

Title	Notes on signatures on rings
Author(s)	Kanzaki, Teruo
Citation	Osaka Journal of Mathematics. 1985, 22(2), p. 327-338
Version Type	VoR
URL	https://doi.org/10.18910/9811
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Kanzaki, T.
Osaka J. Math.
22 (1985), 327-338

NOTES ON SIGNATURES ON RINGS

Dedicated to Professor Hirosi Nagao on his 60th birthday

TERUO KANZAKI

(Received June 21, 1984)

0. Introduction

The notion of infinite prime introduced by Harrison [3] was investigated in [1], [2], [7] and [9] which were concerned with ordering on a field. In this note, we study about signatures on rings as some generalization of infinite primes and signatures of fields in [2]. In the section 1, we introduce notions of U -prime and signature of a ring which are generalizations of infinite prime and signature of field. In the section 2, we show that a U -prime of a commutative ring defines a signature on the ring. In the sections 3 and 4, we consider the category of signatures and a space of signatures on a ring which include notions of extension of signature and space of ordering on fields (cf. [2] and [8]), and investigate them. Throughout this paper, we assume that every ring has identity 1.

1. Preliminaries, definitions and notations

Let S be a multiplicative semigroup, and T a normal subsemigroup of S , (cf. [6], p. 195), denoted by $T \triangleleft S$, that is, T is a subsemigroup of S which satisfies 1) for $x, y \in S$, $xy \in T$ implies $yx \in T$, 2) if there is an $x \in T$ with $xy \in T$, then $y \in T$, and 3) for every $x \in S$, there exists an $x' \in S$ with $x'x \in T$. We can define a binary relation \sim on S ; for $x, y \in S$, $x \sim y$ if and only if there is a $z \in S$ such that both zx and zy are contained in T . Then, the relation \sim is an equivalence relation on S , and is compatible with the multiplication of S , so the quotient set S/\sim , denoted by S/T , makes a group such that the canonical map $\psi: S \rightarrow S/T; x \mapsto [x]$ is a homomorphism with $\text{Ker } \psi = T$.

Let R be any ring with identity 1, and P a preprime of R ([3]), that is, P is closed under addition and multiplication of R and $-1 \notin P$. We put $p(P) = P \cap -P$, $R_p = \{x \in R \mid xp(P) \cup p(P)x \subset p(P)\}$, $R_p^+ = R_p \setminus p(P)$ ($:= \{x \in R_p \mid x \notin p(P)\}$), $P^+ = P \setminus p(P)$ ($= P \setminus -P$). We shall say a preprime P to be *complete quasi-prime*, if it satisfies the following conditions;

- 1) $p(P)$ is an ideal of R_p such that $R_p/p(P)$ is an integral domain,
- 2) $P^+ \triangleleft R_p^+$ under the multiplication of R_p .

3) P is complete in R_P , that is, for $x \in R_P$, $x^2 \in P$ implies $x \in P \cup -P$.

A multiplicative semigroup F with unit element 1 and zero element 0 will be called a *f-semigroup*, if $F^* = F \setminus \{0\}$ makes a group with a unique element of order 2, denoted by -1 , under the multiplication of F . If P is a complete quasi-prime of R , then the quotient group $G(P) = R_P^+ / P^+$ has a unique element $[-1]$ of order 2, and the formally composed semigroup $F(P) = G(P) \cup \{0\}$ makes an f-semigroup under the multiplication of $G(P)$ and $\alpha 0 = 0\alpha = 00 = 0$ for $\alpha \in G(P)$. Furthermore, we can define a map $\sigma: R_P \rightarrow F(P)$ by $\sigma(a) = 0$ or $[a]$ for $a \in p(P)$ or $a \in R_P^+$, respectively. Then, it can be verified that 1) $\sigma(-1) = [-1]$, 2) $\sigma(ab) = \sigma(a)\sigma(b)$ for every $a, b \in R_P$, and 3) for $a, b \in R_P$, either $\sigma(a) = 0$ or $\sigma(a) = \sigma(b)$ implies $\sigma(a+b) = \sigma(b)$.

Let π be a set of prime numbers, and suppose $2 \in \pi$. A complete quasi-prime P will be called a π -complete quasi-prime, if for each $q \in \pi$, there is a $\zeta_q \in R_P \setminus P$ such that $\zeta_q^q \in P$ and for any $x \in R_P$ with $x^q \in P$, $yx \in \bigcup_{1 \leq i \leq q} \zeta_q P^i$ for some $y \in P^+$.

REMARK 1.1. If R is a commutative ring and P is a π -complete quasi-prime, then for each $q \in \pi$, the q -torsion subgroup $G(P)_q = \{\alpha \in G(P) \mid \exists n > 0; \alpha^{q^n} = [1]\}$ of $G(P)$ is isomorphic to a subgroup of $\mathbb{Z}(q^\infty)$. Because, since $G(P)_q$ has a unique minimal non trivial subgroup $\langle [\zeta_q] \rangle$, $G(P)_q$ is indecomposable, so by [4], p. 22, Theorem 10, $G(P)_q$ is isomorphic to $\mathbb{Z}(q^n)$ or $\mathbb{Z}(q^\infty)$.

Let R be a ring with identity 1, and F an abelian f-semigroup. A partial map $\sigma: R \rightarrow F$ will be called a *signature* of R with domain of definition R_σ , if σ is a map of a subset R_σ of R into F satisfying the following conditions;

- (S 1) $-1 \in R_\sigma$ and $\sigma(-1) = -1$,
- (S 2) $a, b \in R_\sigma$ implies $ab \in R_\sigma$ and $\sigma(ab) = \sigma(a)\sigma(b)$,
- (S 3) for $a, b \in R_\sigma$, if $\sigma(a) = 0$ or $\sigma(a) = \sigma(b)$ then $a+b \in R_\sigma$ and $\sigma(a+b) = \sigma(b)$,
- (S 4) for $a \in R$, if $a \notin R_\sigma$, then there exists a $b \in R_\sigma$ such that $\sigma(b) = 0$ and either $\sigma(ab) = 1$ or $\sigma(ba) = 1$.

Let $\sigma: R \rightarrow F$ be a signature. For $\alpha \in F$, we put $p_\alpha(\sigma) = \{x \in R_\sigma \mid \sigma(x) = \alpha\}$, $P(\sigma) = p_0(\sigma) \cup p_1(\sigma)$ and $G(\sigma) = \text{Im } \sigma \cap F^*$.

Lemma 1.2. Let $\sigma: R \rightarrow F$ be a signature of a ring R .

