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Abstract

Direct bonding of a TP340 titanium to PEEK by hot pressing via pre-treatment of non-thermal atmospheric pressure plasma
jet has been demonstrated. The plasma irradiation effect on the bonding surface on the bond strength after hot pressing was
investigated. The tensile shear strength of TP340-PEEK joined by hot pressing after plasma pre-treatment was measured
by comparing specimens bonded using conventional hot pressing and those bonded using adhesives. The plasma treatment
to the TP340 side resulted in the formation of TiO,, which is chemically fed to oxide formation due to the irradiation of
oxygen radicals generated by the plasma, resulting in a bond strength of less than 1 MPa, similar to the bond strength of the
untreated specimens. The plasma irradiation effect on the PEEK side on the bond strength of TP340-PEEK bonded samples
was also investigated. The bonding strength was increased by plasma irradiation to PEEK. As the plasma irradiation time
was increased, the bonding strength gradually increased to 9.2 MPa, which is about 19 times higher than the bonding strength
without plasma irradiation. These results suggest that oxygen radicals in the atmospheric pressure RF plasma jet produced
oxygen-containing surface functional groups on the PEEK surface, which increased the strength of the TP340-PEEK direct

joining.

Keywords Dissimilar material joining - Atmospheric pressure plasma - Direct joint

1 Introduction

Toward reducing global energy consumption, lightweight
materials are being applied to reduce the weight of trans-
portation equipment such as aerospace and automobiles
[1]. One approach to weight reduction is the replacement
of component materials with lighter aluminum, magne-
sium, and titanium, rather than steel, which has been the
primary material used. The aerospace transportation equip-
ment industry such as aerospace and automobiles has begun
polymer materials using including carbon fiber-reinforced
plastics, which have lightweight and high-strength properties
to further reduce weight [2-5]. As mentioned above, light
metals and metal-polymer hybrids are key materials owing
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to the requirement for lightweight design and integration
of functions. Focusing on CFRP, the use of thermoplastic
CFRP with high processability is expected to replace con-
ventional thermosetting CFRP [6-9].

The advantage of using thermoplastic materials [10, 11]
is that the materials can be joined directly by hot pressing
using ultrasonic [12-15], induction [16], laser [17-22], or
solid friction [23, 24] heat sources, eliminating the need for
currently used bonding elements such as adhesives [25, 26],
screws, or rivets [27, 28].

In general, it is known that the direct bonding mechanism
between metal and polymeric materials is mainly hydrogen
bonding between oxides on the metal surface and polar func-
tional groups on the polymeric material surface [29-34].
Therefore, the addition of polar functional groups (carboxyl
groups, amino groups, hydroxyl groups, etc.) on the surface
of organic materials, along with the formation of a stable
oxide layer on the metal surface, is very important for direct
bonding. Therefore, in order to achieve reliable and high-
strength direct metal-organic bonding, processes are needed
to form oxide films on metal surfaces and to impart polar
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functional groups. Currently, for surface modification as pre-
treatment for direct bonding by hot pressing, chemical etch-
ing using acids and alkalis [35], UV irradiation [36], corona
treatment [37], and plasma treatment [38] are used. Plasma
treatment is particularly promising in that it can efficiently
modify only the surface of polymeric materials [38].

As one of the pre-treatment methods before hot pressing,
an atmospheric pressure radio frequency (RF) plasma jet is
proposed. The atmospheric pressure RF plasma jets allow
the production of high-density oxygen radicals and the sup-
plement of heat flux provided by the plasma (gas tempera-
ture around 150 °C) [39, 40]. Thus, the use of atmospheric
pressure RF plasma jets has the potential to achieve efficient
functional group impregnation because the radicals irradi-
ated from the plasma and the surface heating from the inci-
dent heat flux from the plasma promote scientific reactions
on metal and plastic surfaces.

Direct joining of SUS304 stainless steel and polycarbon-
ate (PC), an engineering plastic with a low glass transition
temperature, by combining surface treatment and heating
with an atmospheric pressure RF plasma jet, without any
heating source other than plasma has been demonstrated
[41]. In addition, aluminum alloys A1050 and A5052 and
the engineering plastic PEEK were directly joined by surface
pre-treatment with atmospheric pressure RF plasma jets and
thermocompression bonding to confirm the effect of plasma
treatment on joint strength [42, 43].

In this paper, direct joining of pure titanium TP340 to
polyetheretherketone (PEEK) with hot-pressing process
using irradiation of atmospheric pressure plasma jet as a
pre-treatment of bonding surfaces has been performed. The
influence of plasma irradiation to TP340 and PEEK surfaces
on the strength of TP340-PEEK bonding was investigated
via observation of the chemical and physical state of the
surfaces.

