sample. Curve (B) is the sample’s 
temperature change as measured and Curve (C) the tempera-
ture change corrected for the heat lost to the surrounding air. 
On each curve the point 1 marks the beginning of the exten-
sion, point 2 its end, point 3 the beginning of the contraction 
and point 4 its end.

The portion A1 to A2 is clearly curved. Since the time 
rate of the change of λ is constant (being driven by a constant 
speed motor), this arises from the nonlinear force law. A 
similar nonlinearity is seen also in the part of the curve 
A3-A4.

In order to determine the increase and decrease in 
temperature, Δ1T  and Δ2T  , arising from the extension and 
contraction, respectively, the following correction was made 
to the observed temperature change Curve (B).

When the temperature of the sample is different from 
that of the surrounding air, the time rate of the temperature 
change due to the heat loss to the air follows the Newton’s 
law:

Here ΔT0 is the convergence temperature and τ the time 
constant of the approach to the convergence temperature. 
This type of cooling law is appropriate as we have shown in 
[20]. The correction to be added to the observed temperature 
is given by the following numerical integration.

(16)dΔT

dt
= −

ΔT − ΔT0

�

Here (�t)i is the time interval between i-th and (i + 1)-th 
measurement of the temperature, (�t)i ~ 0.5 s in the present 
experiment. ΔT0 = 0.00mK and � = 102 s were chosen 
in the following manner. The two portions of the curve 
B2-B3 and B4- were reproduced well by a single τ function 
separately with nearly equal sets of parameter values. We 
calculated the correction Eq. 17 for a few combinations of 
ΔT0 and τ, and took the best one that reproduced the nearly 
constant segments in the curve C.

The three sections of the Curve C in Fig.  6 are 
separately constant so that the differences between them 
Δ1T = 123.2 mK and Δ2T = 99.7 mK were determined 
without much ambiguity.

Similar data were collected for different values of λ 
and corrected for the heat loss in the same way. Resulting 
Δ1T ,Δ2T  and their averages (Δ1T + Δ2T)∕2 are plotted in 
Fig. 7. They have the following physical meaning: Δ1T  is 
the sum of the thermodynamic (quasi-static) increase of 
the temperature due to the mechanocaloric effect and the 
increase of the temperature arising from irreversible dis-
sipation of the mechanical energy into thermal energy.Δ2T  
is the difference between these two thermal effects. If we 
assume that the irreversible heat effects in extension and 
contraction are the same, they are canceled out in the aver-
age (Δ1T + Δ2T)∕2 of these two temperature changes. It 
gives the reversible thermodynamic temperature change 
due to the mechanocaloric effect. This quantity is related 
with the reversible entropy change of extension of the 
rubber.

(17)�ΔT(t) =
∑
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(Δ1T − Δ2T)∕2 represents the dissipative contribution 
to the temperature increase and will be discussed later by 
comparing it with the mechanical energy expended in the 
extension.

Figures 8 and 9 show the experimental results for Sili-
cone Rubber 2. Figure 8 presents the force, temperature 
change as measured, and the corrected temperature change 
for � = 1.449 and � = 1.551 . Figure 9 shows the tempera-
ture change for the whole region of the extension. We see 
from these four Figs. 6–9 that Silicone Rubber 1 and 2 
behave in a similar way with regard to the mechanocaloric 
response.

Discussion

In the ideal rubber approximation, the entropy of a piece 
of rubber extended to � is, for a unit volume, given by

where nc is the number density of partial chains forming the 
rubber and k the Boltzmann constant [11–13]. Equation 18 
is negative for 𝜆 > 1 and gives the entropy of an extended 
rubber relative to its entropy in the free state where � = 1.0.

The engineering stress �e(�)(the stress not corrected for 
the change in the cross-sectional area) needed to extend a 
unit cube of rubber to � in one direction is

where

is the shear modulus [12, 13].

The stress strain relation

Figure 10 shows the engineering stress of Silicone 1 as a func-
tion of � and two curves of the form Eq. 19 that try to reproduce 
the experimental data. The fitting is unsatisfactory with either 
parameter values, G = 0.686 MPa or G = 0.583 MPa optimized, 
respectively, for small � values or for the entire region. Rather 
poor fitting was found also for natural rubber with the same 
fitting function [22]. G is related to nc by nc = G∕kT ; hence, 
the two G values are equivalent to nc = 1.69E + 20 /mL and 
nc = 1.44E + 20 /mL.

