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PAPER
Dataset of Functionally Equivalent Java Methods and Its
Application to Evaluating Clone Detection Tools

Yoshiki HIGO†a), Senior Member

SUMMARY Modern high-level programming languages have a wide
variety of grammar and can implement the required functionality in different
ways. The authors believe that a large amount of code that implements the
same functionality in different ways exists even in open source software
where the source code is publicly available, and that by collecting such
code, a useful data set can be constructed for various studies in software
engineering. In this study, we construct a dataset of pairs of Java methods
that have the same functionality but different structures from approximately
314 million lines of source code. To construct this dataset, the authors used
an automated test generation technique, EvoSuite. Test cases generated
by automated test generation techniques have the property that the test
cases always succeed. In constructing the dataset, using this property, test
cases generated from two methods were executed against each other to
automatically determine whether the behavior of the two methods is the
same to some extent. Pairs of methods for which all test cases succeeded
in cross-running test cases are manually investigated to be functionally
equivalent. This paper also reports the results of an accuracy evaluation
of code clone detection tools using the constructed dataset. The purpose
of this evaluation is assessing how accurately code clone detection tools
could find the functionally equivalent methods, not assessing the accuracy
of detecting ordinary clones. The constructed dataset is available at github
(https://github.com/YoshikiHigo/FEMPDataset).
key words: functionally-equivalent methods, source code analysis, dataset,
code clone

1. Introduction

Current programming languages have a rich syntax, and there
are many ways for developers to implement the functionality
they need. For example, in the case of Java, the for state-
ment, the while statement, recursive functions, Stream,
etc. can be used to perform repetitive processing. In the
refactoring patterns proposed by Fowler [1], the implemen-
tations before and after refactoring have the same external
behavior, which means refactoring can be regarded as an
implementation change of a functionality. Thus, there are
countless ways to implement a certain functionality, and de-
velopers implement the necessary functionality according to
their own preferences and/or the policies of their software
development project.

The authors believe that there is a large amount of source
code with the same functionality but different structures in
open source software (hereafter referred to as SFDS code∗),
which can be a useful dataset for various studies in software
engineering. For example, SFDS code can be used to evalu-

Manuscript received December 13, 2023.
Manuscript publicized February 21, 2024.

†The author is with the Graduate School of Information Science
and Technology, Osaka University, Suita-shi, 565–0871 Japan.

a) E-mail: higo@ist.osaka-u.ac.jp
DOI: 10.1587/transinf.2023EDP7268

ate code clone detection tools. Since it is desirable for source
code that implement the same functionality to be detected as
code clones, the performance of code clone detection tools
can be evaluated by examining the degree to which SFDS
code are detected as code clones. Moreover, by using SFDS
code, we can investigate which implementations are superior
in terms of running performance, such as memory usage and
execution speed, and which implementations are superior in
terms of software quality, such as ISO/IEC 25010 [2].

However, it is not easy to identify and collect SFDS
code. It is not realistic to manually find SFDS code from
open source software, and if existing code clone detection
tools are used, only SFDS code that can be detected by exist-
ing code clone detection tools will be collected. Therefore,
SFDS code collected in such a way cannot be used to evaluate
code clone detection tools.

In this study, SFDS code to be collected are limited to
pairs of methods that return the same output (return value)
when the same inputs (arguments) are given (hereafter, FE
methods∗∗). The key idea of this study is to automatically
obtain candidate pairs of FE methods using an automated test
generation technique, EvoSuite by limiting the detection of
SFDS code to the detection of FE methods. The obtained
candidates of FE method pairs are manually verified to be
truly functionally equivalent.

In this study, we selected IJADataset [3] as the tar-
get for detecting FE method pairs in Java. IJADataset
consists of approximately 2.74 million source files (a total
of approximately 314 million lines of source code) and in-
cludes approximately 23 million methods. From this dataset,
13,710 candidate FE method pairs were automatically de-
tected, of which 2,194 were visually investigated. As a
result, a dataset of 1,342 FE method pairs was constructed.
Our dataset also includes 852 method pairs that were deter-
mined not to be functionally equivalent by visual inspection.
The constructed dataset is available at GitHub∗∗∗.

