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0. Introduction

The notion of infinite prime introduced by Harrison [3] was investigated in
[1], [2], [7] and [9] which were concerned with ordering on a field. In this note,
we study about signatures on rings as some generalization of infinite primes and
signatures of fields in [2]. In the section 1, we introduce notions of [/-prime
and signature of a ring which are generalizations of infinite prime and signature
of field. In the section 2, we show that a [/-prime of a commuative ring defines
a signature on the ring. In the sections 3 and 4, we consider the category of
signatures and a space of signatures on a ring which include notions of extension
of signature and space of ordering on fields (cf. [2] and [8]), and investigate them.
Throughout this paper, we assume that every ring has identity 1.

1. Preliminaries, definitions and notations

Let S be a multiplicative semigroup, and T a normal subsemigroup of 5,
(cf. [6], p. 195), denoted by Γ<| 5, that is, T is a subsemigroup of S which satisfies
1) for xy y^S, xy^T implies p G Γ , 2) if there is an xG T with xy^T, then
y€=T, and 3) for every x£ίS, there exists an x'EϊS with x'x€ΞT. We can define
a binary relation - — Ό Π 5 ; for x, y€Ξ S, x<—y if and only if there is a #€Ξ S such that
both zx and zy are contained in T. Then, the relation <—' is an equivalence
relation on S, and is compatible with the multiplication of S, so the quotient
set £/~, denoted by S/T, makes a group such that the canonical map ψ: S->S/
T; x\—> [x] is a homomorphism with Ker ψ= T.

Let R be any ring with identity 1, and P a preprime of R ([3]), that is, P is
closed under addition and multiplication of R and — 1 φ P . We put p(P) = Pf]
- P , RP= {x^R\xp(P)Όp(P)xc:p(P)}J R+P = RP\ρ(P) ( := ix<ΞRP\x$p(P)}),
P+ — P\p(P) ( = P\—P). We shall say'a preprime P to be complete quasi-prime,
if it satisfies the following conditions

1) p(P) is an ideal of RP such that RPjp{P) is an integral domain,
2) P+<IRP under the multiplication of RP.
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3) P is complete in RP, that is, for x^RP, Λ^eP implies X G P U —P.

A multiplicative semigroup F with unit element 1 and zero element 0 will

be called a fsemigroup, if F*~F\{0} makes a group with a unique element of

order 2, denoted by — 1 , under the multplication of F. If P is a complete

quasi-prime of R, then the quotient group G(P)=RP/P+ has a unique element

[— 1] of order 2, and the formally composed semigroup F(P) — G(P) U {0} makes

an f-semigroup under the multiplication of G(P) and α0 = 0α = 00 —0 for

Furthermore, we can define a map σ: RP—>F(P) by σ(#) — 0 or [a] for

or a&Rp, respectively. Then, it can be verified that 1) σ(— 1) = [— 1], 2)

σ{ab) = σ{ά)σ(b) for every a,b^RPy and 3) for a, b^RP, either <r(a) = 0 or

σ(<z) = σ(δ) implies σ{a-\-b) — σ(δ).

Let π be a set of prime numbers, and suppose 2e7r. A complete quasi-

prime P will be called a τr-complete quasi-prime, if for each q^π, there is a f f fe

ΛP\P such that f / ε ? and for any x^RP with # ? e P , j ; χ e U ξ^P' for some

REMARK 1.1. If R is a commutative ring and P is a 7Γ-complete quasi-

prime, then for each q^π, the ^-torsion subgroup G(P) ί = { α G G ( P ) | ^ > 0 ;

<xq"—[1]} of G(P) is isomorphic to a subgroup of Z(q°°). Because, since G(P)q

has a unique minimal non trivial subgroup <C[S"J>, G(P)q is indecomposable, so

by [4], p. 22, Theorem 10, G(P)q is isomorphic to Z(qn) or

Let i? be a ring with identity 1, and F an abelian f-semigroup. A partial map

σ: R—rF will be called a signature of i? with domain of definition Rσ, if cr is a

map of a subset Rσ of i? into P satisfying the following conditions

(SI) - l G Ξ i ? σ a n d σ ( - l ) = - l ,

(S 2) a, b^Rσ implies ab^Rσ and σ{ab) = σ(ά)σ(b),

(S 3) for a, b^Rσy if σ{d) = 0 or σ(α) = σ(δ) then a+b^Rσ and <r

(S 4) for <zei?, if ίzφiίσ , then there exists a b^Rσ such that σ(i) = 0 and

either σ(ab) = 1 or σ(έα) = 1.

Let σ: R—rF be a signature. For a^F, we put ^ ( c ) = "Γ*7 ̂  σ̂-1 <r(x) = ct},

P( σ) =po(σ) U A(σ-) and G(σ) = Im σ Π F*.