- 1) R_σ is a subring of R with prime ideal $p_0(\sigma)$ such that $R_\sigma/p_0(\sigma)$ is an integral domain.
- 2) $P(\sigma)$ is a preprime of R , and $R_\sigma = R_{P(\sigma)}$.
- 3) If $G(\sigma)$ is a subgroup of F^* , then $P(\sigma)$ is a complete quasi-prime of R , and $G(P(\sigma))$ and $G(\sigma)$ are group isomorphic.

Proof. 1) If R_σ is closed under the addition of R , then it is easy to see

that R_σ is a subring of R . Suppose $a+b \notin R_\sigma$ for some a and b in R_σ . There is a $c \in R_\sigma$ such that $\sigma(c) = 0$, and $\sigma(c(a+b)) = 1$ or $\sigma((a+b)c) = 1$. Since $\sigma(ca) = \sigma(ac) = \sigma(a)\sigma(c) = 0$ and $\sigma(cb) = \sigma(bc) = 0$, we get $\sigma(ca+cb) = \sigma(ac+bc) = 0$ which is a contradiction. Hence, we get $R_\sigma + R_\sigma \subset R_\sigma$. It is easy to see that $p_0(\sigma)$ is an ideal of R_σ , and $R_\sigma/p_0(\sigma)$ is an integral domain. 2) From the definition of signature, it follows that $P(\sigma)$ is a preprime of R and $p_0(\sigma) = P(\sigma) \cap -P(\sigma)$. We shall show $R_\sigma = R_{P(\sigma)}$. Since $R_\sigma \subset R_{P(\sigma)}$ is clear, it suffices to show $R_\sigma \supset R_{P(\sigma)}$. If $x \in R \setminus R_\sigma$, then there is a $y \in p_0(\sigma)$ with $xy \in p_1(\sigma)$ or $yx \in p_1(\sigma)$, so $xp_0(\sigma) \cup p_0(\sigma)x \subset p_0(\sigma)$, that is, $x \notin R_{P(\sigma)}$. 3) If $G(\sigma)$ is a group, then it is easy to see that $P(\sigma)^+ = p_1(\sigma)$, $P(\sigma)^+ \triangleleft R_{P(\sigma)}^+$, $\sigma(R_{P(\sigma)}^+) = G(\sigma)$, and $P(\sigma)$ is complete. Furthermore, a map $G(P(\sigma)) = R_{P(\sigma)}^+/P(\sigma)^+ \rightarrow G(\sigma)$; $[x] \mapsto \sigma(x)$ is a group isomorphism.

REMARK. 1) If R is a field, then a signature $\sigma: R \rightarrow F$ with $p_0(\sigma) = \{0\}$ and $F = \mu \cup \{0\}$ coincides with the notion of signature defined by Becker, Harman and Rosenberg [2], where μ is the group of all roots of unity in the complices. 2) Let F be a finite field with characteristic $\neq 2$. The multiplicative semigroup F is an abelian f-semigroup. For a signature $\sigma: R \rightarrow F$, let π be the set of all prime factors of order $|G(\sigma)|$. Then, it is easy to see that $P(\sigma)$ is a π -complete quasiprime of R .

Let R be a ring with identity 1, and U a non empty multiplicatively closed subset of R satisfying $U \cap -U = \phi$. A preprime P of R will be called a U -preprime of R , if $U \subset P$ and $P \cap -U = \phi$. A maximal U -preprime of R will be called a U -prime of R . Any Harrison's infinite prime is a $\{1\}$ -prime.

Lemma 1.3. *Let U a non empty multiplicatively closed subset of R with $U \cap -U = \phi$, and P a U -prime of R . If either R is commutative or $Px = xP$ and $Ux = xU$ hold for every $x \in R_P^+$, then P is a complete quasi-prime of R .*

The proof of this lemma is obtained by checking the following facts;

(1.3.1) $U + P \subset P^+$.

(1.3.2) For $x \in R_P$ ($x \in R$, if R is commutative), if there are $u \in U$ and $y \in P$ with $(u+y)x \in P$, then $x \in P$. Hence $1 \in P$.

(1.3.3) For $x \in R_P$ ($x \in R$, if R is commutative), if $x \notin p(P)$, then there is an $x' \in (\pm P)[x]$ with $x'x \in U + P$, where $(\pm P)[x] = \{\sum_i a_i x^i \in R \mid a_i \in P \cup -P\}$.

(1.3.4) $R_P/p(P)$ is an integral domain.

(1.3.5) For $x, y \in R_P$, $xy \in P^+$ implies $yx \in P^+$.

(1.3.6) P is complete in R_P .

(1.3.7) For any $x \in P^+$, there is an $x' \in P^+$ with $x'x \in U + P$.

(1.3.8) For $x \in R_P$ ($x \in R$, if R is commutative), if there is a $y \in P^+$ with $yx \in P^+$, then $x \in P^+$.

The proofs of these statements are obtained similarly to the case of Harrison's

infinite prime; (1.3.1): Since $U \cap -P = \phi$, it follows that $U \subset P^+$ and $U + P \subset P^+$. (1.3.2): A subset $P' = \{x \in R_P \mid {}^x u \in U, {}^x y \in P; (u+y)x \in P\}$ of R is closed under addition and multiplication. Because, if $x_1, x_2 \in P'$, there are $u_i \in U$ and $y_i \in P$ with $(u_i+y_i)x_i \in P$, $i = 1, 2$. If either x_1 or x_2 belongs to $p(P)$, then it is trivial that $x_1 + x_2$ and $x_1 x_2$ belong to P' . Otherwise, by assumption, there are $u'_2 \in U$ and $y'_2 \in P$ such that $x_1 u_2 = u'_2 x_1$ and $x_1 y_2 = y'_2 x_1$. Then $(u_1+y_1)(u_2+y_2)$ and $(u_1+y_1)(u'_2+y'_2)$ belong to $U+P$, and $(u_1+y_1)(u_2+y_2)(x_1+x_2)$ and $(u_1+y_1)(u'_2+y'_2)x_1 x_2$ are in P . Furthermore, it is immeadiately seen that $P \subset P'$ and $P' \cap -U = \phi$, so we get $P = P'$. (1.3.3): For $x \in R_P$, if $x \notin p(P)$, then either $x \in P$ or $-x \in P$. By assumption, a subset $P[x] = P + Px + Px^2 + \dots$, (resp. $P[-x] = P + P(-x) + P(-x)^2 + \dots$) of R is closed under addition and multiplication. Since $P \subseteq P[x]$ or $P \subseteq P[-x]$, we get $P[x] \cap -U \neq \phi$ or $P[-x] \cap -U \neq \phi$, so we can find an element $y \in (\pm P)[x]$ such that $yx \in U+P$ holds. (1.3.4): For $x, y \in R_P$, suppose that $xy \in p(P)$ and $x \notin p(P)$. By (1.3.3), there is an $x' \in (\pm P)[x] \subset R_P$ with $x'x \in U+P$, and (1.3.2) derives that $x'xy \in p(P)$ implies $y \in p(P)$. (1.3.5): For $x, y \in R_P$, suppose $xy \in P^+$. $(xy)x$ is in $Px = xP$, and for an element x' in $(\pm P)[x]$, also in R_P , with $x'x \in U+P$, we get $(x'x)yx \in x'xP \subset P$, so $yx \in P^+$ by (1.3.2) and (1.3.4). (1.3.6) is easy. (1.3.7): If $x \in P^+$, then $P[-x] = P - Px$ is closed under addition and multiplication, and $P \subseteq P[-x]$. Hence, there are $u \in U$ and $x', y \in P$ with $-u = y - x'x$, so we get $x'x = u + y \in U+P$ and $x' \in P^+$. (1.3.8) is immeadiately obtained from (1.3.2) and (1.3.7).