We also evaluated code clone detection tools using the
constructed dataset. As a result, we found that there are
many FE method pairs that cannot be detected by the token-
based clone detection technique, and that the detection tech-
niques based on abstract syntax trees and deep learning have
a strong tendency to incorrectly detect method pairs that are
functionally inequivalent.

∗Same-Functionality but Different Structures
∗∗Functionally Equivalent
∗∗∗https://github.com/YoshikiHigo/FEMPDataset
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2. Definition of FE Methods

In this study, two methods are considered to be functionally
equivalent if they return the same output (return value) when
the same inputs (arguments) are given. Many code clone de-
tection techniques measure the similarity of the source code
of the target methods to determine them as code clones [4]–
[6], but this study does not use such code similarity to deter-
mine whether given two methods are functionally equivalent
or not. There are also techniques that determine code clones
by using the state of processing (main memory state) of the
target methods by running them [7], but this study does not
use such a calculation process to determine whether given
two methods are functionally equivalent or not.

In research of code clones, detected code clones are
often classified according to their similarity as follows.

Type-1 The code snippets are entirely identical except for
changes that may exist in the white spaces and com-
ments.

Type-2 The structure of the code snippets is the same while
the identifiers’ names, types, white spaces, and com-
ments differ.

Type-3 In addition to changes in identifiers, variable names,
data types, and comments, some parts of the code can
be deleted or updated, or some new parts can be added.

Type-4 Two code snippets have different texts but the same
functionality.

FE methods detected in this study are code clones of a
part of Type-4 according to the above classification.

3. Key Idea for Automatically Identifying Candidate
FE Method Pairs

In this study, we automatically collect candidate pairs of FE
methods by using the static features (method signatures) and
dynamic behavior (test results) of Java methods. Whether
or not the obtained candidate FE method pairs are truly
functionally equivalent is investigated manually. Therefore,
it is important to collect as many candidate FE method pairs
as possible automatically.

The static features of the Java methods used in this
study are the return value type and the parameter types. As
the first step in obtaining candidate FE method pairs, meth-
ods with the same return value type and parameter types are
classfied into the same group. We do not consider throw-
ing exceptions as part of static features since throwing an
exception or not can be checked as dynamic behavior.

The dynamic behavior of the Java methods used in
this study is the result (success/failure) of the execution of a
given test case. Test cases are generated from all methods
in the same group using an automated test generation tech-
nique, EvoSuite. Test cases generated by automated test
generation techniques have the property that the test cases
always succeed. For every pair of methods, the generated
test cases are executed against each other to automatically

determine if the method pair has the same behavior. The key
idea of this research is that if method A succeeds in all tests
generated from method B and method B succeeds in all tests
generated from method A, then the behavior of methods A
and B are equivalent to some extent and their functions may
be equivalent.

Based on this key idea, a dataset of FE method pairs
is constructed by automatically obtaining pairs of methods
from a large amount of open source software that have been
successfully executed for cross-testing and visually investi-
gating them. Although methods with identical or similar
source code may be functionally equivalent, such methods
can be detected by existing code clone detection tools [8].
The objective of this study is to build a dataset of FE method
pairs that are not similar in source code.

4. Procedure of Dataset Construction

In this study, the following procedure is used to construct a
dataset of FE method pairs.

STEP-1 classifying the methods included in the target
projects.

STEP-2 generating test cases from each method.
STEP-3 running test cases against the other method of the

pair to obtain candidate FE method pairs.
STEP-4 browsing the source code of each candidate FE

method pair to determine whether the pair is truly func-
tionally equivalent.

Figure 1 shows an overview of the above construction
procedure. STEP-1 through STEP-3 are performed auto-
matically using a tool that we developed, and only STEP-4 is
performed manually. The details of each step are described
below.