2 Experimental procedures

The sheets of pure titanium TP340 1.5 mm thick and PEEK
(Mitsubishi Chemical Advanced Materials, Ketron 1000,
melting temperature 340 °C) 5 mm thick, machined to a size
of 50x 15, were used as test pieces. Polyetheretherketone
(PEEK), a semi-crystalline thermoplastic, exhibits excel-
lent mechanical and chemical properties and high thermal
stability, making PEEK widely used in various fields such
as aerospace, automotive, and chemical process industries.
PEEK has recently been studied and used as an alternative
to metal implant materials due to its suitable biocompat-
ibility and very low modulus (3—4 GPa) [44-48], reducing
the degree of stress shielding often observed with titanium-
based metal implants [49, 50].
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As a plasma source for pre-treatment of direct bond-
ing, an RF exited atmospheric Ar plasma jets as shown in
Fig. 1a was used. The RF plasma jet consists of metal strips
of lengths 15 mm and 5 mm, which were wrapped around
a quartz tube to serve as the power and ground electrodes,
respectively. The metal strip of 5 mm lengths as ground elec-
trode was positioned at 2 mm from the top of the quartz tube,
and the metal strip of 15 mm lengths as powered electrode
was set 5 mm away from the under edge of the ground elec-
trode. The dimensions of the quartz tube used for the plasma
source are 6 mm outer diameter and 4 mm inner diameter.
High-frequency (radio frequency: RF) power of frequencies
60 MHz was applied to the power electrode per matching
network. The RF power of 78 W (V,,,=1.6 kV) was applied
to the powered electrode and Ar gas was supplied as the dis-
charge gas at a gas flow rate of 3 slm [23, 24]. The ambient
temperature and humidity, which are important parameters
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Fig.1 Schematic illustrations of a apparatus used to generate an
atmospheric pressure RF plasma jet, b dimensions of specimen, and
c tensile shear configuration for TP340 and PEEK direct joining with
hot-pressing process via pre-plasma treatment
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during surface irradiation treatment with plasma [51], were
approximately 20 °C and 40-60%, respectively.

Figure 1b, c shows the dimensions of the specimen and
tensile shear configuration for direct joining of TP340 to
PEEK using pre-treated samples by an atmospheric pres-
sure RF plasma jet. As in the joining configuration shown
in Fig. 1lc, the TP340 and PEEK were joined with a 10 mm
overlap. Figure 2 shows the procedure for TP340-PEEK
direct joining based on atmospheric pressure RF plasma jet
irradiation. The joining surface of TP340 and PEEK is sub-
jected to surface treatment by plasma irradiation and then
hot pressing as the direct bonding process was used.

Tensile shear strength of the TP340/PEEK direct joints
were measured using the tensile shear tests (Autograph
AGS-X: Shimadzu Corporation). The TP340 and PEEK
sides direct joint specimens were clamped parallel to the axis
of tension so that shear forces act on the bonded interface,
and the maximum load at failure of the joint was measured
at a crosshead speed of 1.66x 10~ mmy/s.

The TP340 surface was analyzed using a scanning elec-
tron microscope (SEM; Hitachi SU-70) and its accompa-
nying energy-dispersive X-ray spectrometer (EDX, Oxford
Instruments INCA PentaFETx3). The surface morphologies
of the TP340 were measured by atomic force spectroscopy
(AFM) (KEYENCE VN-8000). Surface roughness in this
study was estimated from an area of 10X 10 um in size,
acquired by AFM.

Test peaces
TP340 (50 x 15x 1.5t ) / PEEK (50 x 15x 5t)

Plasma irradiation

RF power : 60 MHz

Discharge gas : Ar
Gas flow rate : 3.0sIm
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crosshead speed of 1.66 x10°mm/s.

Fig.2 Procedure for TP340-PEEK direct joining based on atmos-
pheric pressure RF plasma jet irradiation

3 Results and discussion

An atmospheric pressure RF plasma jet, which shows the
features such as the generation of a long plasma jet, 40 mm
in length, is successfully and the operation in a non-thermal-
equilibrium state at a gas temperature of around 300 °C [39],
is used for the joints of metal and dissimilar materials in
this study.

