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論 文

SemanticCloneBenchを用いた深層学習に基づく

コードクローン検出手法の評価

鶴 智秋†a) 松下 誠†b) 肥後 芳樹†c)

An Evaluation of Deep-Learning-Based Code Clone Detection Methods
Using SemanticCloneBench

Tomoaki TSURU†a), Makoto MATSUSHITA†b), and Yoshiki HIGO†c)

あらまし 構文上異なるにもかかわらず同様の振る舞いが記述されているソースコード片を意味的クローンと
呼ぶ．近年では，意味的クローンの検出を目的として，深層学習を用いたクローン検出手法が多数提案されてい
る．しかし，クローン検出の分野において有名かつ巨大なベンチマークである BigCloneBenchには，意味的クロー
ン検出性能評価において多くの問題が存在する．本研究では，SemanticCloneBench と呼ばれる，意味的クローン
の性能評価に特化したベンチマークを用いて，深層学習に基づくクローン検出手法である ASTNN，CodeBERT，
InferCodeの 3手法を対象とした検出性能の評価を行う．適用実験の結果より，ASTNNにおける F値は 0.921で
あり，評価対象となる検出手法の中で最も高い検出性能を示した．また，F 値が高くなるようなしきい値の範囲
を調査した結果，CodeBERT と InferCode で高い F 値を示したしきい値の範囲は，ASTNN において F 値が高く
なるようなしきい値の範囲よりも狭いと判明した．
キーワード コードクローン，意味的コードクローン，深層学習，SemanticCloneBench

1. ま え が き

コードクローン（以後，クローン）とは，他と一致ま
たは類似する箇所があるソースコード片である．一般
的に，クローンは，構文的な類似度に基づいて，構文
的クローンと意味的クローンの 2 種類に分類される．
構文的クローンは，トークン列や命令文など，ソース
コードの構造が類似するクローンを指す．一方，意味
的クローンは，同じ振る舞いであるにもかかわらず，
構文的に異なるクローンを指す，意味的クローンの検
出は，ソースコードをクエリとしたソースコード検
索 [1] や，API の使用例に基づく再利用のためのソー
スコード推薦 [2]などへの応用が期待されている．
これまでに，構文的クローンに着目したクローン検

出手法が多数提案されている [3], [4]．しかし，構文的
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クローンに着目した古典的なクローン検出手法では，
意味的クローンの検出が非常に困難である，なぜなら
ば，意味的クローンは，振る舞いだけが一致している
に過ぎず，トークン列や命令文などの構文的構造が異
なるため，その検出難度は構文的クローンの検出難度
よりも非常に高くなるためである．したがって，意味
的クローン検出のためには，構文的クローン検出とは
異なるアプローチが必須となる．
近年では，意味的クローンを検出するために，深層
学習的なアプローチからクローンを検出する手法が提
案され始めている [5]～[8]．多数の深層学習を用いた
クローン検出手法が提案され続ける一方で，それらの
検出手法の評価に課題が発生する．多くの深層学習を
用いたクローン検出手法では，意味的クローン検出性
能評価のために，BigCloneBench [9], [10]と呼ばれる，
オープンソースソフトウェアに含まれるソースコー
ドから構成された巨大なベンチマークが用いられる．
BigCloneBenchは，構文的クローンだけでなく，多く
の意味的クローンを正解クローンとして含むため，正
解クローンを大量に学習した場合の意味的クローン
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検出性能の評価が可能である．しかし，Krinke らの
報告によると，異なる振る舞いを行うソースコードの
ペアが正解クローンとして定義されているなど，意味
的クローンの検出性能評価において多くの問題が存
在する [11]．BigCloneBenchを意味的クローンの検出
性能評価に用いる場合，誤った正解クローンの影響で
妥当性が脅かされると考えられるため，意味的クロー
ンの検出を目的とする，深層学習を用いたクローン検
出手法における評価に対して，結果の信頼性が低下す
る [11]．
本研究では，深層学習を用いたクローン検出手
法における評価の見直しを目的として，Semantic-
CloneBench [12]を題材とした深層学習に基づくクロー
ン検出手法における評価を実施する．比較対象の深層
学習を用いたクローン検出手法として，ASTNN [6]，
CodeBERT [7]，InferCode [8]の 3手法を採用する．