4.1 STEP-1

STEP-1 analyzes the source code of the target projects to
extract methods, and classifies the extracted methods based
on their return value type and parameter types. When ex-
tracting methods, the following information is retrieved for
each method and registered in the database.

• method name,
• return value type and parameter types,
• (original) source code,
• normalized source code,
• the number of statements and conditional predicates,
• file path,
• start line and end line.

In the normalized source code, all variable names have
been renamed to special names. A normalization example
is shown in Fig. 2 (b). This normalization allows a group
of methods that have the same structure but differ only in
variables to be treated as a single method. This normaliza-
tion eliminates the need to handle each method that has the
same structure but differs only in variables individually after
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Fig. 1 Steps to obtain pairs of functionally equivalent Java methods

STEP-2, allowing more efficient processing.
Not all methods that exist in the target project are ex-

tracted. In this study, methods with the following character-
istics are not considered for extraction.

• Methods including reference types defined in neither
java.lang nor java.util in their return value, pa-
rameters, or method bodies.

• Methods whose return type is void.
• Methods including only a single program statement.

The reason for using the first condition is that in the
case of using reference types that are not in the java.lang
package, it is necessary to write import statements at the
beginning of the source file, or to write the reference types
by their fully qualified names. In addition, if the reference
type is not included in the standard Java library, it is neces-
sary to prepare its class file (jar file), which requires further
compilation preparation. The reason why the reference types
included in the java.util package are considered as meth-
ods for extraction is because frequently used types such as
java.util.List and java.util.Set are included in this
package. The authors believe that handling those reference
types in the java.util package will dramatically increase
the number of methods that are extracted.

The reason for using the second condition is that it is
difficult to automatically determine which value within a
method is the final results of the method’s computation for

a method whose return value is void. If the return type is
not void, the method’s return value can be judged to be the
final results of the method’s computation.

The third condition is used because the source code of
Java contains many setters and getters that have only a single
program statement, and they are inappropriate as targets for
the detection of SFDS code.

The classification of the extracted methods is based on
the return value type and parameter types of the methods.
Methods that have exactly the same return type and parameter
types are classified into the same group. After all methods
have been classified, if there are multiple methods in each
group with exactly the same normalized source code, only
one of them is retained in the group. The reason for this
is that it is no doubt that methods with the identical code
have the same behavior, and the detection of such method
pairs with the same implementation is not appropriate for the
purpose of this study. Note that groups consisting of only a
single method are not subject to processing after STEP-2.

4.2 STEP-2

In STEP-2, each method is cut into a file and its test cases
are generated. The following processing is performed when
the methods are cut into files.

• Insert ‘import java.util.*;’ at the beginning of
the file. This is to enable compilation even if the target
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Fig. 2 Example of processing for the source code of the target method

method uses a class in the ‘java.util’ package.
• Enclose the target with a class declaration. Currently,

the class name ‘Target’ is used. The name of the
target method is also changed to ‘__target__’. This
is to ensure uniform treatment of all target methods in
the scripts created by the authors.

• Remove annotations and ‘static’ from the signature
of the target method. This is also done to ensure that
all target methods are handled uniformly in the script.

Figure 2 (c) shows the source code of the method of
Fig. 2 (a) after it has been cut into a file. From this figure,
it can be seen that the file contains only the target method,
the class and method names are unified, and the annotations
and static modifiers attached to the method signatures are
removed.

Next, test cases are generated for each method that is
cut into files. Although we use EvoSuite [9] to generate
test cases, other test generation tools such as Randoop [10]
and Agitar [11] can also be used. In this experiment, if
five or more test cases were generated from a method, the
method was used in STEP-3. The reason for this restriction
is that EvoSuite may not be able to generate enough test
cases depending on the structure of the target method. We
considered that if sufficient test cases could not be generated,
it would be inappropriate to use such insufficient test cases to
detect candidates for functionally equivalent method pairs.

