

Title	On one-sided Heegaard splittings and involutions on a class of lens spaces
Author(s)	Asano, Kouhei
Citation	Osaka Journal of Mathematics. 1980, 17(3), p. 573-587
Version Type	VoR
URL	https://doi.org/10.18910/9813
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Asano, K.
Osaka J. Math.
17 (1980), 573-587

ON ONE-SIDED HEEGAARD SPLITTINGS AND INVOLUTIONS ON A CLASS OF LENS SPACES

KOUHEI ASANO

(Received April 9, 1979)
(Revised January 28, 1980)

1. Introduction. Let F be a closed non-orientable surface in the 3-manifold M such that the exterior of a regular neighbourhood of F is homeomorphic to a solid torus. Then the pair (M, F) is called a one-sided Heegaard splitting of M [13]. This technique is useful for studying 3-manifolds which are not sufficiently large, for example [1], [7], [12], [13] and [14]. In this paper, we will give the minimum one-sided Heegaard splitting of lens spaces [Theorem 2.1].

An *involution* φ on a space X is a homeomorphism from X onto itself such that φ^2 is the identity on X . Two involutions φ and φ' are said to be *equivalent* to each other, if there exists an autohomeomorphism ψ of X such that $\varphi=\psi\varphi'\psi^{-1}$. By [9], [10], [11] and [12], we can classify the fixed point free involutions on lens spaces $L(1, 0)$, $L(2, 1)$ and $L(4\alpha, 2\alpha-1)$ up to the equivalence. As an application of Theorem 2.1, we consider the fixed point free involutions on a certain family of lens spaces and will obtain

Theorem 5.1. *Let μ_1 and μ_2 be integers such that $\mu_1\mu_2\neq 0$ and $\mu_1\mu_2\neq -2$. Then the orbit space of a fixed point free involution on $L(8\mu_1\mu_2-2, 4\mu_1\mu_2-2\mu_1-1)$ is homeomorphic to a Seifert fiber space.*

In §2, we will give the minimum one-sided Heegaard splitting of $L(2\alpha, \beta)$. Using the lemmas proved in §3, we will find an invariant subspace under an involution on $L(8\mu_1\mu_2-2, 4\mu_1\mu_2-2\mu_1-1)$ [Lemma 4.1]. Finally the proof of Theorem 5.1 will be completed in §5.

Throughout this paper we work in the piecewise linear category. For a subcomplex X of a complex Y , the regular neighbourhood of X in Y will be denoted by $N(X)$. The boundary, the interior and the closure of a manifold Q will be denoted by ∂Q , \mathring{Q} and \bar{Q} , respectively.

Two submanifolds X and Y of Q are said to be *parallel*, if there exists an embedding $\psi: X \times I \rightarrow Q$ such that $\psi(X \times \{0\}) = X$ and $\psi^{-1}(\partial(X \times I) - X \times \{0\}) = Y$, where I denotes the unit interval $[1, 0]$.

A surface F properly embedded in a 3-manifold Q is said to be *compressible* in Q , if

- 1) there exists a disk D such that $D \cap F = \partial D$ and ∂D is essential on F , or
- 2) there exists a 3-ball E in Q such that $\partial E = F$.

We say that F is incompressible in Q , if F is not compressible.

Let V and V' be a solid torus of genus 1. Let m and m' be a meridian of V and V' . Then a lens space $L(\alpha, \beta)$ of type (α, β) is the 3-manifold obtained by gluing V' and V via a homeomorphism ψ from $\partial V'$ onto ∂V such that $\psi m' \sim \alpha l + \beta m$ on ∂V .

We call the connected sum of λ -copies of a projective plane a non-orientable surface of genus λ .

R. Myers [Notices, vol. 25, 1978, A-607] and B.D. Evans [Notices, vol. 26, 1979, A-308] announced that they classified the fixed point free involutions on Seifert fiber spaces which have finite fundamental group. The author wish to thank the referee for bringing this to his attention.

The author would like to express his gratitude to Prof. J.S. Birman for helpful suggestions, and to Prof. F. Hosokawa and Prof. S. Suzuki for valuable discussions during the revision.