SemanticCloneBench は，意味的クローンの検出性
能評価に特化したベンチマークである．Semantic-
CloneBench では，プログラミング言語における質
問回答 Web サイトである Stack Overflow の同一質問
に含まれる回答ソースコードを，意味的クローンとし
て定義する．SemanticCloneBenchでは，正解クローン
の定義が明確である，かつ，全てのソースコードペア
に対する手動検証により，類似度の低いコードのペア
が SemanticCloneBench 中に混入される可能性が低く
なるため，SemanticCloneBenchを用いた意味的クロー
ン検出性能の評価における結果は，BigCloneBenchを
用いた意味的クローン検出性能の評価における結果よ
りも信頼できると考えられる．
適用実験では，意味的クローン検出において，クロー
ン検出手法ごとに F値が高くなるようなしきい値を明
らかにするために，SemanticCloneBenchに対してしき
い値を変化させた場合の F値曲線の観察を実施する．
F値が高くなるようなしきい値の範囲が広いクローン
検出手法は，最適なしきい値を事前に選択できない場
合でも高い性能をもたらしうると考えられる．した
がって，しきい値を変化させた場合の F値曲線の観察
により，最適なしきい値を事前に選択できない場合で
も高い性能をもたらしうる手法を特定できる．適用実
験の結果より，SemanticCloneBench に対して，RNN
を用いた手法である ASTNNにおいて F値が高くなる
ようなしきい値の範囲は，CodeBERTや InferCodeと
いった事前学習モデルを用いた手法で高い F値を示し
たしきい値の範囲よりも広いと判明した．また，事前

学習モデルを用いた手法で高い F値を示したしきい値
の範囲は，ASTNNにおいて F値が高くなるようなし
きい値の範囲と比べて，しきい値の高い位置に分布し
ている．
本研究の貢献は，以下の 3点である．
• SemanticCloneBenchを用いた評価実験の実施
• 教師あり学習を用いたクローン検出手法と教師

なし学習を用いたクローン検出手法とを初めて比較
• 意味的クローン検出において F値が高くなるよ

うなしきい値の範囲の観察

2. 準 備

2. 1 コードクローン
コードクローン（クローン）とは，他と一致または

類似する箇所があるソースコード片である．また，互
いにクローン関係にあるソースコード片のペアを，ク
ローンペアと呼ぶ．
一般的に，クローンは，構文的な類似度の違いに

基づき，Type-1から Type-4までの 4種類に分類され
る [13]．

• Type-1: 空白や改行，及びコメントの差異を除
いて完全一致するクローン．

• Type-2: 変数名や関数名などの識別子名の差異
を除いて一致するクローン．

• Type-3: 命令文単位での挿入や削除，変更が行
われたクローン．

• Type-4: 同じ振る舞いであるにもかかわらず，
構文的に異なるクローン．
上記クローンのうち，Type-1 から Type-3 までを構
文的クローン，Type-4を意味的クローンと呼ぶ．
これまでに，多数のクローン検出手法が提案されて
いる [3], [4]．クローンの検出により，利用 API の推
薦 [14]や，冗長な記述に対するリファクタリングの推
薦 [15]，同一変更を要する箇所に対する変更推薦 [16]，
ライセンス違反の検出 [17]といった様々な応用が可能
となる．また Type-4 クローンの検出により，ソース
コードをクエリとしたソースコード検索 [1] や，API
の使用例に基づく再利用のためのソースコード推薦 [2]
などの応用が期待される．

2. 2 BigCloneBench
BigCloneBench [9], [10] は，クローン検出性能評価
で用いられる大規模なベンチマークである．Big-
CloneBench には，プロジェクト間リポジトリの大規
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模データである IJaDataset 2.0（注1）からマイニングされ，
手動または自動で振り分けられた，特定の機能ごとに
おけるクローン情報等のラベルが含まれる．Type-3及
び Type-4の境界が曖昧であるため，BigCloneBenchで
は，命令文単位での構文的類似度に基づいて，[0.0, 1.0)
の範囲で Type-3/Type-4クローンを定義している．