The files from which each method is extracted are com-
piled individually just before EvoSuite is executed. Since
each file includes only a single method, the compilation fails
if the method uses a class field or calls other methods that
were originally defined in the same class. EvoSuite is not
executed for methods that fail to compile.

In STEP-1, methods with no parameters are not ex-
plicitly excluded, but methods where five or more test cases
are not generated are excluded in STEP-2. Since no more
than five test cases are generated from a method with no
parameters, all methods with no parameters are excluded in
STEP-2.

4.3 STEP-3

In STEP-3, tests are executed mutually for each method that
belongs to the same group and has successfully generated
five or more test cases. In Fig. 1(c), test cases are executed
against each other for three methods: Method-A, Method-B,
and Method-C. Method-A succeeds in all test cases gener-
ated by Method-B, and Method-B also succeeds in all test
cases generated by Method-A. Therefore, Method-A and
Method-B are candidates for functionally equivalent method
pairs. Method-C did not succeed in one of the test cases
generated from Method-A, and it did not succeed in all the
test cases generated from Method-B. Therefore, the pair
of Method-A and Method-C, and the pair of Method-B
and Method-C are not candidates for functionally equivalent
method pairs.

4.4 STEP-4

STEP-4 visually checks the source code of the candidate
functionally equivalent method pairs obtained with STEP-3
to see if they are truly pairs of methods with the same be-
havior.

5. FEMP Dataset

In this section, we describe the constructed dataset (here-
after referred to as FEMP dataset†). The FEMP dataset was
constructed for the source code included in IJADataset [3].
IJADataset consists of approximately 2.74 million source
files, totaling 314 million lines of source code, and contains
approximately 23 million methods. In STEP-1, 257,012
methods were extracted and they were classified into 14,030
groups. In STEP-2, five or more test cases were successfully
generated from 27,759 methods. In STEP-3, we obtained
13,710 candidate functionally equivalent method pairs.

The visual verification in STEP-4 was performed by
three master’s course students belonging to the Graduate
School of Information Science and Technology, Osaka Uni-
versity. The three students had programming experience
using Java. First, the three students individually viewed the
source code of each candidate pair and judged whether they

†Functionally Equivalent Method Pair Dataset
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Fig. 3 Example of functionally equivalent method pair

were equivalent or not. Next, the three students discussed
each candidate pair that they evaluated differently, to deter-
mine whether they were functionally equivalent or not.

However, since it is not realistic to visually check all
13,710 method pairs obtained in the STEP-3, the following
procedure was used to extract a part of them.

1. Initialize the target method pair P and the set of methods
M in P as empty, respectively.

2. Arrange the 13,710 method pairs in ascending order by
ID†, and perform the following processes in order.

• If both methods comprising the method pair are
not included in M , the method pair is added to P
and both methods are added to M .

• If at least one method comprising the method pair
is contained in M , nothing is done.

After the above procedure, 2,194 method pairs were included
in P. Those 2,194 method pairs all consisted of different
methods. For those 2,194 method pairs, each student took
44 hours and 48 minutes, 33 hours and 19 minutes, and 43
hours and 25 minutes, respectively, to determine whether
they were functionally equivalent or not. Subsequently, the
discussion of each method pair, for which the evaluation was
divided, took 9 hours and 28 minutes in total.
STEP-4 resulted in 1,342 of the 2,194 method pairs

being determined to be functionally equivalent, with the re-
maining 852 not being functionally equivalent. The number
of method pairs that were discussed by three students with
different evaluations was 296. This dataset is available on
github††.

Figure 3 is an example of a method pair that was de-
termined to be functionally equivalent in STEP-4. Both
methods implement the function of returning the smallest
value among the three double values given as parameters.

†The 13,710 method pairs obtained in the STEP-3 have unique
integer values as their IDs.