2. One-sided Heegaard splitting of $L(2\alpha, \beta)$. Let $(2\alpha, \beta)$ be a pair of integers such that $\alpha\beta$ is positive and $|\beta| < 2|\alpha|$. According to [3], each $L(2\alpha, \beta)$ contains a non-orientable surface. Let λ be the minimum number of genus of non-orientable surfaces which can be embedded in $L(2\alpha, \beta)$. By F_λ we denote a non-orientable surface of genus λ embedded in $L(2\alpha, \beta)$. If $\lambda > 2$ and F_λ is compressible, there exists a non-orientable surface of genus smaller than λ . If $\lambda = 2$, F_λ is incompressible by [1], [12] and [7]. Hence F_λ is incompressible in $L(2\alpha, \beta)$. It follows from [4] that $L(2\alpha, \beta) - N(F_\lambda)$ is homeomorphic to a solid torus of genus $\lambda - 1$. Thus we can construct $L(2\alpha, \beta)$ by gluing a regular neighbourhood $N(F_\lambda)$ of F_λ and a solid torus $V_{\lambda-1}$ of genus $\lambda - 1$.

Let $\pi: T_{\lambda-1} \rightarrow F_\lambda$ be an orientable double covering of F_λ . We will consider $N(F_\lambda)$ as the mapping cylinder of π . For a subcomplex X of F_λ , we denote the mapping cylinder of $\pi|_{\pi^{-1}X}$ by $M(X)$.

First we will give a description of F_λ , $T_{\lambda-1}$ and π . Let $T_{\lambda-1}$ be a closed orientable surface of genus $\lambda - 1$ represented in R^3 in such a way that it is invariant under the reflection about the xy plane as illustrated in Fig. 2.1. By \tilde{p} , $a_1, \dots, a_{\lambda-1}, b_1, \dots, b_{\lambda-1}, \tilde{c}_1, \dots, \tilde{c}_\lambda$ and $d_1, \dots, d_{\lambda-1}$, we denote a base point, oriented simple closed curves and arcs, as in Fig. 2.1.

We define a homeomorphism $\iota: T_{\lambda-1} \rightarrow T_{\lambda-1}$ by $\iota(x, y, z) = (x, y, -z)$. Suppose that each $N(\tilde{c}_\mu)$ is of the form $S^1 \times [-1, 1]$ such that $\iota(x, t) = (x, -t)$, where $x \in S^1$ and $t \in [-1, 1]$. The homeomorphism of $S^1 \times [-1, 1]$ onto

itself given by $(\exp i\Theta, t) \rightarrow (\exp i(\Theta + \pi(t+1)), t)$ induces a homeomorphism τ_μ of $N(\tilde{c}_\mu)$, fixed on its boundary. Then $\tau_1 \cup \dots \cup \tau_\lambda$ can be extended to a homeomorphism τ of $T_{\lambda-1}$ so that $\tau|T_{\lambda-1} - N(\tilde{c} \cup \dots \cup \tilde{c}_\lambda)$ is the identity. We choose orientations so that $\tau(a_\mu) \sim a_\mu + b_\mu$ on $T_{\lambda-1}$. Clearly $\tau \cdot \iota$ is an orientation reversing, fixed point free involution on $T_{\lambda-1}$. If we denote the orbit space and the projection of $\tau \cdot \iota$ by F_λ and π , respectively, then $\pi: T_{\lambda-1} \rightarrow F_\lambda$ is an orientable double cover of a non-orientable surface of genus λ . Let $p = \pi\tilde{p}$ and $c_\mu = \pi\tilde{c}_\mu$. We take oriented arcs e_1, \dots, e_λ from p to a point in c_μ on F_λ , as in Fig. 2.1.