• Strongly Type-3: [0.7, 1.0)
• Moderately Type-3: [0.5, 0.7)
• Weakly Type-3/Type-4: [0.0, 0.5)

BigCloneBench は，多くの古典的なクローン検出
手法において，クローン検出性能評価のベンチマー
クとして幅広く使用されている [18], [19]．また，Big-
CloneBench に含まれる正解クローンペアの大多数が
Weakly Type-3/Type-4であるため，深層学習を用いた
手法における性能評価ベンチマークとしても使用され
ている [6]．
しかし，Krinkeらの調査により，BigCloneBenchに
は，異なる振る舞いを行うソースコードのペアが正解
クローンとして定義されている，複数機能を有する
ソースコードの存在を考慮していないなど，Type-4ク
ローンの検出性能評価において多くの問題が報告され
ている [11]．

BigCloneBench を Type-4 クローンの検出性能評価
に用いる場合，上記の問題により，誤った正解クロー
ンの影響で妥当性が脅かされるため，Type-4クローン
の検出を目標とする，深層学習を用いたクローン検出
手法の評価結果に対する信頼性が低下する．

3. 関 連 研 究

3. 1 深層学習を用いたクローン検出手法
深層学習を用いたクローン検出では，教師あり学

習を用いた手法が多数提案されている [5]～[7]．一方，
教師なし学習を用いた手法も数件提案されている [8]．
教師あり学習を用いた手法では，学習のために検出対
象データセットに対して正解クローンが必須である．
したがって，あらかじめ検出対象データセット内部に
含まれるソースコードのペアに対して，人力で正解ク
ローンをアノテーションする必要があり，正解クロー
ン集合に依存してクローンの検出能力が制限される．
教師あり学習を用いたクローン検出手法における正解
クローンの必要性を軽減するために，教師なし学習を
用いた手法が提案され始めている [8]．

（注1）：https://github.com/clonebench/BigCloneBench

著者らが知る限り，教師あり学習を用いた手法と教
師なし学習を用いた手法を直接比較した研究は存在し
ない．教師あり学習を用いた手法と教師なし学習を用
いた手法との未比較により，深層学習を用いたクロー
ン検出手法の文脈において，教師あり学習と教師なし
学習との検出性能の違いが不明瞭となる．したがって，
本研究では，教師あり学習を用いた手法と教師なし学
習を用いた手法との比較を実施する．具体的には，適
合率 (Precision)，再現率 (Recall)，F値 (F1-Score)の 3
種類を用いて，教師あり学習を用いた手法と教師なし
学習を用いた手法との検出性能の違いを明瞭にする．

3. 2 Type-4クローン検出の評価ベンチマーク
Type-4クローン検出手法の評価に用いられるベンチ
マークとして，BigCloneBench [9], [10]のほかに，OJ-
Clone [20]，Google Code Jam [5]，SemanticCloneBench
[12]が提案されている．

OJClone [20] や Google Code Jam [5] は，オンライ
ンプログラミングコンテスト上に提出されたソース
コードから Type-4クローンを収集したベンチマークで
ある．オンラインプログラミングコンテスト上に提出
されたソースコードの数は膨大であり，かつ，同一問
題に対する解答ソースコードの集合をクローンとして
定義できるため，OJCloneや Google Code Jamをベン
チマークとして使用可能である．しかし，オンライン
プログラミングコンテスト上に提出されたソースコー
ドには，実際のプロジェクトには見られないプログラ
ミングコンテスト特有のテクニックが存在する [21]．
一方，SemanticCloneBench [12]は，プログラミング
言語における質問回答 Webサイトである Stack Over-
flow から Type-4 クローンを収集したベンチマークで
ある．Stack Overflowに含まれる回答ソースコードは，
実際のプロジェクトに含まれていない可能性が考えら
れる．しかし，SemanticCloneBenchに含まれるクロー
ンは，実際の開発者による Stack Overflowに投稿され
た質問に対する解決例の集合であるため，実際のプロ
ジェクト開発で発生した問題に対する解決ソースコー
ドが Stack Overflowに存在する可能性は，オンライン
プログラミングコンテスト上におけるソースコード
の集合に存在する可能性よりも高いと考えられる．ま
た，Al-Omari らは，SemanticCloneBench を構成する
にあたり，Java言語で記述された全 1,000個のコード
ペアに対する正解クローンの手動検証を実施するため
に，2 名の審査員を雇った．2 名の審査員によって実
施される全てのコードペアを対象とした正解クロー
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ンの手動検証により，類似度の低いコードのペアが
SemanticCloneBench 中に混入される可能性が低くな
る．したがって，本研究では，深層学習を用いたクロー
ン検出手法を応用する場合を考慮して，信頼性の高い，
かつ実際のプロジェクトで用いられるソースコードに
近い評価用ベンチマークとして SemanticCloneBench
を採用する．