††https://github.com/YoshikiHigo/FEMPDataset

Fig. 4 Example of functionally inequivalent method pair

The method min implements this function only using the
if-statement, while the method minimum implements it us-
ing the if-statement and the ternary operator. On the other
hand, Fig. 4 is an example of a method pair whose func-
tions were determined to be not equivalent in STEP-4. Both
methods determine the equivalence of two two-dimensional
arrays given as parameters. The functionality differs in that
the method ArrayEquals returns false if an empty array
is given, while the method equals returns true if an empty
array is given. EvoSuite generated nine test cases for the
method ArrayEquals and eight test cases for the method
equals, but no test cases were generated to find the func-
tional differences between the two methods†††.

Next, we describe the characteristics of the method sig-
natures in the FEMP dataset. The 1,342 functionally equiv-
alent method pairs consist of 468 signatures, and the 852
functionally inequivalent method pairs consist of 338 signa-
tures. In the dataset, 713(=53.1%) functionally equivalent
and 317(=37.2%) functionally inequivalent method pairs in-
clude only primitive types such as int and char in their
return value type and parameter types. Table 1 shows the top
10 most frequent signatures of functionally equivalent and
functionally inequivalent method pairs in the FEMP dataset.
This table also shows that the functionally equivalent method
pairs tend to be composed of primitive types only. This fact
means that the proportion of method pairs that are deter-
mined to be functionally inequivalent in the dataset construc-
tion STEP-4 is higher when non-primitive types are included
in the signatures. This indicates that it is more difficult to
generate sufficient test cases when non-primitive types are
included in the signature than when only primitive types are
†††FEMP dataset also includes test cases generated by Evosuite.
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Table 1 Top 10 signatures of functionally equivalent and inequivalent method pairs

included.

6. Accuracy Evaluation of Clone Detection Tools

Herein, we describe the results of an accuracy evaluation
of clone detection tools as an example of utilization of the
FEMP dataset. The purpose of this evaluation is assessing
how accurately code clone detection tools could find the
functionally equivalent methods, not assessing the accu-
racy of detecting ordinary clones. In this evaluation, the
1,342 method pairs determined to be functionally equivalent
in STEP-4 should be detected as clone pairs, and the 852
method pairs determined not to be functionally equivalent
should not be detected as clone pairs. The former set is
called EMP (Equivalent Method Pairs) and the latter set
is called IMP (Inequivalent Method Pairs).

6.1 Clone Detection Tools to be Evaluated

Three clone detection tools were targeted in this evaluation:
NIL [12], InferCode [13], and ASTNN [14].
NIL quickly identifies possible clone candidate method

pairs using the inverted index and N-gram of the lexical
sequence obtained from the target source code. It applies
the longest common subsequence algorithm to those candi-
dates to determine whether they are clone pairs or not. NIL
is a tool for detecting large-variance clones, which are
difficult to detect using conventional clone detection tech-
niques. In the comparison with other clone detection tools
LVMapper [15] and CCAligner [16] performed on two open
source systems, the number of large-variance clones de-
tected by NIL was 354 and 398 (86% and 88% precisions),
whereas LVMapper detected 355 and 389 (64% and 60%
precisions) and CCAligner detected 184 and 284 (43% and
49% precisions).
InferCode is a pre-training model using a convolu-

tional neural network [17] based on abstract syntax trees and
tree structures. It can be used for unsupervised learning tasks
such as source code clustering and supervised learning tasks
such as source code classification. Bui et al. have imple-
mented clone detection in InferCode as an unsupervised
learning task. In this comparison, we use InferCode as a
clone detection technique based on unsupervised learning.