The plasma irradiation effects on the bonding strength of
TP340-PEEK direct bonding have been investigated. TP340
and PEEK with and without plasma irradiation treatment
were directly bonded by hot pressing. Figure 3 shows the
tensile shear strength of specimen bonded by the hot press-
ing after the plasma treatment together with that of the
hot pressing and adhesive joining using untreated TP340
and PEEK. The specimen bonded by hot pressing using
untreated TP340 and PEEK have bond strength of 0.5 MPa.
The plasma-irradiated Ti sample showed no increase in bond
strength regardless of plasma irradiation of PEEK. In con-
trast, high-strength bonds of 9.2 MPa for samples which only
PEEK was irradiated were obtained. This result suggests that
atmospheric pressure RF plasma jet can be applied to the
TP340-PEEK direct bonding. Figure 4 shows a photograph
of the fractured surface after tensile testing of a specimen
bonded with and without plasma irradiation. In the speci-
mens irradiated with plasma on TP340, cohesive failure due
to interfacial delamination and peeling of the weak layer on
the surface of TP340 was observed regardless of whether
the specimens were irradiated with or without plasma on

TP340-PEEK

Tensile shear strength (MPa)

Fig.3 Tensile shear strength of specimens bonded by hot press
method using TP340 and PEEK pretreated with an atmospheric pres-
sure RF plasma jet and untreated TP340 and PEEK together with that
of samples bonded with adhesive using untreated TP340 and PEEK
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Fig.4 Photographic images of
fracture surfaces after tensile
testing of specimens bonded
with and without plasma irra-

Plasma treatment
PEEK&TP340

Plasma treatment
PEEK only

diation

Plasma treatment
TP340 only

PEEK. On the other hand, the specimens bonded by plasma
irradiation to PEEK showed interfacial delamination and
cohesive failure of PEEK due to strong bonding between
TP340 and PEEK. Some complete interfacial delamination
was also observed in the specimens bonded with untreated
TP340/PEEK.

In direct bonding of polymers and metallic dissimilar
material, the physical and chemical condition of surfaces is
known to affect the bonding strength. The effect of plasma
irradiation on the physical and chemical surface conditions
was investigated, focusing on TP340, which affects the
bonding strength due to plasma irradiation. For investigat-
ing the physical effects of plasma irradiation on the TP340
surface, the surface morphology of the TP340 surface after
plasma irradiation was measured by using AFM. Figure 5
shows the surface roughness estimated by the AFM observa-
tion of TP340 surface treated at different plasma irradiation
time. When the plasma irradiation time was increased, the
surface roughness R, of the TP340 surface increased slightly
and then was almost constant at 400 ~450 nm as shown in
Fig. 5. It is generally known that surface roughness affects
joint strength due to the anchoring effect. Therefore, this
result suggests a physical influence on bonding strength due
to the relatively large surface roughness over 400 nm.

Change in the chemical composition on TP340 surface
due to plasma irradiation was measured by SEM-EDX.
Figure 6 shows top surface SEM images and SEM-EDX
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Fig.5 Variation of surface roughness R, of TP340 on plasma irradia-
tion time

elemental maps of Ti (yellow), O (red), and Fe (green)
obtained from the TP340 surface with and without plasma
exposure. The SEM image after the plasma irradiation
shows that there is no significant change in the surface
roughness, but the formation of grain structure seen dur-
ing general high-temperature oxidation [52] is observed.
Therefore, these SEM images indicate that minimal
physical change was induced by irradiation. On the other
hand, the SEM-EDX elemental map of O shows drastic
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(a) Untreated

Fig.6 SEM images and SEM-EDX elemental maps of Ti (yellow),
O (red), and Fe (green) on surface of a untreated TP340 and b TP340
exposed to plasma for 5 min

oxidation after plasma treatment. Figure 7 summarizes
the atomic concentration of Ti, O, and Fe estimated from
SEM-EDX elemental maps when the plasma irradiation
time was varied (Fig. 7a), compared with oxidation behav-
ior due to thermal heating only (Fig. 7b). With increas-
ing plasma irradiation time, the atomic concentration of
O on the TP340 surface considerably increases about 60
at% for plasma irradiation time of 1 min and then slightly
increases to 66 at% for 5 min. On the other hand, in the
case of thermal oxidation in air, the oxygen concentration
only increased to about 21 at% even when the Ti specimen
was heated to 320 °C. This result shows that oxidation by
plasma irradiation is sufficiently advanced compared to
oxidation by heating during direct bonding. The increase
in the relative concentration of oxygen is considered to
be caused by the enhancing oxidation on TP340 surface
at low temperature compared to oxidation by heat treat-
ment due to the synergistic effect of the surface heating to
about 300 °C by the heat flux from an atmospheric pres-
sure RF plasma jet and irradiation of oxidation species