4. 実 験

図 1は，本研究における適用実験の手順である．ま
ず，SemanticCloneBenchに含まれるソースコードを，
実験対象のクローン検出器で使われる深層学習モデル
に入力できるように，トークン列や抽象構文木 (AST)
等のコード表現に変換する．次に，10× 10重交差検証
に基づいて訓練用データと評価用データに分割された
SemanticCloneBenchを用いて，SemanticCloneBenchに
含まれるソースコードペアごとの類似度を出力する．
なお，深層学習モデル内部のハイパーパラメータとし
て，比較対象となる各クローン検出手法の論文で示さ
れている値を用いる [6], [8], [22]．最後に，クローン検
出器のしきい値を変化させて，しきい値ごとに計測し
た検出性能を示す評価尺度の表を作成する．ここで，
しきい値の変化範囲は [0.0, 1.0]である．また，しきい
値の変化間隔を 0.001に設定する．本研究では，上記手
順によって作成される，しきい値ごとの検出性能を示
す評価尺度が記録された表を用いて，各クローン検出
器の性能を評価する．適用実験は，10コアの 2.2 GHz
Intel Xeon E5-2630 v4 CPUと，5.5 TB HDD，256 GB
メインメモリ，NVIDIA Tesla V100S GPU上で実施さ
れる．また，適合率 (Precision)，再現率 (Recall)，F値

図 1 適用実験の概要

(F1-Score)といった 3種類の評価指標を用いて，各手
法における Type-4クローンの検出性能を評価する．

4. 1 比 較 対 象
本研究では，教師あり学習を用いたクローン検出手法
としてASTNN [6]，CodeBERT w/ fine-tuning [7]，教師
なし学習を用いたクローン検出手法として CodeBERT
w/o fine-tuning，InferCode [8] を比較対象として適用
実験を実施する．

4. 1. 1 ASTNN
ASTNNは，抽象構文木ベースのニューラルネット
ワークモデルである [6]．抽象構文木と回帰型ニュー
ラルネットワーク (RNN) との併用により，字句情報
や命令文単位での構文情報を学習できる．クローン検
出では，ソースコードのペア同士における類似度とし
て，L1ノルムを使用する．

ASTNNを提案した Zhangらは，しきい値を 0.5に設
定し，BigCloneBench [9]と OJClone [20]を題材とし
た適用実験を実施した．彼らは，OJCloneでは，適合率
が 98.9%，再現率が 92.7%，F値が 0.955であったと報
告している．また，BigCloneBenchに対しては，クロー
ン分類ごとに検出性能を評価し，Weakly Type-3/Type-4
では，適合率が 99.8%，再現率が 88.3%，F値が 0.938
であったと報告している．
適用実験では，GitHub で公開されている ASTNN

リポジトリ（注2）を利用する．クローン検出のために，
Skip-gram アルゴリズムを利用した Word2vec [23] の
エンべディングシンボルを訓練する．エンべディング
シンボルのサイズを 128に，隠れ層のサイズを 100に
設定する．また，バッチサイズを 32 に，訓練時のエ
ポック数を 5に設定する．最後に，訓練時のオプティ
マイザ AdaMaxにおける学習率を 0.002に設定する．