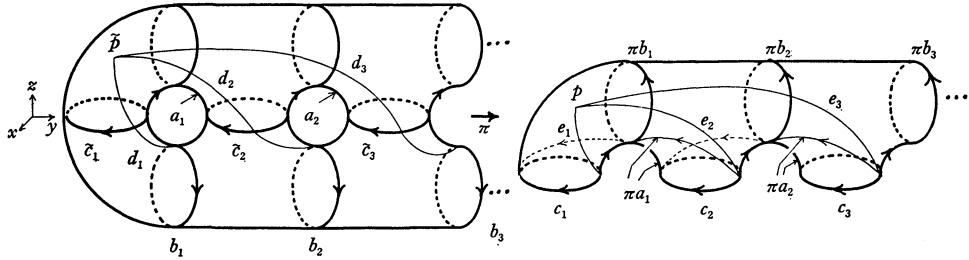


Fig. 2.1

Let z_μ , $\mu = 1, \dots, \lambda$, be the element of $\pi_1(F_\lambda, p)$ represented by $e_\mu c_\mu e_\mu^{-1}$. By x_μ and y_μ , $\mu = 1, \dots, \lambda-1$, we denote the element of $\pi_1(T_{\lambda-1}, \tilde{p})$ represented by $d_\mu a_\mu d_\mu^{-1}$ and $d_\mu b_\mu d_\mu^{-1}$, respectively. Then we can show that $\pi^*(x_\mu) = z_{\mu+1} z_\mu^{-1}$ and $\pi^*(y_\mu) = z_\mu z_1^2 \dots z_{\mu-1}^2 z_\mu$.

Let $(2\alpha, \beta)$ be a pair of relatively prime integers such that $a\beta$ is positive and $|\beta| < 2|\alpha|$. For each pair $(2\alpha, \beta)$, we define the function $N(2\alpha, \beta)$ recursively by

$N(2, 1) = N(-2, -1) = 1$ and $N(2\alpha, \beta) = N(2\alpha', \beta') + 1$, where $\alpha' = \alpha - \beta$, $\beta' \equiv \beta \pmod{2|\alpha'|}$, $\alpha' \beta'$ is positive and $|\beta'| < 2|\alpha'|$.

By [3], we can show that $N(2\alpha, \beta)$ is the minimum number of non-orientable surfaces which can be embedded in $L(2\alpha, \beta)$. Furthermore we will define the sequence $\{I_\mu(2\alpha, \beta), 1 \leq \mu \leq N(2\alpha, \beta) - 1\}$ of integers. Since $N(2, 1) = N(-2, -1) = 1$, $\{I_\mu(2, 1)\}$ and $\{I_\mu(-2, -1)\}$ are defined to be \emptyset . Assume that we have defined the sequence $\{I_\mu(2\alpha', \beta')\}$. We define $\{I_\mu(2\alpha, \beta)\}$ as follows:

$$I_\mu(2\alpha, \beta) = \begin{cases} I_\mu(2\alpha', \beta') & \text{if } 1 \leq \mu \leq N(2\alpha, \beta) - 2, \\ I & \text{if } \mu = N(2\alpha, \beta) - 1, \end{cases}$$

where I denotes the integer such that $\beta' + 2\alpha'I$.

Note that, if we make use of the fact that $|\beta'| < 2|\alpha'|$, it follows that $I_\mu(2\alpha, \beta) \neq -1$ for each μ .

Theorem 2.1.[†] Let $\lambda=N(2\alpha, \beta)$ and let $a'_1, \dots, a'_{\lambda-1}$ be mutually disjoint simple closed curves on $T_{\lambda-1}$ with the following properties:

- 1) $a'_\mu \cap (\bigcup_{v=1}^{\lambda-1} b_v \cup d_v) = a'_\mu \cap b_\mu = a'_\mu \cap d_\mu$.
- 2) If $x'_\mu = d_\mu a'_\mu d_\mu^{-1}$, then $x'_\mu = x_\mu y_\mu^{-1} \mu^{(2\alpha, \beta)}$.

Let $V_{\lambda-1}$ be a solid torus of genus $\lambda-1$ with meridian disks $D_1, \dots, D_{\lambda-1}$. Then the union of $M(F_\lambda)$ and $V_{\lambda-1}$ such that $M(F_\lambda) \cap V_{\lambda-1} = T_{\lambda-1} = \partial V_{\lambda-1}$ and $\partial D_\mu = a'_\mu$, $1 \leq \mu \leq \lambda-1$, is homeomorphic to $L(2\alpha, \beta)$.

Before we state the proof, we summarize notations about a surgery on links in the 3-sphere S^3 [15]. A *link* L with *surgery coefficients* is a finite, disjoint collection of oriented simple closed curves k_1, \dots, k_v in S^3 with ratio γ_μ/δ_μ associated with each component k_μ . Let l_μ and m_μ be a longitude and a meridian of $N(k_\mu)$; that is, $l_\mu \sim k_\mu$ in $N(k_\mu)$, $l_\mu \sim 0$ in $S^3 - N(k_\mu)$ and the linking number of m_μ with k_μ is 1. Let Q be the 3-manifold obtained by replacing each $N(k_\mu)$ by a solid torus N_μ with a meridian m'_μ , so that $m'_\mu \sim \gamma_\mu m_\mu + \delta_\mu l_\mu$ on $\partial N(k_\mu)$. Then we call Q the *result of a Dehn surgery on L* .