2. The connection between U -prime and signature

Theorem 2.1. *Let R be a commutative ring with identity 1, and U any non empty multiplicatively closed subset of R with $U \cap -U = \phi$. If P is a U -prime of R , then there exists a signature $\sigma: R \rightarrow F$ with $P(\sigma) = P$ and group $G(\sigma) = G(P)$.*

Proof. By Lemma 1.3, U -prime P is a complete quasi-prime of R , so it defines a map $\sigma: R_P \rightarrow F(P)$. Then, we put $R_\sigma = R_P$ and $F = F(P)$. The conditions (S 1), (S 2) and (S 3) of signature were verified. (S 4) is proved in the following proposition. Then we have a signature $\sigma: R \rightarrow F$ with $P = P(\sigma)$ and $G(\sigma) = G(P) = R_P^+ / P^+$.

Proposition 2.2. *Let P be a U -prime of a commutative ring R , and let $A_P = \{a \in R \mid {}^a b_0 \in U+P, {}^a b_i \in P \cup -P, i = 1, 2, \dots, n; \sum_{i=0}^n b_i a^{n-i} = 0\}$.*

- 1) $(R_P, p(P))$ is a valuation pair of R , (cf. [3], Proposition. 2.5).
- 2) If $x \in R \setminus p(P)$ then there is an $a \in A_P$ with $ax \in U+P$.
- 3) If x and y are elements of R with $xy \in U+P$, then $x \notin p(P)$ implies $y \in A_P$.
- 4) $R_P = A_P$.

Proof. The proof of 1) is quite similar to [3], Proposition 2.5. 2) If $x \in R \setminus p(P)$, by (1.3.3) there is an $a \in (\pm P)[x]$ with $ax \in U+P$, then a can be

represented as $-(b_1 + b_2x + \dots + b_nx^{n-1})$ for some $b_i \in P \cup -P$. If we put $ax = b_0$, then a satisfies an equation $b_0a^n + b_1b_0a^{n-1} + \dots + b_nb_0^n = 0$ with $b_0 \in U + P$ and $b_i b_0^i \in P \cup -P$, $i = 1, 2, \dots, n$, so $a \in A_P$. 3) Suppose that x and y are in R and $xy \in U + P$. If $x \notin p(P)$, by 2), there is a $z \in A_P$ with $zx \in U + P$. Since $z \in A_P$, there are $a_0 \in U + P$ and $a_i \in P \cup -P$, $i = 1, 2, \dots, m$, with $\sum_{i=0}^m a_i z^{m-i} = 0$. Put $xy = b_0$ and $zx = c_0$, so we get that $\sum_{i=0}^m (a_i c_0^{m-i} b_0^i) y^{m-i} = (\sum_{i=0}^m a_i z^{m-i}) b_0^m = 0$, $a_i c_0^{m-i} b_0^i \in U + P$ and $a_i c_0^{m-i} b_0^i \in P \cup -P$, hence $y \in A_P$. 4) In the first place, we show $A_P \supset R_P$: Let x be any element in R_P . If $x \in p(P)$, $x \in A_P$ is obvious. Otherwise, by (1.3.3) there is a $y \in (\pm P)[x]$ with $xy \in U + P$, so $y \notin p(P)$ and by 3) we get $x \in A_P$. Now, we show $A_P = R_P$: Let $(U + P)^{-1}R$ be the ring of quotients of R with respect to $U + P$, and $\psi: R \rightarrow (U + P)^{-1}R$ the canonical ring homomorphism. Then, $(U + P)^{-1}R_P$ may be regarded as a subring of $(U + P)^{-1}R$. By B' , we denote the integral closure of $(U + P)^{-1}R_P$ in $(U + P)^{-1}R$. There is a prime ideal Q' of B' which lies over $(U + P)^{-1}R_P p(P)$, (cf. [5], (10.8)). It follows that $B = \psi^{-1}(B')$ is a subring of R with $B \supset A_P \supset R_P$, and $Q = \psi^{-1}(Q')$ is a prime ideal of B with $Q \cap R_P = p(P)$. By 1), we get $B = A_P = R_P$.

Lemma 2.3. *Let R be a commutative ring, and $\sigma: R \rightarrow F$ a signature. If $G(\sigma)$ is a torsion group, then $R_\sigma = \{a \in R \mid a^n \in P(\sigma) \text{ for some integer } n > 0\}$.*

Proof. Since $G(\sigma)$ is a torsion group, it is clear that any element a in R_σ has a positive integer n with $a^n \in P(\sigma)$. Conversely, suppose that an element $a \in R$ does not belong to R_σ . There is a $b \in p_0(\sigma)$ with $ab \in p_1(\sigma)$. Then a^n is not contained in $P(\sigma)$ for every positive integer n . Because, if $a^n \in P(\sigma)$ for some $n > 0$, it derives a contradiction $1 = \sigma((ab)^n) = \sigma(a^n)\sigma(b^n) = 0$.