4. 1. 2 CodeBERT
CodeBERTは，トークンベースの事前学習モデルで
ある [7]．ソースコードのトークンと自然言語のテキ
スト，及び BERT [24] の併用により，プログラミン
グ言語及び自然言語のマルチモーダルな情報を学習で
きる．CodeBERTでは，ソースコードのトークンと自
然言語のテキストとを事前学習したのち，ソースコー
ドドキュメント生成などのタスクのためにファイン
チューニングする．

CodeBERTを提案した Fengらは，CodeBERTを用
いたクローン検出に対して評価を実施していない．代

（注2）：https://github.com/zhangj111/astnn
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わりに，Guoらが，BigCloneBenchに対して適用実験
を実施した [22]．彼らは，適合率が 94.7%，再現率が
93.4%，F値が 0.941であったと報告している．
本研究では，クローン検出をタスクとしてファイン

チューニングし，CodeBERTにおけるクローン検出性
能の評価を実施する．また，事前学習のみにおけるク
ローン検出の性能評価を行うために，ファインチュー
ニングあり CodeBERT (CodeBERT w/ fine-tuning) と
ファインチューニングなし CodeBERT (CodeBERT w/o
fine-tuning)の 2種類を比較対象とする．
適用実験では，Hugging Face にて公開されている

CodeBERT のモデル（注3）,（注4）を利用する．また，ソー
スコードのペア同士における類似度として，コサイン
類似度を使用する．事前学習モデルにおける入力ソー
スコードトークンの長さを 256に，バッチサイズを 16
に設定する．また，ファインチューニング時における
学習率を 0.00002，エポック数を 1に設定する．最後
に，ファインチューニング時のオプティマイザとして
Adamを利用する．

4. 1. 3 InferCode
InferCode は，抽象構文木ベースの事前学習モデル
である [8]．抽象構文木と，木構造に基づいた畳み込み
ニューラルネットワーク (TBCNN) [20]との併用によ
り，事前学習モデルとして，ソースコードクラスタリ
ングなどの教師なし学習タスクや，ソースコード分類
などの教師あり学習タスクに応用できる．Bui らは，
InferCode をクローン検出を教師なし学習タスクとし
て実装している．本研究でも，InferCode は教師なし
学習を用いたクローン検出手法として，適用実験の比
較対象とする．クローン検出では，ソースコードのペ
ア同士における類似度として，コサイン類似度を使用
する．

InferCodeを提案した Buiらは，しきい値を 0.8に設
定し，BigCloneBench [9]と OJClone [20]を題材とし
た適用実験を実施した．彼らは，BigCloneBenchでは，
適合率が 90%，再現率が 56%，F値が 0.75，OJClone
では，適合率が 61%，再現率が 70%，F 値が 0.64 で
あったと報告している．
適用実験では，PyPIにて公開されている InferCode
のモデル（注5）,（注6）を利用する．また，クローン検出時

（注3）：https://github.com/microsoft/CodeBERT
（注4）：https://huggingface.co/microsoft/codebert-base
（注5）：https://github.com/bdqnghi/infercode
（注6）：https://pypi.org/project/infercode