Lemma 1.2. L ί̂ σ: R-zF be a signature of a ring R.

1) Rσ is a subring of R with prime ideal po(σ) such that Rσ/p0(σ) is an integral

domain,

2) P(σ) is a preprime of R3 and Rσ = RP(σ).

3) If G(σ) is a subgroup of F*} then P(σ) is a complete quasi-prime of R, and

G(P(σ)) and G(σ) are group isomorphic.

Proof. 1) If Rσ is closed under the addition of Ry then it is easy to see
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that Rσ is a subring of R. Suppose a+b^R^ for some a and b in Rσ. There is
a c^Rσ such that σ(c) — 0, and σ(c(a-\-b)) = 1 or σ((α+&y)=l. Since σ{cα)
= σ(αc) = σ(α)σ (c) = 0 and σ-(cδ) = σ{bc) = 0, we get σ(c<z+£δ) = σ(αc-\-bc) = 0
which is a contradiction. Hence, we get R^+R^R^. It is easy to see that
po(<r) is an ideal of Rσy and Rσlp0(σ) is an integral domain. 2) From the de-
finition of signature, it follows that P(σ) is a preprime of R and po(<r)=P(σ) Π
—P(σ). We shall show R<τ = RP(σ). Since R^czRp^ is clear, it suffices to show
RσZDRP(σ). If xGR\Rσ, then there is a je^>0(σ) with xyGpι(σ) or jwe_pi(σ),
so ΛfoWUίoW^ΦίoW) that is, x^RpM. 3) If G(σ) is a group, then it is
easy to see that Y(<r)+=p1(σ), P(σ)+<RP£h σ(RP(t)) = G(<r)y and P(σ) is
complete. Furthermore, a map G(P(cr)) = i?P(ί)/P(σ)+-> G(σ) [x] W-> σ{x) is
a group isomorphism.

REMARK. 1) If R is a field, then a signature cr: Λ-^JF with pQ(σ)= {0} and
J F = /-& U {0} coincides with the notion of signature defined by Becker, Harman and
Rosenberg [2], where μ is the group of all roots of unity in the complices. 2)
Let F be a finite field with characteristic =t= 2. The multiplicative semigroup F
is an abelian f-semigroup. For a signature σ: R—rF, let TΓ be the set of all
prime factors of order | G{σ) \. Then, it is easy to see that P(σ) is a τr-complete
quasiprime of R.

Let R be a ring with identity 1, and U a non empty multiplicatively closed
subset of R satisfying U (Ί — U== φ. A preprime P of R will be called a [/-pre-
prime of Ry if UdP and Pf]—U=φ. A maximal [/-preprime of i? will be
called a [/-prime of i?. Any Harrison's infinite prime is a {1}-prime.

Lemma 1.3. Let U α non empty multiplicatively closed subset of R with
U f)—U—φ, and P a Ό-prime of R. If either R is commutative or Px — xP and
Ux — xU hold for every x^RP, then P is a complete quasi-prime of R.

The proof of this lemma is obtained by checking the following facts
(1.3.1) U+P(ZP+.
(1.3.2) For x^RP (x^R, if R is commutative), if there are MG U and y&P

with (u+y)x<=P> then x^P. Hence I G P .
(1.3.3) For x^RP (x^R, if R is commtative), if x&p(P), then there is an

*'e(±P)|>] with x'x^U+P, where {±P)[x] = {Σiiaix
i^R\ai^P\J -P}.

(1.3.4) RPjp{P) is an integral domain.
(1.3.5) For xy y^RPy xy^P+ implies yx^P+.
(1.3.6) P is complete in RP.
(1.3.7) For any x(ΞP+, there is an X ' G P + with x'x<^ U+P.
(1.3.8) For X^LRP (x^Ry if R is commutative), if there is a j ; G ? + with

then * e P + .
The proofs of these statements are obtained similarly to the case of Harrison's
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infinite prime; (1.3.1): Since Uf] —P = φ, it follows that UdP+ and U+PdP+.

(1.3.2): A subset P' = {χ(=RP \
3u(Ξ U, 3y<=P\ (u+y)x(=P} of R is closed under

addition and multiplication. Because, if xly x2EzP\ there are #t GΞ U and y^P

with (Ui+y^Xi&P, i = 1, 2. If either x1 or x2 belongs to p(P), then it is trivial

that xλ+x2 and xxx2 belong to P1. Otherwise, by assumption, there are u2^U

and yί^P such that x1u2 = u2x1 and Xiy2=y2Xi Then (#i+ji) (u2+y2) and

belong to U+P, and (^i+ji) (^2+J2) (^1+^2) and (WI+JΊ)
a r e i n P̂ Furthermore, it is immeadiately seen that P c P ' and

P'Γi—U=φ, so we get P=Pr. (1.3.3): For *<=i?P, if #$/>(P), then either ^ P

or — Λ ; $ P . By assumption, a subset P[x]=P+Px+Px2-\ , (resp. P[—x]

=P+P(<—#)+P(—^)2H—) °f ^ i s closed under addition and multiplication.