Let R be a ring with identity 1. By [1], a preprime P is called a torsion preprime (resp. 2-torsion preprime) of R , if for each $a \in R$ there exists a positive integer n such that $a^n \in P$ (resp. $a^{2^n} \in P$) holds. From Theorem 2.1 and Lemma 2.3, the following corollaries immediately follow;

Corollary 2.4. *Let R be a commutative ring with 1 and U a non empty multiplicatively closed subset of R with $1 \in U$ and $U \cap -U = \emptyset$.*

1) *If P is a torsion U -prime of R , then $p(P)$ is an ideal of R , i.e. $R_P = R$, so there is a signature $\sigma: R \rightarrow F$ such that $P = P(\sigma)$, $R = R_\sigma$ and $G(\sigma)$ is a torsion group.*

2) *If P is a 2-torsion U -prime of R , then there is a signature $\sigma: R \rightarrow F$ such that $P = P(\sigma)$, $R = R_\sigma$ and $F^* \cong \mathbb{Z}(2^\infty)$.*

In particular, on a field, we have

Corollary 2.5. *Let K be a field.*

1) *For any signature $\sigma: K \rightarrow F$, K_σ is a valuation ring of K with maximal ideal $p_0(\sigma)$, and the residue field $k(\sigma) = K_\sigma/p_0(\sigma)$ has an induced signature $\bar{\sigma}: k(\sigma)$*

$\rightarrow F$ with $k(\sigma)_{\bar{\sigma}} = k(\sigma)$ and $p_0(\bar{\sigma}) = \{\bar{0}\}$, and $P(\bar{\sigma})$ is a preordering on $k(\sigma)$.

2) Let U be a non empty multiplicatively closed subset of K with $U \cap -U = \phi$. If P is a U -prime of K , K_P is a valuation ring of K with maximal ideal $p(P)$. If P is a torsion U -prime of K , then $K = K_P$, $p(P) = \{0\}$, and P is a preordering, i.e. $P^+ = P \setminus \{0\}$ is a subgroup of $K^* = K \setminus \{0\}$, (cf. [1], (3.3)).

3) If O is a real valuation ring of K with maximal ideal p , i.e. the residue field O/p is a formally real field, then there is a signature $\sigma: K \rightarrow \text{GF}(3)$ with $K_\sigma = O$ and $p_0(\sigma) = p$, where $\text{GF}(3) = \{0, 1, -1\}$ is a multiplicative semigroup of prime field with characteristic 3.

Theorem 2.6. Let R be a ring with identity 1, and $\sigma: R \rightarrow F$ a signature of R . Assume that $G(\sigma)$ is a torsion group and $xp_\alpha(\sigma) = p_\alpha(\sigma)x$ holds for all $x \in R_\sigma \setminus p_0(\sigma)$ and $\alpha \in G(\sigma) \cup \{0\}$. Then, there exists a signature $\tau: R \rightarrow F'$ of R satisfying the following conditions;

- 1) $P(\tau)$ is a $p_1(\sigma)$ -prime of R and $P(\tau) \supset P(\sigma)$,
- 2) $R_\tau = R_\sigma$ and $p_0(\tau) = p_0(\sigma)$,
- 3) there is a subgroup H of $G(\sigma)$ such that $p_1(\tau) = \sigma^{-1}(H)$, $-1 \notin H$ and $G(\sigma)/H \cong G(\tau)$ hold.

Proof. Since $P(\sigma)$ is a $p_1(\sigma)$ -preprime of R , by Zorn's Lemma there exists a $p_1(\sigma)$ -prime P of R containing $P(\sigma)$. From the facts that $P \cap -p_1(\sigma) = \phi$ and $p_0(\sigma) \subset p(P)$, we can derive that $p_0(\sigma) = p(P)$ and $R_P = R_\sigma$; If there is an element $x \in R_P \setminus R_\sigma$, then there exists a $y \in p_0(\sigma)$ such that either xy or yx belongs to $p_1(\sigma)$. However, xy and yx are also contained in $p(P)$, so these are contrary to $p_1(\sigma) \cap p(P) = \phi$. Hence, we get $R_P \subset R_\sigma$. Furthermore, if there is an element $x \in p(P) \setminus p_0(\sigma)$, we have $x^n \in p_1(\sigma) \cap p(P)$ for some integer $n > 0$, which is a contradiction. Therefore, we get $p_0(\sigma) = p(P)$ and $R_P = R_\sigma$. Now, we put $H = \sigma(P^+)$, so H is a subgroup of $G(\sigma)$. We shall show $P^+ = \sigma^{-1}(H)$; If $x \in \sigma^{-1}(H)$ then there is a $y \in P^+$ with $\sigma(x) = \sigma(y)$. Since $y^n \in p_1(\sigma)$ for some integer $n > 0$, we have $xy^n = (xy^{n-1})y \in xp_1(\sigma) \cap P^+$. Hence, for any $x \in R$, it follows that $x \in \sigma^{-1}(H)$ if and only if $xp_1(\sigma) \cap P^+ \neq \phi$. On the other hand, we can show that $P = \{x \in R_\sigma \mid xp_1(\sigma) \cap P \neq \phi\}$; The set $P' = \{x \in R_\sigma \mid xp_1(\sigma) \cap P \neq \phi\}$ is closed under addition and multiplication: Because, for $x, y \in P'$, there are $x_1, y_1 \in p_1(\sigma)$ such that both xx_1 and yy_1 are in P . Since we may suppose that y is not in $p_0(\sigma)$, there is an $x'_1 \in p_1(\sigma)$ with $x_1y = yx'_1$, and it follows that both $(x+y)(x_1y_1)$ and $(xy)(x'_1y_1)$ are contained in P . Hence, both $x+y$ and xy belong to P' . Furthermore, it is derived that $P \subset P'$ and $P' \cap -p_1(\sigma) = \phi$, because of $P \cap -p_1(\sigma) = \phi$. Hence, we get $P = P'$. Accordingly, we conclude that $\sigma^{-1}(H) = P^+ = \bigcup_{\alpha \in H} p_\alpha(\sigma)$.

From the assumption $xp_\alpha(\sigma) = p_\alpha(\sigma)x$ for $x \in R_\sigma \setminus p_0(\sigma)$ and $\alpha \in G(\sigma) \cup \{0\}$, P is a complete quasi-prime of R . Therefore, we can define a signature $\tau: R \rightarrow F(P)$ such that $R_\tau = R_P = R_\sigma$, $p_0(\tau) = p(P) = p_0(\sigma)$ and $G(\tau) = G(P) \cong G(\sigma)/H$.

It is easy to check the conditions of signature for τ .

Corollary 2.7. *Let R be a commutative ring with identity 1. If $\sigma: R \rightarrow F$ is a signature of R such that $G(\sigma)$ is a 2-torsion group, then $P(\sigma)$ is a $p_1(\sigma)$ -prime of R .*

Proof. Since $G(\sigma)$ is a 2-torsion group, by Remark 1.1 every non-trivial subgroup H of $G(\sigma)$ contains -1 . By Theorem 1.7, $P(\sigma)$ is a $p_1(\sigma)$ -prime of R .