The clone detection uses cosine similarity as the similar-
ity between the two methods. Bui et al. set a threshold
of 0.8 for the cosine similarity to be considered as a clone
pair, and conducted experiments on BigCloneBench [18]
and OJClone [19]. For BigCloneBench [18], the preci-
sion and recall were 90% and 56%, respectively, and for
OJClone [19], the precision and recall were 61% and 70%,
respectively.
ASTNN is a model based on abstract syntax trees and

regression neural networks. It learns lexical information
contained in the target source code and syntactic informa-
tion per program statement. For clone detection, ASTNN
outputs a value between 0 and 1. Two input methods are
determined to be a clone pair if this value is greater than
or equal to a threshold value. Zhang et al. experimented on
BigCloneBench and OJClonewith a threshold value of 0.5.
For OJClone, precision and recall were 98.9% and 92.7%,
respectively. For BigCloneBench, the detection accuracy
was evaluated for each clone category. The results showed
that for Weakly Type-3/Type-4, which are clones with a syn-
tactic similarity of less than 50%, precision and recall were
99.8% and 88.3%, respectively.

In the papers of NIL, InferCode, and ASTNN ([12]–
[14]), those tools are evaluated using BigCloneBench [18]
and OJClone [19]. BigCloneBench categorizes all func-
tions into one of 43 different categories and then assumes
that all methods that are assigned to a functionality are also
clones of each other. The methods are not functionally equiv-
alent and this is not claimed. Also, OJClone is a dataset built
from competitive programming code, which is different in
nature from the code included in OSS.

6.2 How to Detect Clones

Herein, we explain how we configured the three tools to
detect code clones.

We installed NIL according to the instructions in
GitHub† of NIL. Clone detection was performed by out-
putting each method in EMP and IMP as a separate file and
giving these two files to NIL as clone detection targets. In
other words, we ran NIL 2,194 times (1,342 times for EMP
and 852 times for IMP). Because some methods are small

†https://github.com/kusumotolab/NIL
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in size, the minimum number of lines and minimum number
of tokens for a method to be detected as a clone were both
set to 1†.

We installed InferCode according to the instructions
provided in GitHub†† of InferCode. We used InferCode
to obtain vector data for each method in EMP and IMP,
and detected clones by changing the threshold of the cosine
similarity of the method pairs from 0 to 1 in 0.001 steps.

We obtained a pre-trained model of ASTNN according
to the description in ASTNN’s GitHub†††. Next, the 1,342
method pairs in EMP were divided into 10 blocks. The
blocks were classified so that the ratio of fine tuning, val-
idation, and test data was 8:1:1, and clone detection using
ASTNN was performed so that all blocks were once test data.
Since the output of ASTNN is a number between 0 and 1, the
threshold for being a clone was varied from 0 to 1 in 0.001
increments, and the results were evaluated††††.

6.3 Evaluation Measures for Clone Detection Results

Three measures, recallE (t), recall I (t), and accuracy(t),
were used to evaluate the clone detection results of tool t in
this evaluation. First, the definitions of EMP(t) and IMP(t)
used in these evaluation measures are as follows.

EMP(t) a set of method pairs in EMP that have been cor-
rectly determined to be functionally equivalent (de-
tected as clones) by detection tool t.

IMP(t) a set of method pairs in IMP whose functions are
correctly detemined to be not functionally equivalent
by detection tool t (not detected as clones).

Using the above definitions, we define accuracy(t),
recallE (t), and recall I (t) as follows. Note that |A| denotes
the number of elements in the set A.

recallE (t) = |EMP(t)|
|EMP|

recall I (t) = |IMP(t)|
|IMP|

accuracy(t) = |EMP(t)| + |IMP(t)|
|EMP| + |IMP|

6.4 Detection Results

The detection results of NIL are shown in Table 2.
The recallE (NIL) was 34.5% (=463/1,342), recall I (NIL)
was 72.54% (=618/852), and accuracy(NIL) was 49.27%
(=1,081/2,194). These results indicate that clone detection
by NIL has many omissions in finding functionally equiva-
lent methods, and also includes some false positives.

†However, since NIL is internally processed using N-gramwith
N=5, a minimum of five words are required to be detected as a clone.

††https://github.com/bdqnghi/infercode
†††https://github.com/zhangj111/astnn
††††The hyperparameters used for fine tuning were: batch size:32,

epoche:5, learning size:2e-3, vector size of word2vec:128, hidden
dimension:100, encode dimension:128.