Since P^P[x] or P£P[—x], we get P[#] Π - £ / Φ φ or P[-x]f]-Uφφ, so

we can find an element y^(ύzP) [x] such that yx^U-\-P holds. (1.3.4): For

xy y^Rp, suppose that xy^p(P) and x<£p{P). By (1.3.3), there is an # ' e ( ± P )

[Λ?] (Ciίp) with x'x^ U+P, and (1.3.2) derives that x'xyep(P) implies y<=p(P).

(1.3.5): For x, y^RP, suppose xy^P+. (xy)x is in Px=xPy and for an element

x' in (±P) [Λ?], also in RP, with ^ ^ G J7+P, we get (xfx)yx^xrxPdPy so j x ^ P +

by (1.3.2) and (1.3.4). (1.3.6) is easy. (1.3.7): If * e P + , then P[-x] = P-Px

is closed under addition and multiplication, and P^P[—x]. Hence, there are

U^L U and x\y^P with — u=y—x'x, so we get xfx=u-\-y^ Z7+P and Λ 'GP" 1 " .

(1.3.8) is immeadiately obtained from (1.3.2) and (1.3.7).

2. The connection between Z7-ρrime and signature

Theorem 2.1. Z>£ Rbe a commutative ring with identity I, and U any non

empty multiplicatively closed subset of R with U Π — U = φ . If P is a U-prime

of R, then there exists a signature σiR—rF with P(σ) = P and group G(σ) = G(P).

Proof. By Lemma 1.3, [/-prime P is a complete quasi-prime of R, so it

defines a map σ: RP->F(P). Then, we put R<r=RP and F=F(P). The con-

ditions (S 1), (S 2) and (S 3) of signature were verified. (S 4) is proved in the

following proposition. Then we have a signature σ\ R-ΎF with P=^P(σ) and

Proposition 2.2. Let P be a U-prίme of a commutative ring R, and let

AP=iaςΞR\3botΞU+P, ^ G P U - P , ^ 1 , 2, - , n; ΣΛoM -^O}.

1) {Rp, p(P)) is a valuation pair of R, (cf. [3], Proposition. 2.5).

2) If x^R\p(P) then there is an a(=AP with aχ(= U+P.

3) If x and y are elements of R with xy e U+ P, then x$ p(P) implies y^AP.

4) RP = AP.

Proof. The proof of 1) is quite similar to [3], Proposition 2.5. 2) If

χ(=R\p(P), by (1.3.3) there is an «G(±P) [x] with ax<=U+P, then a can be
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represented as — (b1+b2x-\ h^**"1) f°Γ some ft£ePU —P. If we put ax = b0,
then a satisfies an equation boa

n+b1bQatt~1+ ••• +bnbo = O with bo^U+P and
bibo^PU —P, i= 1, 2, •••, #, so a^AP. 3) Suppose that x and y are in R and
arye ί7+P. If x<£p(P), by 2), there is a s e ^ p with «ΛIG C7+P. Since z&AP9

there are # o e U+P and #, <=PU — P, i = 1, 2, —, /rc, with Σi=o a,-*1""'' = 0. Put
xy = b0 and ## = c0, so we get that ^ΣiZo(aiCo"ibo)ym''i = (Σi-o a^'^bo = 0, tfo£(Γ

and ^ ^ " ' ό j e P U — P, hence j G i P . 4) In the first place, we show
i Let x be any element in RP. If x^.p(P), x^AP is obvious. Otherwise,

by (1.3.3) there is a y<=(±P)[x] with ΛyGίί+P, so j ;$^(P) and by 3) we get
X^LAP. NOW, we show AP = RP: Let (CZ+P)""1!? be the ring of quotients of
72 with respect to U+P, and ψ : i?->(L/"-|-P)~1i2 the canonical ring homomor-
phism. Then, (U+P^Rp may be regarded as a subring of (U+P^R. By
B\ we denote the integral closure of {U+PylRP in ([Z+P)"1/?. There is a
prime ideal Q' of £ ' which lies over (U+PyιRPp{P), (cf. [5], (10.8)). It follows
that B = ψ~1(B') is a subring of Λ with Bz^APZDRPy and £> = ψ~\Qf) is a prime
ideal of B with Qf)RP=p(P). By 1), we get B = AP = RP.