におけるバッチサイズを 5に設定する．
4. 2 SemanticCloneBench
適用実験では，Type-4クローン検出の性能評価に用

いるベンチマークとして，SemanticCloneBench [12]を
用いる．SemanticCloneBench は，Type-4 クローンの
検出性能評価に特化したベンチマークである．Seman-
ticCloneBenchに含まれるクローンは，プログラミング
言語における質問回答 Webサイトである Stack Over-
flow（注7）から抽出されている．SemanticCloneBench で
は，同一質問に含まれる回答ソースコードを，Type-4
クローンとして定義している．SemanticCloneBenchで
は，C，C#，Java，Pythonで記述されたソースコード
が収集されており，言語ごとにそれぞれ 1,000 個の
Type-4クローンのペアが含まれている．
適用実験では，SemanticCloneBenchに含まれる Java
言語で記述された 1,000個のクローンのうち，Python
の javalang（注8）パッケージで構文解析可能な 997 個の
クローンを対象とする．また，正解クローンと非正解
クローンの比が 1 : 1となるように，非正解クローンを
作成する．具体的には，SemanticCloneBenchに含まれ
るメソッドをランダムに 2個抽出し，抽出したメソッ
ドのペアが SemanticCloneBench でクローンとして定
義されていないならば，このメソッドのペアを非正解
クローンとして定義する．更に，上記の作業により作
成された非正解クローンを含めた SemanticCloneBench
を 10 × 10重交差検証に基づいて学習及び評価を実施
する．10× 10重交差検証は，10重交差検証を 10回実
行する評価手法であり，10 × 10 重交差検証によって
得られる結果の平均値を計算し，クローン検出器の検
出性能を計測する．

4. 3 Research Questions
本研究では，以下に示す 2 個の Research Question

（RQ）を立てる．
• RQ1: しきい値に基づく評価指標より，どのク

ローン検出器の検出性能が高いか．
• RQ2: Type-4クローン検出では，各クローン検

出器において F値が高くなるようなしきい値の範囲が
どのように分布するのか．

RQ1 の調査により，SemanticCloneBench を対象と
した Type-4クローン検出において，F値が一番高いと
きのしきい値を基に，検出性能が一番高いクローン検

（注7）：https://stackoverflow.com/
（注8）：https://github.com/c2nes/javalang
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出器を明示する．そして，各検出器において検出性能
の違いが生じた理由を考察する．

RQ2の調査により，Type-4クローン検出において，
クローン検出手法ごとに F 値が高くなるようなしき
い値の範囲を明らかにし，最適なしきい値を事前に選
択できない場合でも高い性能をもたらしうるクローン
検出手法を特定する．なお，SemanticCloneBench以外
のデータセットにおいて F 値が高くなるようなしき
い値の範囲は不明であるため，本研究では，Semantic-
CloneBench に対して F 値が最大となるしきい値付近
を，F値が高くなるようなしきい値の範囲と定義する．
ここで，F値が最大となるしきい値付近とは，F値が
[(F値の最大値の 0.95倍), (F値の最大値)]となるとき
のしきい値とする．

F値が高くなるようなしきい値の範囲が広いクロー
ン検出手法は，最適なしきい値を事前に選択できない
場合でも高い性能をもたらしうると考えられる．一
方で，F値が高くなるようなしきい値の範囲が狭いク
ローン検出手法は，最適なしきい値を事前に選択でき
ない場合において，その手法が有するはずの検出性能
が発揮できないと予想される．

5. 実 験 結 果

5. 1 RQ1: しきい値に基づく検出性能の評価
表 1は，SemanticCloneBench上で，各クローン検出

器の F値が最大となるしきい値における，適合率，再
現率，F値である．

ASTNNは，しきい値が 0.393のときに F値が最大
（0.921）となり，適合率と再現率はそれぞれ 87.5%，
97.3% を得る．他のクローン検出器と比べると，再
現率の値が約 12 ポイント–14 ポイント，また F 値が
0.042–0.162 高く，本実験において最も高い検出性能
を示す．ASTNNでは，検出対象データセットごとに，
そのデータセットに含まれるトークンや抽象構文木の
ノードに対するエンべディングを構成するため，再現
率及び F値の値が高いと考えられる．

CodeBERT w/ fine-tuningは，しきい値が 0.918のと

表 1 SemanticCloneBench に対する各クローン検出器の適
合率，再現率，F 値

しきい値 適合率 再現率 F 値
ASTNN 0.393 87.5% 97.3% 0.921
CodeBERT w/ fine-tuning 0.918 90.5% 85.4% 0.879
CodeBERT w/o fine-tuning 0.985 74.9% 83.7% 0.791
InferCode 0.884 69.4% 83.7% 0.759