Corollary 2.8. *Let S be a commutative ring with identity 1, and R a subring of S containing 1. If $\sigma: R \rightarrow F$ a signature of R such that $G(\sigma)$ is 2-torsion group, then σ can be extended to a signature $\tau: S \rightarrow F'$ of S , i.e. $S_\tau \cap R = R_\sigma$ and $P(\tau) \cap R = P(\sigma)$ hold.*

Proof. A signature $\tau: S \rightarrow F'$ is defined by a $p_1(\sigma)$ -prime P of S containing $P(\sigma)$. Then, τ is an extension of σ .

3. Category of signatures

Let $\sigma_1: R_1 \rightarrow F_1$ and $\sigma_2: R_2 \rightarrow F_2$ be signatures of rings R_1 and R_2 . Suppose that $f: R_1 \rightarrow R_2$ is a ring homomorphism such that $f(1)=1$ and $f(R_{1\sigma_1}) \subset R_{2\sigma_2}$, and that $\xi: F_1 \rightarrow F_2$ is a partial homomorphism which is defined on $G(\sigma_1)$ and satisfies $\xi(0)=0$, $\xi(-1)=-1$ and $\xi(\alpha\beta)=\xi(\alpha)\xi(\beta)$ if ξ is defined on α, β and $\alpha\beta$ for $\alpha, \beta \in F_1$. Then, the pair (f, ξ) will be called a morphism of signatures of σ_1 to σ_2 , denoted by $(f, \xi): \sigma_1 \rightarrow \sigma_2$, if it satisfies $\xi(\sigma_1(x))=\sigma_2(f(x))$ for all $x \in R_{1\sigma_1}$. Let $\sigma_i: R_i \rightarrow F_i$ and $\sigma'_i: R'_i \rightarrow F'_i$ be signatures of rings for $i=1, 2$, and $(f, \xi): \sigma_1 \rightarrow \sigma_2$ and $(f', \xi'): \sigma'_1 \rightarrow \sigma'_2$ morphisms of signatures. We define the equality of morphisms that $(f, \xi)=(f', \xi')$ if and only if $\sigma_i=\sigma'_i$ (i.e. $R_i=R'_i$, $R_{i\sigma_i}=R'_{i\sigma'_i}$, $F_i=F'_i$ and $\sigma_i(x)=\sigma'_i(x)$ for all $x \in R_{i\sigma_i}$) for $i=1, 2$, $f=f'$ and for every $\alpha \in G(\sigma_1)=G(\sigma'_1)$, $\xi(\alpha)=\xi'(\alpha)$ hold. By C_{sig} , we denote the category of signatures in which objects are signatures of rings and morphisms are morphisms of signatures.

Proposition 3.1. *Let R and S be rings with identity 1, and $f: R \rightarrow S$ a ring homomorphism with $f(1)=1$.*

1) *If $\tau: S \rightarrow F$ is a signature of ring S with $\text{Im } f \supset p_0(\tau)$, then there exists a signature $\sigma: R \rightarrow F$ of ring R with a morphism $(f, I_F): \sigma \rightarrow \tau$ in C_{sig} .*

2) *If $f: R \rightarrow S$ is surjective, and if $\sigma: R \rightarrow F$ is a signature of ring R with $\text{Ker } f \subset p_0(\sigma)$, then there exists a signature $\tau: S \rightarrow F$ of ring S with a morphism $(f, I_F): \sigma \rightarrow \tau$ in C_{sig} .*

Proof. 1) Suppose that $\tau: S \rightarrow F$ is a signature of ring S and $f: R \rightarrow S$ is a ring homomorphism with $f(1)=1$ and $\text{Im } f \supset p_0(\tau)$. On a subring $R_\sigma = \{x \in R \mid f(x) \in S_\tau\}$ of R , a map $\sigma: R_\sigma \rightarrow F; x \mapsto \tau(f(x))$ is defined. The condition

$\text{Im } f \supset p_0(\tau)$ derives that a signature $\sigma: R \rightarrow F$ of ring R and a morphism $(f, I_F): \sigma \rightarrow \tau$ in \mathbf{C}_{sig} are defined. 2) Suppose that $f: R \rightarrow S$ is a surjective ring homomorphism, and $\sigma: R \rightarrow F$ is a signature of ring R with $\text{Ker } f \subset p_0(\sigma)$. For a subring $S_\tau = f(R_\sigma)$, we can define a map $\tau: S_\tau \rightarrow F$ as follows: For any $a \in S_\tau$, there is a $b \in R_\sigma$ with $f(b) = a$, then we put $\tau(a) = \sigma(b)$. From the condition $\text{Ker } f \subset p_0(\sigma)$, it is known that the map $\tau: S_\tau \rightarrow F$ is well defined. Then, it is easy to see that a signature $\tau: S \rightarrow F$ of ring S and a morphism $(f, I_F): \sigma \rightarrow \tau$ in \mathbf{C}_{sig} are defined.

Concerning commutative rings, the situation of Proposition 3.1, 2) is reformed as follows;

Theorem 3.2. *Let $f: R \rightarrow S$ be a ring homomorphism of a commutative ring R into a commutative ring S with $f(1) = 1$. If $\sigma: R \rightarrow F$ is a signature of R such that $G(\sigma)$ is a torsion group and $\text{Ker } f \subset p_0(\sigma)$, then there exists a signature $\tau: S \rightarrow F'$ of ring S with a morphism $(f, \xi): \sigma \rightarrow \tau$ in \mathbf{C}_{sig} .*