Lemma 2.3. Let R be a commutative ring, and σ: R—rF a signature. If
G(σ) is a torsion group, then Rσ. = {a&R\an^Ί>(σ) for some integer n>0}.

Proof. Since G(σ) is a torsion group, it is clear that any element a in Rσ

has a positive integer n with βB6P(σ). Conversely, suppose that an element
a^R does not belong to Rσ. There is a b&pQ(<r) with ab^pλ(σ). Then αn

is not contained in P(σ) for every positive integer n. Because, if an^P(cr) for
some ra>0, it derives a contradiction 1 = σ{{ab)n) = σ{an)σ{bn) = 0.

Let R be a ring with identity 1. By [1], a preprime P is called a torsion
preprime (resp. 2-torsion preprime) of R, if for eachα^i? there exists a positive
integer n such that α n e P (resp. a2"^P) holds. From Theorem 2.1 and Lemma
2.3, the following corollaries immeadiately follow;

Corollary 2.4. Let R be a commutative ring with 1 and U a non empty
multiplicatively closed subset of R with 1 e U and Uf)—U=φ.

1) // P is a torsion U-prίme of R, then p(P) is an ideal of Ry i.e. RP=R>
so there is a signature σ\ R-τF such that P = P(cr), R = Rσ and Q{σ) is a torsion
group.

2) If P is a 2-torsion V-prime of R, then there is a signature σ: R—rF such
that P - P(σ), R = Rσ and P * ^ Z ( 2 " ) .

In particular, on a field, we have

Corollary 2.5. Let K be a field.
1) For any signature σ: K—rF} Kσ is a valuation ring of K with maximal

ideal po(σ), and the residue field k(σ) = KσJp0{σ) has an induced signature σ: k(σ)
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-TF with k(σ)σ = k{σ) and po(σ)= {0}, and P(σ) is a preordering on k(σ).

2) Let Ubea non empty multiplίcatively closed subset of K with Uf]—U=φ.

If P is a U-prime of Ky KP is a valuation ring of K with maximal ideal p(P). If

P is a torsion JJ-prime of K, then K = KP,p(P) = {0}, and P is a preordering, i.e.

P+ = P\{0} is a subgroup ofK* = K\{§}, (cf. [1], (3.3)).

3) If O is a real valutation ring of K with maximal ideal p, i.e. the residue

field O\p is a formally real field, then there is a signature σ\ K—rGF(3) with

Kσ = O and po(σ)=py where G F ( 3 ) = {0, 1, —1} is a multiplicative semigroup of

prime field with charcteristic 3.

Theorem 2.6. Let R be a ring with identity 1, and σ\ R—rF a signature

of R. Assume that G(σ) is a torsion group and «tfpΛ(σ)—/^(σ).*? holds for all xEz

R<r\po(<r) and α ε G ( σ ) U { 0 } . Then, there exists a signature τ: R-rF' of R

satisfying the following conditions

1) P(τ) is a pi^yprime of R and P(τ) D P(<r),

2) Rτ=Rσandpo(τ)=po(σ),

3) there is a subgroup H of G(σ) such that pι{τ)=^σ~ι{H)y —1$ΞH and

G(σ)/H^G(τ) hold.

Proof. Since P(σ) is a />1(cr)-preprime of R, by Zorn's Lemma there exists

a pι(σ)-pήme P of R containing P(σ). From the facts that PΓ\—p\{σ) — φ

and po(σ)dp(P), we can derive that po{σ)=p{P) and RP = Rσ; If there is an

element x^RP\Rσ, then there exists a y^po(σ) such that either xy or yx belongs

to pι(σ). However, xy and yx are also contained in p(P), so these are contrary

to p\{σ)Γ\p{P) = φ. Hence, we get RPdRσ. Furthermore, if there is an

element x^p(P)\po(σ), we have χn^p1(σ) Γ\p(P) for some integer n>0, which

is a contradiction. Therefore, we get po(<r)=p(P) and RP = Rσ. Now, we put

H=- σ(P+), so H is a subgroup of G(σ). We shall show P+ = σ~\H) If xG σ " 1 ^ )

then there is a y^P+ with <τ(x) = σ(y). Since ytι^p1(σ) for some integer

n>0, we have xyn = (xytt~1)y^xp1(σ)Γ\P+. Hence, for any x^R, it follows

that x^σ~ι{H) if and only if xpλ{σ) Πi3+=t=φ. On the other hand, we can show

that P= ix<=Rσ\xpx(σ) nPΦφ}; The set P'= {x<ΞRσ\xpλ(σ) ΠPΦφ} is closed

under addition and multiplication: Because, for X , V G F , there are xu yι^pλ(σ)

such that both xxλ and yyλ are in P. Since we may suppose that y is not in po(σ)y

there is an xί^p^σ) with xλy=-yxf

u and it follows that both (x-\-y) (xιyi) and

(xy) (x[yι) are contained in P. Hence, both x-\-y and xy belong to P'. Further-

more, it is derived that PdP' and P'Π — Pι(σ)=φ, because of Pf] —p1(σ)=φ.