For Silicone 2, the results are qualitatively similar to those 
for Silicone 1. The best-fit G values are 0.290 and 0.256 MPa 

(18)s(�) = −
1

2
nck(�

2
+ 2∕� − 3)
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for the small λ and the entire λ regions, respectively. The 
smaller values of G of Silicone 2 than those of Silicone 
1 correspond to Silicone 2 being softer than Silicone 1. 
In terms of nc , Eq.  (20) gives nc = 7.08E + 19/mL and 
nc = 6.28E + 19/mL for the small λ region and the entire λ 
region fitting.

The entropy of extension

The differential dS of the entropy is given by

The rightmost expression of this equation (with dL 
removed) is equal to the LHS of Eq. 14. Hence integration 
of Eq. 14 by dL gives the entropy change of the rubber that 
would occur if the evolving heat were removed from the 
rubber. For a unit volume of the rubber integration of the 
LHS of Eq. 15 from � = 1 to � = � gives the entropy density 
change of the rubber that occurs as it is extended from λ = 1 
to λ.

The integral in Eq. 22 is replaced by a single term. This 
is justified since the integrand is very closely constant in 
the interval of the integration where T is the temperature 
at which the experiment was performed (~ 300 K) and 
ΔT = 1 K at most, while c

λ,V (the heat capacity density 
at constant λ and V) is represented well by a single 
value (assumed or derived from a separate experiment). 
Equation 23 is used to determine the change in the entropy 
density from the experimental data as shown in Figs. 7 
and 9.

The specific heat capacity of Silicone 2 measured by A. 
Inaba (Private communication to T. Matsuo is gratefully 
acknowledged) is represented well by

for 250 ≤ T∕K ≤ 350.
The mass density of silicone is assumed to be 1.01 g 

mL−1. These data were substituted in Eq. 23 to calculate 
the entropy density from the temperature change data. The 
heat capacity cV differs from the heat capacity cp by 3 to 
5 percent for most of the substances in condensed state, 
the latter being larger than the former [25]. This will have 

(21)dS =
�Q

T
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T
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CV

T

(
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)
S,p
dL

(22)s(�) − s(1) = −∫
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T

(
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��
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(23)≈ −
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�,V

T
ΔT(�)

(24)c
p
(T)∕(Jg−1K−1

) = 1.4175 + 0.0936

(
T∕K − 300

50

)

to be taken into account in a more detailed analysis of the 
present result.

A theoretical equation to be compared with the 
experimental entropy Eq. 23 is derived by integration of 
the RHS of Eq. 15.

Here we use for the first term in the integrand the 
entropy density of an ideal rubber given by Eq. 18. Note 
that s(1) = 0.

The two constants on RHS of Eq. 25 are abbreviated 
as follows.

The final form of the fitting equation is given by

Figure 11 shows the (negative) entropy density of Sili-
cone 1 as a function of λ and the best-fit functions (Eq. 28) 
for a small-λ region (curve (1)) and the entire λ region 
(curve (2)). It is important that the irreversibility revealed 
by the difference between Δ1T  and Δ2T  has been taken 
into account. The best-fit parameter values are given in 
the caption of Fig. 11.

By rewr i t ing RHS of  Eq.   28 in  the form 
A(1∕�)(� + 2)(� − 1)2 − B(� − 1) , we see that the first 
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term is proportional to (� − 1)2 and the second term linear 
in (� − 1) . This makes them separable in the fitting to a 
second order polynomial in (� − 1) , as we have done in 
Fig. 11.

Figure 12 is a similar presentation of the entropy change 
of Silicone Rubber 2. The best-fit values of the parameters 
are similarly given. By comparing Figs. 11 and 12, we rec-
ognize that the harder rubber (Silicone 1) has a larger value 
of nc than the softer one, which means that the partial chains 
are shorter in harder Silicone 1 than in softer Silicone 2.

In the previous section, we discussed the stress–strain 
relation. There we considered only the ideal rubber term 
of the free energy disregarding in effect the B-term defined 
above by Eq.  27. This is justified because the B-term 
contributes to the free energy through the entropy and the 
internal energy in the opposite ways canceling each other.

Reproducing the temperature–time relation

Figure 13 shows a part of the temperature–time relation given 
in Fig. 6 in a larger scale. It shows the part of the experimental 
curve where the temperature decreases just after the beginning 
of the extension. It also shows a calculated curve that 
reproduces the experimental data. The essential part of the 
curve, excluding the slightly sloping base line, is calculated 
by the following equation.