(a)Plasma irradiation to TP340
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Fig.7 Atomic concentration of TP340 surface a as a function of
plasma irradiation time and b as a function of surface tempera-
ture heated by thermal heating only

including O and OH radicals generated by an atmospheric
pressure RF plasma jet. Therefore, a strong oxide film is
formed on the Ti surface to inhibit oxidation into the Ti
interior, and little solid dissolution of oxygen into the Ti
interior can be expected to proceed, thus preserving the
raw material state in the bulk [53]. Generally, TiO, films
formed during oxidation by heat treatment in an atmos-
pheric atmosphere have a multilayer structure with cracks,
micro-voids, and partial delamination, which is caused by
compressive stresses in the TiO, film due to the volume
expansion caused by oxidation. The volume ratio of Ti to
TiO, (Pilling-Bedworth ratio) is 1.8, which is an index
of stress generated by oxidation [54]. In this study, the
SEM-EDX results show that the surface of the Ti speci-
men immediately after plasma irradiation is sufficiently
oxidized to be close to TiO, in stoichiometric composi-
tion, but no peeling off of the TiO, surface was observed
immediately after plasma irradiation. When this specimen
was bonded to PEEK after plasma irradiation treatment
by hot pressing and then subjected to a tensile test, the

@ Springer
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Fig.8 Variation of tensile shear strength of TP340-PEEK bonded
samples following plasma treatment only of PEEK side with plasma
irradiation time

film peeled off from the Ti specimen side and remained
on the bonding surface on the PEEK side. These results
indicate that TP340 can be sufficiently oxidized at low
temperatures by reactive oxygen species generated by the
plasma jet.

Figure 8 shows the change of tensile shear strength of
TP340-PEEK direct bonded samples with no treatment
applied to the TP340 when the plasma irradiation time
to PEEK was changed. With increasing plasma irradia-
tion time, the bond strength increased significantly from
0.48 MPa at 0 min to 9.57 MPa at 5 min, and then slowly
increased to 13.6 MPa at 20 min. The effect of plasma
irradiation on PEEK has already been investigated in pre-
vious studies [41]. The results of surface analysis by XPS
confirmed that the O-C = O bonds were formed by plasma
irradiation in addition to the C-O and C=0O bonds that
were originally present in PEEK. The amount of these
groups attributed to oxidation on the PEEK surface is
found to increase with plasma irradiation time. In general,
0O =C-0 groups formed on polymers are known to increase
the bond strength between metal and polymer following
direct bonding [55-57]. Thus, these results suggest that
oxidation of PEEK by oxygen radicals in an atmospheric
pressure RF plasma jet produced oxygen-containing sur-
face functional groups that increased bond strength. Thus,
these results suggest that the increase in oxygen-contain-
ing surface functional groups due to oxidation of PEEK by
radicals in atmospheric pressure RF plasma jets increases
bond strength of TP340-PEEK direct joining.

@ Springer

4 Conclusions

Direct bonding of a TP340 to PEEK by hot pressing via
pre-treatment of non-thermal atmospheric pressure plasma
jet has been demonstrated. The plasma irradiation effect
on the bonding surface on the bond strength after hot
pressing was investigated. The tensile shear strength of
TP340-PEEK joined by hot pressing after plasma pre-
treatment was measured by comparing specimens bonded
using conventional hot pressing and those bonded using
adhesives. The tensile shear stress of the direct bonded
sample by plasma irradiation to PEEK only was 9.2 MPa,
184% higher than 0.5 MPa strength of the unirradiated
sample. On the other hand, plasma treatment to the TP340
side resulted in a decrease in bond strength as a result of
TiO, formation, which is easily chemically fed to form
oxides by irradiation of oxygen radicals generated from
plasma. This reduction in bond strength is considered to
be due to the fact that TiO, films formed by oxidation by
plasma treatment tend to delaminate at the Ti/TiO, inter-
face because the volume expansion caused by rapid oxida-
tion generates compressive stress in the TiO, film.

The plasma irradiation effect on the PEEK side on the
bond strength of TP340-PEEK bonded samples was also
investigated. As the plasma irradiation time increased, the
bond strength increased significantly from 0.48 MPa for
0 min to 9.57 MPa for 5 min, then slowly increased to
13.6 MPa for 20 min, a 283% increase in bond strength
over untreated. These results suggest that oxygen radi-
cals in the atmospheric pressure RF plasma jet produced
oxygen-containing surface functional groups on the PEEK
surface, which increased the strength of the TP340-PEEK
direct joining.
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