Hence, we get P=P'. Accordingly, we conclude that σ~\H) = P+ = U pJ<r)-
α εff

From the assumption xpΛ(σ) = pΛ(σ)x for x^Rσ\p0(σ) and αGG(σ)U {0}, P

is a complete quasi-prime of R. Therefore, we can define a signature r: R—r

F(P) such that Rτ = RP = Rσ, po(r) = p(P) = pΰ{σ) and G(τ) = G(P)ί-G(cr)/#.
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It is easy to check the conditions of signature for T.

Corollary 2.7. Let R be a commutative ring with identity 1. If σ\ R—rF
is a signature of R such that G(σ) is a 2-torsion group, then P(cr) is a pi(σ)-
prime of R.

Proof. Since G(σ) is a 2-torsion group, by Remark 1.1 every non-trivial
subgroup H of G(σ ) contains — 1 . By Theorem 1.7, P(σ) is a ^)1(σ)-prime of
R.

Corollary 2.8. Let S be a commutative ring with identity I, and R a subring
of S containing 1. If σ: R—rF a signature of R such that G(σ) is 2-torsion
group, then σ can be extended to a signature τ: S~rFr of S, i.e. SτΓ\R=Rσ

Proof. A signature r: S—rF' is defined by a^(σj-prime P of S containing
P(σ). Then, T is an extension of σ.

3. Category of signatures

Let σim. Ri~τF1 and σ2: R2—rF2 be signatures of rings Rλ and R2. Suppose
that/: i?!->i?2 is a ring homomorphism such that /(I) = 1 and f(R1<Ti)c:R2σ2, and
that ξ: Fι—τF2 is a partial homomorphism which is defined on G(σχ) and satisfies
ξ(0) = 0, ξ(-1) = - 1 and ξ(aβ) = ξ(a)ξ{β) if ξ is defined on a, β and aβ for
a> βξΞFi. Then, the pair (/, ξ) will be called a morphism of signatures of σx

to σ2, denoted by (/, ξ): σχ->σ2, if it satisfies ζ(<rι(x)) = σ2(f(x)) for all ΛGJ?1 ( Γ I.

Let σ,: Ri—rFi and o-/: R'->F'i be signatures of rings for ί = 1, 2, and (/, ξ):
<τι—>σ2 and (/;, ^ ; ) : σ{—>σ2 morphisms of signatures. We define the equalitiy
of morphisms that (/, ξ) === (/', ξ') if and only if <r, = σί (i.e. R{ = R'iy Riσi = i? σ;,
F f = î 1/ and σi{x) — σf (Λ?) for all x^Riσi) for ί = 1, 2,f=f and for every « G G ( ^ )

= G(σί), ζ(a) = ξ\a) hold. By C s ig, we denote the category of signatures in
which objects are signatures of rings and morphisms are morphisms of signatures.

Proposition 3.1. Let R and S be rings with identity 1, and f: R-+S a ring
homomorphism withfiX) = 1.

1) If T: S—rF is a signature of ring S with Im flDpo(τ), then there exists a
signature σ: R—rF of ring R with a morphism (/, I F ): σ-»τ in C s i g.

2) // /: R—> S is surjective, and if σ\ R—rF is a signature of ring R with
Ker/c/>0(σ), then there exists a signature T: S—rF of ring S with a morphism

Csig.

Proof. 1) Suppose that T: S-+F is a signature of ring S and/: R->S is a
ring homomorphism with /(I) = 1 and ImfZDpo(τ). On a subring Rσ = {x^R\
f(x)^Sr} of i2, a map σ: Rσ->F; xW^>τ(f(x)) is defined. The condition
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Im/Z)/>0(τ) derives that a signature σ: R—r F of ring R and a morphism (/, I F ):
σ- -> T in C s I g are defined. 2) Suppose that /: R-+S is a surjective ring homo-
morphism, and σ: R-^F is a signature of ring i? with Ker/c/>0(σ). For a
subring Sr=f(Rσ), we can define a map T: Sτ->F as follows: For any α e 5 τ ,
there is a b^Rσ with. f(b) = a, then we put τ(#) — σ(b). From the condition
Ker/C^>0(σ), it is known that the map r : Sτ->F is well defined. Then, it is easy
to see that a signature τ: S—rFoϊ ring S and a morphism (/, IF): σ—>τ in C s i g

are defined.