The two numerical constants are determined by the 
least-squares fitting. Notice that Eq. 29 is a function of 
time through � = �(t) . As shown in the caption of Fig. 13, 
the parameters determined here agree satisfactorily with 
those from the analysis of the entropy vs. λ curve (Fig. 11), 

(29)
ΔT(t)/mK = 146.1(�(t)2 + 2∕�(t) − 3) − 95.1(�(t) − 1)

specifically with the result from the small λ region, i.e., the 
curve (1): The small λ region in Fig. 13 corresponds to the 
first negative peak of the temperature in Fig. 6.

Comparison of the mechanical energy expended 
in the extension and the heat that evolves

One of the features of the present experiment is that we 
measure simultaneously the mechanical work expended on 
the sample for extension and the heat that evolves in the 
process. We compare these energy components comprising 
the internal energy of the rubber.

The mechanical energy density W(λ) was calculated by 
numerical integration of �e(�) with respect to λ in the form 
of trapezoidal summation.

and the heat density Q(�) by

Equation 31 is analogous to Eq. 23 but without T in the 
denominator and with a suitably chosen sign.

Figure 14 shows the two energy components W(λ) and 
Q(λ) vs. λ of Silicone Rubber 1 and Fig. 15 a similar plot for 
Silicone Rubber 2. For both of the rubbers, the mechanical 
energy expended is considerably larger than the heat that 
evolves. The difference is stored in the rubber. They are thus 
non-ideal rubbers.
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The third curves in these figures, marked as Q + B-term, 
show an attempt to understand the large difference between 
the work W and the heat Q. These curves were calculated as 
follow. We have shown that the entropy of extension has two 
components, the endothermal and exothermal components 
corresponding to Eqs. 27 and 26, respectively. Actually 
measured temperature changes are resultant of these two. 
The exothermal effect is intrinsic to the rubber elasticity 

while the endothermal effect is a consequence of a more 
general property of condensed matter, related to thermal 
expansion and heat of compression. The basic idea is to 
calculate the amount of heat that we would observe if the 
endothermal effect were absent.

The heat associated with the endothermal effect was 
calculated by multiplying the B-term Eq.  27 by the 
temperature of the sample in the experiment. The heat thus 
calculated was added to the experimental value of the heat 
given by Eq. 31. The result would correspond to the intrinsic 
exothermal effect associated with the rubber elasticity. In 
this calculation, the B values from the fitting in the small 
λ region were used since they are more appropriate than 
those based on the larger λ regions for the present purpose 
of calculating the magnitude of the endothermal heat effect.

Figure 14 shows that about half of the W-Q difference of 
Silicone 1 is explained by the B-term. The B-term is more 
important in Silicone 2 as is shown in Fig. 15 where the heat 
corrected for the B-term (the curve marked as Q + B-term) 
lies close, though not exactly equal, to the experimental W 
curve.

A physical interpretation of this result would be that, if 
the heat absorption arising from the volume expansion that 
accompanies the mechanical elongation is corrected for, the 
rubber (Silicone 2) behaves like an ideal rubber. It should be 
noted that the heat absorption invoked here is a very general 
property of condensed matter. A substance with positive 
thermal expansivity absorbs heat when stretched. It is the 
reverse effect of the heating by compression.

The data shown in Fig. 14 and especially in Fig. 15 are 
reasonably well explained by the assumed mechanism. 
This may be used to determine the values of the expansion 
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coefficient, bulk modulus, and Poisson’s ratio involved in the 
B-term in Eq. 27. Some of these are important in application 
and require a complicated experiment to determine.

The work W supplied to the natural rubber sample in its 
extension is also larger than the heat Q that evolves [22] 
just as we found in the present experiment with the silicone 
rubbers. The correction for the B-term, not considered in 
the paper [22], was applied to the published natural rubber 
data [22]. The corrected heat Q thus calculated is shown in 
Fig. 16 and is in nearly perfect agreement (~ 95%) with the 
mechanical work supplied. This agrees with the conclusion 
from previous works [8, 9] that the internal energy has only 
a minor role in the elasticity of natural rubber.

An interesting opposite case has been found in ethylene-
propylene (EP) rubber in which more heat evolved than the 
mechanical work supplied [21]. This may be understood by 
assuming the extended state of ethylene-propylene rubber to 
be energetically more stable than in the normal state, a likely 
situation with these polymers whose melting temperatures 
(PE: 125 ℃, PP: 165 ℃) are considerably higher than the 
temperature at which the mechanocaloric experiment was 
performed. Thus the rubber at room temperature would 
retain a certain portion of the energy corresponding to 
the heat of melting. The structural randomness prohibits 
crystallization, but extension will introduce anisotropy in 
the local structure of the rubber that will facilitate mutual 
alignment of the polymer chains and lower the internal 
energy of the rubber. The interchain energy retained in 
the unstrained rubber will be released as the heat in the 
mechanocaloric experiment. This may explain the heat that 
exceeds the mechanical work supplied to the sample in the 
mechanocaloric measurement on EP rubber.