Proof. Suppose that $f: R \rightarrow S$ is a ring homomorphism with $f(1) = 1$, and $\sigma: R \rightarrow F$ is a signature of R with torsion group $G(\sigma)$ and satisfying $\text{Ker } f \subset p_0(\sigma)$. By Proposition 3.1, 2), for the surjective ring homomorphism $f: R \rightarrow \text{Im } f$, there exists a signature $\sigma': \text{Im } f \rightarrow F$ of the subring $\text{Im } f$ of S with a morphism $(f, I_P): \sigma \rightarrow \sigma'$ in \mathbf{C}_{sig} . Hence, we may assume that R is a subring of S with common identity, and it is sufficient to show that there exists a signature $\tau: S \rightarrow F'$ of S with a morphism $(\iota, \xi): \sigma \rightarrow \tau$ in \mathbf{C}_{sig} , where ι denotes the inclusion map $R \hookrightarrow S$. By Theorem 2.6, there exists a signature $\bar{\sigma}: R \rightarrow F''$ of R such that $R_{\bar{\sigma}} = R_\sigma$, $p_0(\bar{\sigma}) = p_0(\sigma)$ and $G(\bar{\sigma}) \cong G(\sigma)/H$ for some subgroup H of $G(\sigma)$ hold, and $P(\bar{\sigma})$ is a $p_1(\sigma)$ -prime of R containing $P(\sigma)$. Then, we can define a partial homomorphism $\xi_1: F \rightarrow F''$ such that ξ_1 induces a group homomorphism $G(\sigma) \rightarrow G(\bar{\sigma})$ and the pair (I_R, ξ_1) defines a morphism $(I_R, \xi_1): \sigma \rightarrow \bar{\sigma}$ in \mathbf{C}_{sig} . On the other hand, by Zorn's Lemma, there exists a $p_1(\sigma)$ -prime P of S containing $P(\bar{\sigma})$, and by Theorem 2.1 the $p_1(\sigma)$ -prime P defines a signature $\tau: S \rightarrow F(P)$ of S such that $P(\tau) = P$, $S_\tau = S_P$, $F(P) = G(P) \cup \{0\}$ and $G(P) = S_P^+ / P^+$ hold, and τ is induced from the canonical map $S_P^+ \rightarrow G(P)$. From the fact that $P(\bar{\sigma})$ is a $p_1(\sigma)$ -prime of R , and $P \supset P(\bar{\sigma})$, it follows that $P \cap R = P(\bar{\sigma})$, $P(P) \cap R = p_0(\bar{\sigma})$ and $P^+ \cap R = P(\bar{\sigma})^+ (= p_1(\bar{\sigma}))$ hold. Since $G(\sigma)$ is a torsion group, so is also $G(\bar{\sigma})$, and by Lemma 2.3 and Proposition 2.2, it is derived that $R_{P(\bar{\sigma})} (= R_{\bar{\sigma}}) = \{a \in R \mid a^n \in P(\bar{\sigma}) \text{ for some integer } n > 0\}$ is included in $S_P = \{a \in S \mid {}^g b_0 \in p_1(\sigma) + P, {}^g b_i \in P \cup -P, i = 1, 2, \dots, n; \sum_i b_i a^{n-i} = 0 \text{ for some } n > 0\}$. Hence we have that $R_{P(\bar{\sigma})} \subset S_P^+$, and the natural homomorphism $G(P(\bar{\sigma})) = R_{P(\bar{\sigma})} / P(\sigma)^+ \rightarrow G(P) = S_P^+ / P^+$; $[a] \rightsquigarrow [a]$ defines a partial homomorphism $\xi_2: F'' \rightarrow F(P)$ such that $(\iota, \xi_2): \bar{\sigma} \rightarrow \tau$ is a morphism in \mathbf{C}_{sig} . Thus, we obtain a signature $\tau: S \rightarrow F' = F(P)$ of ring S and a morphism $(\iota, \xi_2 \circ \xi_1) = (\iota, \xi_2) \circ (I_R, \xi_1): \sigma \rightarrow \tau$ in \mathbf{C}_{sig} .

ideal $p_0(\sigma)$, that is, every element in $R_\sigma \setminus p_0(\sigma)$ is invertible in R_σ . Then, $a \in p_0(\sigma)$ if and only if $a^{-1} \notin R_\sigma$.

Proof. 1) For elements $x, y \in R$, we suppose that $xR_\sigma y \subset p_0(\sigma)$ and $x \notin p_0(\sigma)$. If $x \notin R_\sigma$, then there is an $x' \in p_0(\sigma)$ with $x'x \in p_1(\sigma)$ or $xx' \in p_1(\sigma)$. Since both $x'xR_\sigma y$ and $xx'R_\sigma y$ are included in $p_0(\sigma)$, we may assume that $x \in R_\sigma$, and similarly $y \in R_\sigma$. Then, $y \in p_0(\sigma)$ follows. 2) Suppose that $a \in R_\sigma \setminus p_0(\sigma)$. If $a^{-1} \notin R_\sigma$, then there is a $b \in p_0(\sigma)$ with $a^{-1}b \in p_1(\sigma)$ or $ba^{-1} \in p_1(\sigma)$, so it means either $a(a^{-1}b)$ or $(ba^{-1})a$ belongs to $p_0(\sigma)$, that is, $a \in p_0(\sigma)$, which is contrary to $a \notin p_0(\sigma)$. Hence, we get $a^{-1} \in R_\sigma \setminus p_0(\sigma)$. 3) First, we suppose that R is commutative. It is easy to see the “only if” part. If $a^{-1} \notin R_\sigma$, there is a $b \in p_0(\sigma)$ with $a^{-1}b \in p_1(\sigma)$, so by 1) $a(a^{-1}b) \in p_0(\sigma)$ implies $a \in p_0(\sigma)$. Next, we suppose that R_σ is a local ring with maximal ideal $p_0(\sigma)$. If $a^{-1} \notin R_\sigma$ then there is a $b \in p_0(\sigma)$ with $a^{-1}b \in p_1(\sigma)$ or $ba^{-1} \in p_1(\sigma)$, so either $a^{-1}b$ or ba^{-1} is invertible in R_σ . Hence, we get $a \in p_0(\sigma)$.

Lemma 4.2. For a $\sigma \in X(R, F)$, put $q(\sigma) = \{a \in R \mid RaR \subset p_0(\sigma)\}$. Then, the following properties hold;

- 1) $q(\sigma)$ is a prime ideal of R , and $q(\sigma) \subset p_0(\sigma)$.
- 2) If R is a local ring with maximal ideal $q(\sigma)$ then so is R_σ with maximal ideal $p_0(\sigma)$. If R is commutative, then the converse also holds.
- 3) If $p_0(\sigma) = \{0\}$, then $R = R_\sigma$, and $P(\sigma)$ gives a partial ordering on the ring R .

Proof. 1) It is easy to see that $q(\sigma)$ is an ideal of R , and $q(\sigma) \subset p_0(\sigma)$. For $x, y \in R$, we suppose that $xRy \subset q(\sigma)$ and $x \notin q(\sigma)$. We can find elements a and b in R with $axb \in p_0(\sigma)$, so it follows that $axbR_\sigma(RyR) \subset p_0(\sigma)$ and $RyR \subset p_0(\sigma)$ by Lemma 4.1, 1), i.e. $y \in q(\sigma)$. 2) If R is a local ring with maximal ideal $q(\sigma)$, then every element in $R_\sigma \setminus p_0(\sigma) (\subset R \setminus q(\sigma))$ is invertible in R , and by Lemma 4.1, 2), so is also in R_σ . Hence, R_σ is a local ring with maximal ideal $p_0(\sigma)$. If R is commutative and R_σ a local ring with maximal ideal $p_0(\sigma)$, then for any element $x \in R \setminus q(\sigma)$, we can find an element $a \in R$ such that $ax \in R_\sigma \setminus p_0(\sigma)$, that is, ax is invertible in R_σ , so x is invertible in R . 3) is easy.