Concerning commutative rings, the situation of Proposition 3.1, 2) is
reformed as follows;

Theorem 3.2. Let f:R—>Sbea ring hotnomorphism of a commutative ring
R into a commutative ring S with /(1) = 1. If σ: R—rF is a signature of R such that
G(σ) is a torsion group and Ker/c/>0(σ), then there exists a signature τ: S—rFr

of ring S with a morphism (/, ξ): σ -> r in C s i g.

Proof. Suppose that/: R-+S is a ring homomorphism with/(I) = 1, and
cr: i?-zJPis a signature of R with torsion group G(σ) and satisfying Ker/C^>0(σ).
By Proposition 3.1, 2), for the surjective ring homomorphism/: /?->Im/, there
exists a signature σ': Imf—rF of the subring I m / of S with a morphism (/, IP):
cr-><r' in C s i g. Hence, we may assume that R is a subring of 5 with common
identity, and it is sufficient to show that there exists a signature T: S-TF' of 5
with a morphism (ι> ζ)\ σ-^r in C s l g, where £ denotes the inclusion map Rc-> S.
By Theorem 2.6, there exists a signature σ: R-rF" of i? such that R^ = RσJ

po(σ-) =po{σ) and G(σ-) ̂  G(σ)jH for some subgroup /f of G(cr) hold, and P(<r) is a
^((T-J-prime of i? containing P(σ). Then, we can define a partial homomor-
phism ζx\ F—rF" such that ζλ induces a group homomorphism G(<r)—*G(<r) and
the pair (IRi ξλ) defines a morphism (IRy ξj): σ-+σ in C s i g. On the other hand,
by Zorn's Lemma, there exists a ^)1(σ)-ρrime P oί S containing P(σ-)} and by
Theorem 2.1 the ^>1(<r)-prime P defines a signature r : S—rF(P) of >S such that
P(τ) = P, ST = SP, F(P) = G(P)U {0} and G(P)=SJ/P + hold, and r is induced
from the canonical map Sί-^G(P). From the fact that P(σ) is a ^(σj-prime of
Ry and P=)P(σ), it follows that Pf)R = P(σ), p(P)ΠR=po(σ) and P+fli2 =
P(σ)+(=^)1(σ:)) hold. Since G(<r) is a torsion group, so is also G(σ), and by
Lemma 2.3 and Proposition 2.2, it is derived that RP&)( = Rj)={a<=R\αsGP(σ)
for some integer n>0} is included in SP = ia^S\sbo^p1(σ)+P9 ^
ί = l,2, ,Λ; Σibia

n-i = 0 for some w>0}. Hence we have that
and the natural homomorphism G(P(σ)) = i?/(5:)/P(σ)+->G(P) = 5 ί / P + ; [a]
ΛΛΛ-> [α] defines a partial homomorphism ξ2' F"—rΈ(P) such that (i, ξ2)

: σ-^τ is
a morphism in CsIg. Thus, we obtain a signature T: *Sf-zJF1'=F(P) of ring S and
a morphism (i, ξ2°ζι)=(h %2)°(IR> ?I) σ-^τ in C s i g.
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idealpo(σ), that is, every element in Rσ\p0(σ) is invertible in Rσ. Then,

if and only if a~1^ Rσ.

Proof. 1) For elements x, y e R, we suppose that xRσy dpo(σ) and x $ pQ{σ).

If #$/?„., then there is an xf^pQ(σ) with x'x^px{σ) or xx'^px{σ). Since both

x'xRσy and xx'Rσy are included in^>0(<7), we may assume that xEzRσy and similary

y^Rσ. Then, 3/<Ξ̂ >0(σ) follows. 2) Suppose that a<=Rσ\pQ{σ). If Λ " 1 ^ / ? , ,

then there is a b^po(σ) with a^b^p^σ) or ba~1^p1(σ)y so it means either a(a~1b)

or {ba~ι)a belongs to ̂ >0(cr), that is, a^po(σ), which is contrary to a$po(σ). Hence,

we get a~1^.Rσ\pQ(σ). 3) First, we suppose that R is commutative. It is easy

to see the "only if" part. If a~ι<£Rσ: there is a b^po(cr) with a~ιb^Lpx{σ), so

by 1) a(a~1b)^p0(σ) implies a^po(σ). Next, we suppose that Rσ is a local ring

with maximal ideal po(σ). If a~ι^Rσ then there is a b^po(σ) with a~ιb^px(σ) or

) , so either α-1ό or όα"1 is invertible in i?σ. Hence, we get a^po(σ).

Lemma 4.2. JFbr α σGX(i?,F), /wί g(σ)={αei?|itoi2c#,(σ)}. 7%έ?w,
the following properties hold;

1) #(<r) w α pπmβ /ώα/ of R, and q(σ) (Zpo(σ).