Fig. 5 Detection accuracy vs. threshold. The Y-axis represents a percent-
age in the range 0 to 100. For the X axis, the left end of the horizontal axis
represents a threshold of 0, and the right end a threshold of 1.

Table 2 Detection results of NIL

The results of the InferCode evaluation are
shown in Fig. 5 (a). When the threshold is 0.557
or less, recallE (InferCode) is more than 99%, but
recall I (InferCode) is less than 0.35% at the same time.
In other words, almost all functionally equivalent method
pairs are detected as clones, but almost all functionally in-
equivalent method pairs are also detected as clones. Increas-
ing the threshold value improves recall I (InferCode), but
worsens recallE (InferCode) at the same time. The value
of accuracy(InferCode) was the highest when the thresh-
old value was 0.949, which was 64.04%. At this time,
recallE (InferCode) was 83.83% and recall I (InferCode)
was 32.86%.

The evaluation results of ASTNN are shown in Fig. 5 (b).
Overall, the shape of the graph of ASTNN is similar to that of
InferCode. For thresholds below 0.531, recallE (ASTNN)
is greater than 99%, while recall I (ASTNN) is only 0.59% at
the same time. At the threshold values of 0.677∼0.681,
arrucary(ASTNN) has the highest value of 61.30%, at
which recallE (ASTNN) and recall I (ASTNN) have values
of 94.19% and 9.62%, respectively.

We found that the clone detection tool NIL, which is
based on lexical sequences, cannot detect many functionally
equivalent method pairs as clones and it does not have a
high ability to detect functionally equivalent methods. We
also found that InferCode and ASTNN, clone detection tools
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based on abstract syntax trees and deep learning, can detect
functionally equivalent method pairs as clones, but they also
detect functionally inequivalent methods as clones. From
the above results, we conclude that new methods need to be
developed to properly find functionally equivalent method
pairs.

7. Related Work

This research is inspired by the literature [20]. In the liter-
ature, the idea of obtaining a set of functionally equivalent
methods by executing the generated test cases against each
other is presented†, and a dataset of functionally equivalent
method sets was constructed from the Borge’s dataset [21].
The differences between this paper and the literature are as
follows.

• The Borge’s dataset [21] includes approximately 36 mil-
lion lines of code, whereas the IJADataset used in
this paper has approximately 314 million lines of code.
There is also a difference in the size of the constructed
datasets: the dataset constructed in the literature [20] in-
cludes 276 functionally equivalent method sets, while
the dataset in this paper contains 1,342 functionally
equivalent method pairs.

• While all methods that were able to generate tests were
subject to test execution in the literature [20], in this pa-
per, test execution was not performed when the number
of test cases generated was less than five. The reason for
this is that in the process of constructing the dataset in
the literature [20], when the number of tests generated
was small, in most cases the methods were judged to
be not functionally equivalent by the human eye even if
mutual execution of test cases was successful.

• In the dataset construction process, visual checks were
performed by one author in the literature [20], whereas
in the dataset construction process in this paper, the
final decision on whether the functions are equivalent
was made after independent evaluation and discussion
by three persons.

• This paper evaluates three code clone detection tools as
an example of the use of the constructed dataset, but no
such use case is given in the literature [20].

Svajlenko et al. constructed the BigCloneBench
dataset [22]. There are only 43 different functionalities in
the current BigCloneBench version. At the end of the
dataset construction procedure, manual validation was per-
formed. However, the target of the human validation work
is the Java methods discovered by keywords and code pat-
terns. Therefore, functionally equivalent methods that are
not found by keywords and code patterns are not included in
the BigCloneBench dataset. In addition, the target methods
were not executed during the dataset construction procedure,
and no functional equivalence checks were performed from

†In the literature [20], Higo et al. obtained a set of functionally
equivalent methods, whereas in this paper we determine functional
equivalence by pairs of methods rather than a set.