If the interchain attraction is strong enough, the 
tension may induce the EP rubber to crystallize in spite 
of the structural disorder. If this occurs, the heat that 
evolves during extension may be described as the heat of 
crystallization. Crystallization has actually been reported to 
take place by DSC, stress–strain relations, thermoelasticity, 
X-ray diffraction and other methods [26]. But the results 
are complicated with different samples behaving differently 
depending in particular on the cross-linking agent employed 
in the sample preparation. Crystallization is observed at 
higher extensions of λ = 7.50 [27]. For natural rubber, the 
measurement of the mechanocaloric response allowed to 
conclude that it crystallizes at extension λ = 4.37 at 30.0 ℃ 
[28]

The temperature of melting of silicone rubber is 235 K, 
much below the temperature at which we performed the 
experiment. There will thus be no possibility for the heat 
of melting to contribute to the heat of extension of silicone 
rubber.

Irreversibilities in extension/contraction

We have pointed out in relation to Fig. 6 that the increment 
of the temperature Δ1T  accompanying the extension of the 
rubber is larger than the decrement Δ2T  accompanying 
its contraction (Figs. 7 and 9). The difference has been 
attributed to dissipation of the mechanical energy into heat. 
The dissipated energy Ediss(λ) can be calculated for a unit 
volume of the rubber by multiplication by the heat capacity 
density c

�,V.

(32)Ediss(�) = c
�,V(Δ1T(�) − Δ2T(�))∕2
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The factor 1/2 is inserted here to make the definition 
appropriate to the one-way deformation (extension or 
contraction).

Figure 17 and Fig. 18 show Ediss(�) for Silicone 1 and Sili-
cone 2, respectively. The ratios Ediss(�)∕W(�) are also shown. 
The dissipation Ediss(�) increases steadily as λ increases for 
both Silicone 1 and Silicone 2. But interestingly the ratio 
Ediss(�)∕W(�) remains approximately constant for both of the 
samples. The ratio is about 0.03 for Silicone 1 and 0.08 for 
Silicone 2. As energy dissipation is a property that depends 
on various rate processes in rubber, it should be pointed out 
that the results in Figs. 17 and 18 were obtained with the rate 
of extension d�∕dt = 0.04∕s typically. We do not understand 
at present the physical origin of the energy dissipation. We do 
not understand why the softer sample Silicone 2 is more dis-
sipative than the hard Silicone 1 in the absolute value Ediss(�) 
as well as in the ratio Ediss(�)∕W(�) . The present apparatus 
may be used to measure the dissipated energy quantitatively 
for different � and d�

dt
 as well as for different pre-conditioning 

of the sample.

Conclusions

Sensitive and stable DC amplifiers that have become 
available recently at a relatively low cost, combined with 
computer-controlled digital instruments, have made a 
thermocouple an ideal thermometer for investigation of 
mechanocaloric properties of rubbers in which the time-
varying temperature of the sample is measured while 
the sample undergoes extension and contraction by an 
external force. We have utilized this and made an easy-
to-use apparatus for this type of experiment. A unique 
feature of the experiment is that the mechanical work 
done on the sample and the heat generated while the work 
is done are measured simultaneously. For two types of 
silicone rubbers of different hardness we examined, the 
engineering stress and entropy of extension gave mutually 
consistent number densities of the partial chains forming 
the elastomers. As to the comparison of the work done in 
extension and the heat that evolved, the work considerably 
exceeded the heat generated. A large part of the difference 
between the two energy components is explained by the 
endothermal term derived from the analysis of the entropy 
of extension. A tentative conclusion from the experiment 
is that real rubbers may be more close to ideality than the 
large difference between the work and heat suggests. We 
should probably examine the concept of the non-ideality of 
rubber more in detail at the thermodynamic and statistical 
mechanical levels than we do at present. We have shown 
that energy dissipation taking place in rubber while it is 
deformed can be quantified by our method of investigation. 
There would be a large number of experimental conditions 

which can be varied in the measurement of dissipative 
properties, but we did not consider them in this paper. 
They are, e.g., the time rate of deformation and the 
prehistory of the sample, in addition to the magnitude 
of the deformation. This need be done on a systematic 
planning of the experiment and will be a subject of a future 
study.
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