2) // R is a local ring with maximal ideal q(σ) then so is Rσ with maximal

ideal po(σ). If R is commutative, then the converse also holds.

3) If po(σ) = {0}, then R=R(r, and P(σ) gives a partial ordering on the ring R.

Proof. 1) It is easy to see that q(σ) is an ideal of R, and q(cr)C^po(σ). For

x, y^Rt we suppose that xRydq(σ) and x&q(σ). We can find elements a and b

in R with axbξ£po(σ), so it follows that axbRσ{RyR) C po(σ) and RyR(Zpo(σ) by

Lemma 4.1, 1), i.e. y^q(σ). 2) If R is a local ring with maximal ideal q(σ)y

then every element in Rσ\p0(σ) (C R\q(σ)) is invertible in i?, and by Lemma

4.1, 2), so is also in Rσ. Hence, Rσ is a local ring with maximal ideal po(σ). If

R is commutative and Rσ a local ring with maximal ideal po(σ), then for any

element »Gfi\g(σ), we can find an element αGJ? such that ax^Rσ\p0(<τ), that

is, ax is invertible in i?σ, so x is invertible in R. 3) is easy.

Corollary 4.3. Assume that R is a division ring, then the following hold.

1) For any σ^X(R, F), Rσ is a local ring with maximal idealpo(σ).

2) X(i?, F) is a Hausdorff and totally disconnected space.

3) If F is a finite set, then X.(R, F) is compact, that is, a Boolean space.

Proof. 1) is obtained by Lemma 4.2, 2). 2) By Lemma 4.1, 3), it follows

that H0(β) = Ho^fl"1) is a clopen set of X(i?, F) for any α=j=O in i?, and so is also

Hy(tf) for any γGFU{oo} and a^R. Hence, X(i?, F) is Hausdorff and totally

disconnected. 3) Suppose that F is finite, then (FU{O O}) J ? is compact.

Whenever F\J {oo} is a discrete space, the subset X(i?, F) becomes a closed

subset of (FU ί0 0})*. Hence, under our topology on F\J {oo}, X(i?, F) is also
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REMARK 3.3. Let σ:R-^F and T: S-τFf be signatures of rings R and S.

If (/, f): σ->τ is a morphism in Csigy then the following identities hold; 1)

K=f'\Sr)f 2) if G(σ) is a group, then po(<r)=f-\po(r)) and U pΛ(σ) =

fΛPβij)) for each βe G(τ). * e r φ )

Proof. 1) It is easy that Rσ.czf~1(Sτ). To prove the opposite, we suppose
that there is an x^R\Rσ with f(x)^ST. Then, there is a y^po(σ) such that

or yx^px(σ) hold. However, Λryep,(σ) (resp. yx^px{σ)) implies
= ξ(σ(xy))= 1 (resp. τ(f(yx)) = 1) which is contrary to that τ(f(xy)) =

Af(x))τ(f(y)) = τ(/(*))e(σG0) = τ(/(*))?(0) = τ(/(*))0=0 (resp. τ(f(yx)) = 0).
Hence, we get R<r=f"\ST). 2) It is also easy that Po{σ)df-\pQ{τ)). If # e

f~1(Po(τ))f t n e n w e n a v e ? W ^ ) ) = T ( / ( ^ ) ) = 0 and σ(Λ?) = 0, i.e. x^po(σ)> since
G(σ-) is a group and ξ(ί)=l. Hence, we get po(<r)=f~\po(τ)) Since

and Plσ)^f-\pQ(τ)l it follows that Rσ\pQ(σ) = U j>β(σ) =

). SinceβeU1((i)/>4,(0 )c/-1(p (,(τ)) holds for every

βeG(r), we get U 1 P«(<r)=Γι(pβ(τ)) for evry /3<=G(τ).

4. Space of signatures

In this secition, we assume that F is a f-semigroup with abelian torsion
group F*. Let R be any ring with identity 1, and X(i?, F) denote the set of
signatures σ: R—rF of the ring R over the f-semigroup F. We consider a set
JFU {°°} which is added a formal symbol °o to F. We make the set FU {oo} a
topological space such that {a} and {oo} are open subsets for every α e F * . Then,
for any subset HdF U {°°}, H is a closed subset if and only if 0 e i ϊ . Considering
i? as a descrete space, we make the power space (F (J •{OO})J? have a weak topology.
We can introduce a topology on X(i?, F) as a subspace of (FU {°°})R. For any

a<=R, we put Ha(a)= {σeX(i2, F) | σ(α)=α} and U^a)^ {σeX(i?,JP)
Then, for every finite subsets {a1? a2y - , ^ } c i i and -{Ti, 72, •••, jn}

Cf* U {°°}, the intersections H^fa) Π Hy2(α2) Π ••• Π ϋyn(
an) construct an open

basis of the space X(i2, F). Furthermore, for a subset HdF\J {oo} and
we have that U HΛ(α) is a closed subset of X(Rf F) if and only if

In the following lemmata and corollary, we need not assume that JF* is a
torsion group.