きに F 値が最大（0.879）となり，適合率と再現率は
それぞれ 90.5%，85.4%を得る．他のクローン検出器
と比べると，適合率の値が約 3ポイント–約 21ポイン
ト高く，CodeBERT w/ fine-tuningは，本実験において
最も誤検出を起こしにくいクローン検出器であると言
える．CodeBERT w/ fine-tuningでは，正解クローンの
ファインチューニングにより，事前学習で得たコード
表現だけでなく，意味的クローンの分類能力が強化さ
れる．これにより，CodeBERT w/ fine-tuningの適合率
が他のクローン検出手法よりも高くなると考えられる．
教師なし学習を用いたクローン検出器である Code-

BERT w/o fine-tuningは，しきい値が 0.985のときに F
値が最大（0.791）となり，適合率と再現率はそれぞれ
74.9%，83.7%を得る．また，InferCodeは，しきい値
が 0.884のときに F値が最大（0.759）となり，適合率
と再現率はそれぞれ 69.4%，83.7%を得る．教師あり
学習を用いた検出器と比べると，両検出器の適合率は
約 13ポイント–21ポイント，また F値は 0.088–0.162
低い．Type-4 クローンにおける検出難度の高さ，及
びコード表現のみの事前学習を用いたクローン検出に
より，教師なし学習を用いたクローン検出器における
適合率及び F 値は，教師あり学習を用いた検出器と
比べて低い値になると考えられる．一方，CodeBERT
w/o fine-tuning と InferCode における再現率はどちら
も 83.7%であり，古典的手法の一つである NiCad [25]
の再現率（4.0%）[12]よりも非常に高い．また，教師
あり学習を用いた手法と比べて，再現率の減少が高々
約 14ポイントに抑えられている．
表 2 は，BigCloneBench を用いたときの実験結果

と，SemanticCloneBenchを用いたときの実験結果を示
した表である．SemanticCloneBenchに対する ASTNN
を用いたクローン検出では，BigCloneBenchと比べて
適合率が約 12ポイント減少した一方で，再現率は約 9
ポイント増加した．その結果，SemanticCloneBenchに
おける ASTNNの F値は，BigCloneBenchと比較して
0.017減少した．一方，SemanticCloneBenchに対する
CodeBERT w/ fine-tuningを用いたクローン検出では，
BigCloneBenchと比べて適合率・再現率ともに減少し，
それぞれ約 4 ポイント，約 8 ポイントであった．そ
の結果，SemanticCloneBenchにおける CodeBERT w/
fine-tuningの F値は，BigCloneBenchと比較して 0.062
減少した．SemanticCloneBenchに対する InferCodeを
用いたクローン検出では，BigCloneBenchと比べて適
合率が約 20ポイント減少した一方で，再現率は約 28
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表 2 BigCloneBench 及び SemanticCloneBench を対象としたクローン検出手法の実験結果

BigCloneBench [6], [8], [22] SemanticCloneBench
適合率 再現率 F 値 適合率 再現率 F 値

ASTNN 99.8% 88.4% 0.938 87.5% 97.3% 0.921
CodeBERT w/ fine-tuning 94.7% 93.4% 0.941 90.5% 85.4% 0.879
InferCode 90% 56% 0.75 69.4% 83.7% 0.759

図 2 SemanticCloneBench に対してしきい値を変化させた
場合の F 値曲線

表 3 SemanticCloneBench に対する各クローン検出器にお
いて F 値が高くなるようなしきい値の範囲

F 値の範囲 しきい値の範囲
ASTNN [0.875, 0.921] [0.175, 0.617]
CodeBERT w/ fine-tuning [0.835, 0.879] [0.876, 0.935]
CodeBERT w/o fine-tuning [0.751, 0.791] [0.980, 0.989]
InferCode [0.721, 0.759] [0.803, 0.921]

ポイント増加した．結果として，SemanticCloneBench
における InferCodeの F値は，BigCloneBenchにおけ
る F値とほぼ同じ値の 0.79であった．

5. 2 RQ2: Type-4クローン検出において F値が高
くなるようなしきい値の範囲

図 2は，SemanticCloneBenchに対してしきい値を変
化させた場合の F値曲線である．また，表 3は，適用
実験の比較対象である各クローン検出手法において F
値が高くなるようなしきい値の範囲の一覧である．
本実験より，SemanticCloneBenchに対する，Code-