Corollary 4.3. Assume that R is a division ring, then the following hold.

- 1) For any $\sigma \in X(R, F)$, R_σ is a local ring with maximal ideal $p_0(\sigma)$.
- 2) $X(R, F)$ is a Hausdorff and totally disconnected space.
- 3) If F is a finite set, then $X(R, F)$ is compact, that is, a Boolean space.

Proof. 1) is obtained by Lemma 4.2, 2). 2) By Lemma 4.1, 3), it follows that $H_0(a) = H_\infty(a^{-1})$ is a clopen set of $X(R, F)$ for any $a \neq 0$ in R , and so is also $H_\gamma(a)$ for any $\gamma \in F \cup \{\infty\}$ and $a \in R$. Hence, $X(R, F)$ is Hausdorff and totally disconnected. 3) Suppose that F is finite, then $(F \cup \{\infty\})^R$ is compact. Whenever $F \cup \{\infty\}$ is a discrete space, the subset $X(R, F)$ becomes a closed subset of $(F \cup \{\infty\})^R$. Hence, under our topology on $F \cup \{\infty\}$, $X(R, F)$ is also

REMARK 3.3. Let $\sigma: R \rightarrow F$ and $\tau: S \rightarrow F'$ be signatures of rings R and S . If $(f, \xi): \sigma \rightarrow \tau$ is a morphism in C_{sig} , then the following identities hold; 1) $R_\sigma = f^{-1}(S_\tau)$, 2) if $G(\sigma)$ is a group, then $p_0(\sigma) = f^{-1}(p_0(\tau))$ and $\bigcup_{\alpha \in \xi^{-1}(\beta)} p_\alpha(\sigma) = f^{-1}(p_\beta(\tau))$ for each $\beta \in G(\tau)$.

Proof. 1) It is easy that $R_\sigma \subset f^{-1}(S_\tau)$. To prove the opposite, we suppose that there is an $x \in R \setminus R_\sigma$ with $f(x) \in S_\tau$. Then, there is a $y \in p_0(\sigma)$ such that $xy \in p_1(\sigma)$ or $yx \in p_1(\sigma)$ hold. However, $xy \in p_1(\sigma)$ (resp. $yx \in p_1(\sigma)$) implies $\tau(f(xy)) = \xi(\sigma(xy)) = 1$ (resp. $\tau(f(yx)) = 1$) which is contrary to that $\tau(f(xy)) = \tau(f(x))\tau(f(y)) = \tau(f(x))\xi(\sigma(y)) = \tau(f(x))\xi(0) = \tau(f(x))0 = 0$ (resp. $\tau(f(yx)) = 0$). Hence, we get $R_\sigma = f^{-1}(S_\tau)$. 2) It is also easy that $p_0(\sigma) \subset f^{-1}(p_0(\tau))$. If $x \in f^{-1}(p_0(\tau))$, then we have $\xi(\sigma(x)) = \tau(f(x)) = 0$ and $\sigma(x) = 0$, i.e. $x \in p_0(\sigma)$, since $G(\sigma)$ is a group and $\xi(1) = 1$. Hence, we get $p_0(\sigma) = f^{-1}(p_0(\tau))$. Since $R_\sigma = f^{-1}(S_\tau)$ and $p_0(\sigma) = f^{-1}(p_0(\tau))$, it follows that $R_\sigma \setminus p_0(\sigma) = \bigcup_{\alpha \in G(\sigma)} p_\alpha(\sigma) = f^{-1}(S_\tau \setminus p_0(\tau)) = \bigcup_{\beta \in G(\tau)} f^{-1}(p_\beta(\tau))$. Since $\bigcup_{\alpha \in \xi^{-1}(\beta)} p_\alpha(\sigma) \subset f^{-1}(p_\beta(\tau))$ holds for every $\beta \in G(\tau)$, we get $\bigcup_{\alpha \in \xi^{-1}(\beta)} p_\alpha(\sigma) = f^{-1}(p_\beta(\tau))$ for every $\beta \in G(\tau)$.

4. Space of signatures

In this section, we assume that F is a f-semigroup with abelian torsion group F^* . Let R be any ring with identity 1, and $X(R, F)$ denote the set of signatures $\sigma: R \rightarrow F$ of the ring R over the f-semigroup F . We consider a set $F \cup \{\infty\}$ which is added a formal symbol ∞ to F . We make the set $F \cup \{\infty\}$ a topological space such that $\{\alpha\}$ and $\{\infty\}$ are open subsets for every $\alpha \in F^*$. Then, for any subset $H \subset F \cup \{\infty\}$, H is a closed subset if and only if $0 \in H$. Considering R as a discrete space, we make the power space $(F \cup \{\infty\})^R$ have a weak topology. We can introduce a topology on $X(R, F)$ as a subspace of $(F \cup \{\infty\})^R$. For any $\alpha \in F$ and $a \in R$, we put $H_\alpha(a) = \{\sigma \in X(R, F) \mid \sigma(a) = \alpha\}$ and $H_\infty(a) = \{\sigma \in X(R, F) \mid a \notin R_\sigma\}$. Then, for every finite subsets $\{a_1, a_2, \dots, a_n\} \subset R$ and $\{\gamma_1, \gamma_2, \dots, \gamma_n\} \subset F^* \cup \{\infty\}$, the intersections $H_{\gamma_1}(a_1) \cap H_{\gamma_2}(a_2) \cap \dots \cap H_{\gamma_n}(a_n)$ construct an open basis of the space $X(R, F)$. Furthermore, for a subset $H \subset F \cup \{\infty\}$ and $a \in R$, we have that $\bigcup_{\alpha \in H} H_\alpha(a)$ is a closed subset of $X(R, F)$ if and only if $0 \in H$.

In the following lemmata and corollary, we need not assume that F^* is a torsion group.

Lemma 4.1. *For a $\sigma \in X(R, F)$ and an invertible element a in R , the following statements hold;*

- 1) *For any $x, y \in R$, $xR_\sigma y \subset p_0(\sigma)$ implies either $x \in p_0(\sigma)$ or $y \in p_0(\sigma)$.*
- 2) *$a \in R_\sigma \setminus p_0(\sigma)$ if and only if $a^{-1} \in R_\sigma \setminus p_0(\sigma)$*
- 3) *Assume that either R is commutative or R_σ is a local ring with maximal*

compact.