Lemma 4.1. For a σ G X(iί, ί1) αwrf αw invertϊble element a in R, the following
statements hold;

1) For any x}y^R, xRσy(Zp0(cr) implies either x^po(σ) or y^pQ(σ).
2) a<=ΞRσ\p0(σ) if and only if a-ι<EΞRσ\p,(σ)
3) Assume that either R is commutative or Rσ is a local ring with maximal
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compact.

Proposition 4.4. Assume that R is a commutative ring and σ, τ^X(R, F).
If P(σ)cP(τ) holds, then there are a subgroup H of G(σ) and a homomorphism
ψ:H->G(τ) such that pβ(τ)ΠRσc: U P*(<r)c:po(τ)\Jpβ(τ) holds for every

j86G(τ), and R(TdRT holds.

Proof. Suppose that P(σ)cP(τ). Since G(σ) and G(τ) are torsion groups,
by Lemma 2.3, we get R^cR,. Weput H={a^G(cr)\p(ΰ(σ)(tpo(τ)}> then H is
a subgroup of G(<r). We can define a homomorphism \/r: /Z"->G(τ) as follows;
For any a&H, we can find an element a in pΛ(<r)\p0(τ)f and τ(a) = τ(x) holds
for every χζΞpΛ{<r)\po{τ)- Because, a'1 belongs to H, so we can find a b in
pΛ-i(σ)\p0(τ)9 which satisfies σ(ab)=σ(xb)=l for every x^pa(σ)\p0(τ). The
condition P(σ)cP(τ) means that for every x^pa(σ)\p0(τ), τ(ab) = τ(xb) = 1
holds, so τ(a)=τ(x). Therefore, we can define the image ψ(a) of a as r(a) for
a^pa{σ)\pQ(τ). Then, it is easy to see that the map ψ: //->G(τ) is a group
homomorphism. Further, for any a^H and ySeG(τ) with ψ(a)=β, from the
definition of ψ, pΛ(cr)c:p0(τ)\J pβ(τ) follows. Hence, we get U pJσ)dpo(τ)

Λeψ-^β)

Όpβ(τ). On the other hand, if β is an element in G(τ) with ί β ( τ ) ί l i ? σ Φ φ ,
then for each x^p^rfHR*, there is an α G G ( σ ) with x^pa(σ)\p0(τ), that is,
ψ(a)=β and Λ:Gj)Λ(σ). Hence, we get ^>β(τ)ΓlΛσC U pa(<r) for every y8e

G(τ).

REMARK 4.5. Let R be a commutative ring, and σ.R—rF a signature of R.
By σ, a topology on affine w-space Rn is introduced as follows; For any γ t e
G(σ)U {oo} a n d / ^ , X2, - , XΛ) in polynomial ring R[XV X2y ••., J5ΓJ, i = l ,
2, •-., in, we put U(/i ,/ 2 ί •• ,/ w , 7i, 72, - , 7βl) = -{K ^2, - , ««)^ΛM k ( / f K
«2ι ••*» ^ n ) ) ^ ^ , / = 1, 2, —, n}, where σ C ^ , α2, •••, «„))= oo w h e n e v e r / ^ , α2,
•••, α Λ )φi? σ . Then, the sets U(fvf2, • *,/w, 7i, 72, •••, 7^) form an open basis on
i?n. We can define a continuous map -ψv of the topologicl space Rn into X ^ f ^ ,
X2, •••, Xn], F); Let (ΛJ, ̂  •••, an) be any element in Rn, and let ψ (βl.β2>...,βjl):
R[Xly X2y •••, J f J-^ jR /ί-Yi, X2, •-, Xn)W->f(a19 a2y •••, αM) a natural ring
homomorphism. By Proposition 3.1, 1), there exists a signature σ(βlfβ2f... ϊβ j ι): i?[J5Γx,
AΓ2> •••, XnJ-^ί 1 with a morphism Ofo«lfβ2,...,«„), I F ) : σ(βl,β2,...β|ι) ->σ in C s i g . Thus,
we get a map «ψ σ : i?"->X(i?[X2, X2, •••, j ? j , F ) ; (^, a2, •••, α«)AAMσ(βl)β2,.,fljί),
which is continuous, because of ψ-\Hy(f))=\](fy 7) for f^R[X19 X29 •••, XM]
a n d γ G G ( σ ) U H .
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