BERTや InferCodeなどの事前学習モデルを用いた手
法で高い F 値を示したしきい値の範囲は，RNN を用
いた手法である ASTNNにおいて F値が高くなるよう
なしきい値の範囲よりも狭いと判明した．また，事前
学習モデルを用いた手法で高い F値を示したしきい値
の範囲は，ASTNNにおいて F値が高くなるようなし
きい値の範囲と比べて，しきい値の高い位置に分布し

ている．
事前学習モデルを用いたクローン検出手法では，ク
ローン検出の前にコード表現を事前学習するため，
RNNなどの正解クローンを直接学習する手法よりも，
類似度の値が高く出力される．したがって，事前学習
モデルに基づくクローン検出手法を Type-4 クローン
検出に用いる場合，SemanticCloneBench に対するク
ローン検出のときと同様に，しきい値を高めに設定す
る必要があると考えられる．

CodeBERTを含む事前学習モデルに基づくクローン
検出手法は，F値が高くなるようなしきい値の範囲が
狭い．したがって，事前学習モデルを用いたクローン
検出器において，しきい値を適切に設定できない場合
の F値は，最大値と比べて非常に小さくなるため，事
前学習モデルを用いたクローン検出器が有するはずの
高い検出性能を発揮できないと予想される．
一方，ASTNN では，F 値が高くなるようなしきい
値の範囲が広い．したがって，ASTNNにおいて，仮
に F値が最大となるようなしきい値を設定できなかっ
たとしても，ASTNNの F値が最大となるような状態
に近い検出性能を発揮できる可能性が高い．

6. 妥当性への脅威

適用実験で使用した SemanticCloneBench に含まれ
る正解クローンペア数は 997個であり，BigCloneBench
に含まれるWeakly Type-3/Type-4の正解クローンペア
数（約 8,400,000個）と比べて遥かに小さい．そのた
め，RQ1，RQ2の結果に影響を及ぼすと考えられる．
今後，実際のプロジェクトで頻繁に出現すると期待さ
れる意味的クローンを抽出して，巨大な，かつ，多く
の研究者によって審議された意味的クローンの検出性
能を評価できるベンチマークの作成が必要である．
また，本研究では，SemanticCloneBenchに限定して，

Type-4 クローン検出において F 値が高くなるような
しきい値を予測しており，これは，RQ2に対する妥当
性への脅威である．今後，SemanticCloneBench以外の
Type-4クローン検出評価ベンチマークに対する評価も
実施し，一般的な Type-4 クローンにおいても F 値が
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高くなるしきい値の有効性を検証したい．
更に，適用実験では，各クローン検出手法において，

比較対象クローン検出手法の論文で示されているハイ
パーパラメータの値を使用している．比較対象クロー
ン検出手法では，ハイパーパラメータの具体的な調
節プロセスが明記されていないため，これは RQ1 や
RQ2に対する妥当性への脅威である．今後，各クロー
ン検出手法のハイパーパラメータが，本研究の実験結
果に対してどのように影響を及ぼすかの検証が必須で
ある．

7. む す び

本研究では，教師あり学習を用いたクローン検出手
法である ASTNN と CodeBERT w/ fine-tuning，教師
なし学習を用いたクローン検出手法である CodeBERT
w/o fine-tuning と InferCode に対して，クローン検出
性能の評価を実施した．SemanticCloneBench を題材
とした適用実験により，教師あり学習を用いた手法と
教師なし学習を用いた手法の両手法において，Type-4
クローンを検出できた．教師あり学習を用いた手法と
教師なし学習を用いた手法の F値は，それぞれ 0.85，
0.75を超えた．また，F値が高くなるようなしきい値
の範囲を調査した結果，CodeBERTと InferCodeで高
い F値を示したしきい値の範囲は，ASTNNにおいて
F値が高くなるようなしきい値の範囲よりも狭いと判
明した．
今後の課題として，実際の開発において発生するク
ローンで構成された，巨大な Type-4 クローンの検出
性能評価ベンチマークの作成が挙げられる．
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