Proposition 4.4. *Assume that R is a commutative ring and $\sigma, \tau \in X(R, F)$. If $P(\sigma) \subset P(\tau)$ holds, then there are a subgroup H of $G(\sigma)$ and a homomorphism $\psi: H \rightarrow G(\tau)$ such that $p_\beta(\tau) \cap R_\sigma \subset \bigcup_{\alpha \in \psi^{-1}(\beta)} p_\alpha(\sigma) \subset p_0(\tau) \cup p_\beta(\tau)$ holds for every $\beta \in G(\tau)$, and $R_\sigma \subset R_\tau$ holds.*

Proof. Suppose that $P(\sigma) \subset P(\tau)$. Since $G(\sigma)$ and $G(\tau)$ are torsion groups, by Lemma 2.3, we get $R_\sigma \subset R_\tau$. We put $H = \{\alpha \in G(\sigma) \mid p_\alpha(\sigma) \subset p_0(\tau)\}$, then H is a subgroup of $G(\sigma)$. We can define a homomorphism $\psi: H \rightarrow G(\tau)$ as follows; For any $\alpha \in H$, we can find an element a in $p_\alpha(\sigma) \setminus p_0(\tau)$, and $\tau(a) = \tau(x)$ holds for every $x \in p_\alpha(\sigma) \setminus p_0(\tau)$. Because, α^{-1} belongs to H , so we can find a b in $p_{\alpha^{-1}}(\sigma) \setminus p_0(\tau)$, which satisfies $\sigma(ab) = \sigma(xb) = 1$ for every $x \in p_\alpha(\sigma) \setminus p_0(\tau)$. The condition $P(\sigma) \subset P(\tau)$ means that for every $x \in p_\alpha(\sigma) \setminus p_0(\tau)$, $\tau(ab) = \tau(xb) = 1$ holds, so $\tau(a) = \tau(x)$. Therefore, we can define the image $\psi(\alpha)$ of α as $\tau(a)$ for $a \in p_\alpha(\sigma) \setminus p_0(\tau)$. Then, it is easy to see that the map $\psi: H \rightarrow G(\tau)$ is a group homomorphism. Further, for any $\alpha \in H$ and $\beta \in G(\tau)$ with $\psi(\alpha) = \beta$, from the definition of ψ , $p_\alpha(\sigma) \subset p_0(\tau) \cup p_\beta(\tau)$ follows. Hence, we get $\bigcup_{\alpha \in \psi^{-1}(\beta)} p_\alpha(\sigma) \subset p_0(\tau) \cup p_\beta(\tau)$. On the other hand, if β is an element in $G(\tau)$ with $p_\beta(\tau) \cap R_\sigma \neq \emptyset$, then for each $x \in p_\beta(\tau) \cap R_\sigma$, there is an $\alpha \in G(\sigma)$ with $x \in p_\alpha(\sigma) \setminus p_0(\tau)$, that is, $\psi(\alpha) = \beta$ and $x \in p_\alpha(\sigma)$. Hence, we get $p_\beta(\tau) \cap R_\sigma \subset \bigcup_{\alpha \in \psi^{-1}(\beta)} p_\alpha(\sigma)$ for every $\beta \in G(\tau)$.

REMARK 4.5. Let R be a commutative ring, and $\sigma: R \rightarrow F$ a signature of R . By σ , a topology on affine n -space R^n is introduced as follows; For any $\gamma_i \in G(\sigma) \cup \{\infty\}$ and $f_i(X_1, X_2, \dots, X_n)$ in polynomial ring $R[X_1, X_2, \dots, X_n]$, $i = 1, 2, \dots, m$, we put $U(f_1, f_2, \dots, f_m, \gamma_1, \gamma_2, \dots, \gamma_m) = \{(a_1, a_2, \dots, a_n) \in R^n \mid \sigma(f_i(a_1, a_2, \dots, a_n)) = \gamma_i, i = 1, 2, \dots, n\}$, where $\sigma(f_i(a_1, a_2, \dots, a_n)) = \infty$ whenever $f_i(a_1, a_2, \dots, a_n) \notin R_\sigma$. Then, the sets $U(f_1, f_2, \dots, f_m, \gamma_1, \gamma_2, \dots, \gamma_m)$ form an open basis on R^n . We can define a continuous map ψ_σ of the topological space R^n into $X(R[X_1, X_2, \dots, X_n], F)$; Let (a_1, a_2, \dots, a_n) be any element in R^n , and let $\psi_{(a_1, a_2, \dots, a_n)}: R[X_1, X_2, \dots, X_n] \rightarrow R; f(X_1, X_2, \dots, X_n) \rightsquigarrow f(a_1, a_2, \dots, a_n)$ a natural ring homomorphism. By Proposition 3.1, 1), there exists a signature $\sigma_{(a_1, a_2, \dots, a_n)}: R[X_1, X_2, \dots, X_n] \rightarrow F$ with a morphism $(\psi_{(a_1, a_2, \dots, a_n)}, I_F): \sigma_{(a_1, a_2, \dots, a_n)} \rightarrow \sigma$ in C_{sig} . Thus, we get a map $\psi_\sigma: R^n \rightarrow X(R[X_1, X_2, \dots, X_n], F); (a_1, a_2, \dots, a_n) \rightsquigarrow \sigma_{(a_1, a_2, \dots, a_n)}$, which is continuous, because of $\psi_\sigma^{-1}(H_\gamma(f)) = U(f, \gamma)$ for $f \in R[X_1, X_2, \dots, X_n]$ and $\gamma \in G(\sigma) \cup \{\infty\}$.

References

[1] E. Becker: *Partial orders on a field and valuation rings*, Comm. Algebra 7 (1979),

1933-1976.

- [2] E. Becker, J. Harman and A. Rosenberg: *Signatures of fields and extension theory*, J. Reine Angew. Math. **330** (1982), 53-75.
- [3] D.K. Harrison: Finite and infinite primes for rings and fields, Mem. Amer. Math. Soc. 68 (1966).
- [4] I. Kaplansky: Infinite abelian groups, University of Michigan Press 1954.
- [5] M. Nagata: Local rings, Huntington, New York 1975.
- [6] T. Tamura: Semigroup theory, (Japanese), Kyoritsu Koza, Gendaino Sugaku 8, Tokyo 1972.
- [7] D.K. Harrison and H.D. Warner: *Infinite primes of fields and completions*, Pacific J. Math. **45** (1973), 201-216.
- [8] M. Marshall: Abstract Witt rings, Queen's Papers in Pure and Applied Math. No. 57 (1980).
- [9] E. Becker: Hereditarily-Pythagorean fields and orderings of higher level, Monografias de Mat. no. 29, Rio de Janeiro (1978).

Osaka Women's University
Daisen-cho, 2-1
Sakai, Osaka 590
Japan