a dynamic perspective.
Liu et al. constructed a dataset of functionally equiva-

lent programs using data from past programming competi-
tions. They collected functionally equivalent programs for
about 5,000 questions [23]. In this dataset, programs de-
veloped by multiple users to a question are treated as func-
tionally equivalent programs. Zhao et al. publish a dataset
of programs with the same functionality in Google Code
Jam [19], and Mou et al. also publish a dataset of programs
submitted to programming education support systems [17].
On the other hand, unlike their datasets, our dataset is not a
program for competitive programming, but source code with
functionally equivalent features included in the OSS.

Rabin et al. have developed a tool, ProgramTransformer,
which changes the structure of a given program [24]. The
tool possesses a number of rules for changing the structure
of a program, and changes the structure based on those rules.
For example, it automatically rewrites repetitions described
by for-statements into while-statements, and changes vari-
able names.

8. Threats To Validity

Herein, we describe threads to validity in this research.

8.1 Code Normalization

The normalization in STEP-1 prevents the proposed proce-
dure in Sect. 4 from outputting Type-1 and Type-2 clones
as functionally equivalent method pairs. This normalization
also considerably reduces the number of methods targeted
after STEP-2, which considerably improves the overall pro-
cessing speed of the proposed procedure.

However, there is a negative aspect to this normaliza-
tion. Figure 6 shows two artificial methods that end up
in exactly the same source code due to the normalization.
These methods are not simple Type-2 clones because they
perform semantically different operations. Therefore, these
methods can be included in the dataset constructed in this
study. However, since the source codes of these two meth-
ods are exactly the same after normalization, one of the two
methods will be removed in STEP-1 if both of them exist in

Fig. 6 An artificial example of two methods that are semantically pro-
cessed differently, although the normalization in STEP-1 results in exactly
the same source code for them.
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the target source code. The proposed procedure in Sect. 4 is
a way to construct a large dataset as efficiently as possible,
and does not detect all functionally equivalent methods that
exist in the target source code. Therefore, it is not a major
problem to miss such corner-case methods.

8.2 Human Judgement

In STEP-4, human judgements whether the target method
pairs are truly functionally equivalent or not. Since the judg-
ments were made by human, it was not possible to completely
eliminate subjectivity, and the possibility of judgment errors
cannot be denied. In order to minimize these possibilities as
much as possible, this research decided to obtain consensus
among three persons instead of two.

9. Conclusion

In this study, we identified functionally equivalent method
pairs by automatically generating test cases for Java meth-
ods extracted from open source software and executing the
generated test cases against each other. Functionally equiva-
lent method pairs were extracted from the 314 million lines
of Java source code included in the IJADataset dataset.
As a result, we obtained 13,710 candidate functionally equiv-
alent method pairs. Of these, 2,194 method pairs were visu-
ally verified, and 1,342 functionally equivalent method pairs
were obtained. This study also used this dataset to evalu-
ate the accuracy of three code clone detection tools. This
dataset can also be used to examine code quality, such as
code maintainability and understandability.

The current challenge is that it takes a very long time
to find candidate functionally equivalent method pairs, since
all combinations of methods with equal return value and
parameter types that could generate tests are tested against
each other. In this experiment, it took approximately 40
days for STEP-3 alone. In the future, we plan to introduce
heuristics to reduce the number of method combinations
that need to be executed mutually in order to find candidate
functionally equivalent method pairs more quickly.

The large percentage (852/2,194=38.8%) of method
pairs that were determined to be functionally inequivalent
by visual inspection also needs to be improved. If there are
few method pairs that are determined to be functionally in-
equivalent by visual inspection (if the mutual execution of
test cases sifts out most of the methods that are not function-
ally equivalent), then the need for visual inspection would
be eliminated and a large data set could be created almost
automatically. We are aiming for higher quality automatic
test generation by improving the test generation algorithm in
EvoSuite.
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