The following lemma is proved in [6].

Lemma 2.2. Let $\gamma_1, \dots, \gamma_v$ be integers and let L_0 be a link with surgery coefficients as shown in Fig. 2.2. Then the result of a Dehn surgery on L_0 is homeomorphic to $L(\gamma, \delta)$, where

$$\frac{\gamma}{\delta} = \gamma_v - \frac{1}{\gamma_{v-1} - \frac{1}{\ddots - \frac{1}{\gamma_2 - \frac{1}{\gamma_1}}}}.$$

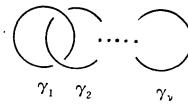


Fig. 2.2

Proof of Theorem 2.1. Let L_1 be a trivial link with the components k_1, \dots, k_λ such that the coefficient associated with each k_μ is 2. Then, if we perform a Dehn surgery on L_1 , a longitude l_μ of each $N(k_\mu)$ bounds a Möbius band M_μ in a solid torus N_μ by which we have replaced $N(k_\mu)$. In $S^3 - N(k_1 \cup \dots \cup k_\lambda)$, there exists a λ -punctured sphere S such that $\partial S = l_1 \cup \dots \cup l_\lambda$.

By Q_1 we denote the result of a Dehn surgery on L_1 . Assume that $M(F_\lambda)$ is embedded in Q_1 so that $F_\lambda = S \cup M_1 \cup \dots \cup M_\lambda$, $M(F_\lambda) = N(S) \cup N_1 \cup \dots \cup N_\lambda$, c_μ is a centerline of M_μ and $2c_\mu \sim l_\mu$ in N_μ , $1 \leq \mu \leq \lambda$. Then $V = Q_1 - M(F_\lambda)$ is a solid torus of genus $\lambda-1$.

For $1 \leq \mu \leq \lambda-1$, we take oriented simple closed curves $\hat{a}_1, \dots, \hat{a}_{\lambda-1}$ in V which is parallel to a_μ . Let L_2 be a link obtained from L_2 by adding $\hat{a}_1, \dots,$

[†] J.S. Birman and J.H. Rubinstein have obtained independently the essentially same result as Theorem 2.1, using a different method.

$\hat{a}_{\lambda-1}$ with coefficients $-I_1(2\alpha, \beta), \dots, -I_{\lambda-1}(2\alpha, \beta)$. Then we can show that each a'_μ , $1 \leq \mu \leq \lambda-1$, bounds a disk in the result Q_2 of a Dehn surgery on L_2 .

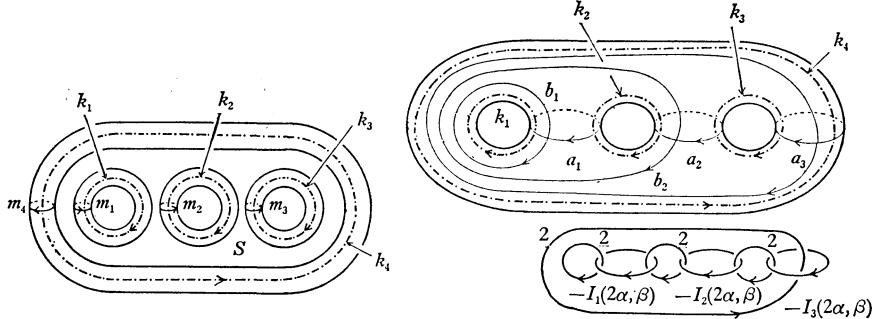


Fig. 2.3

Since $Q_2 - M(F_\lambda)$ is a solid torus of genus $\lambda-1$, Q_2 is homeomorphic to the union of $M(F_\lambda)$ and $V_{\lambda-1}$ such that $\partial D_\mu = a'_\mu$, $1 \leq \mu \leq \lambda-1$. From the definition of the sequence $\{I_\mu(2\alpha, \beta)\}$ and Lemma 2.2, it follows that Q_2 is homeomorphic to $L(2\alpha, \beta)$. The proof is completed.

Corollary 2.3. *If $\lambda=3$, there exists a homeomorphism ψ from $L(2\alpha, \beta)$ onto a Seifert fiber space such that each ψc_1 , ψc_2 and ψc_3 is a fiber.*

Proof. Let L , L' and L'' be links with coefficients in S^3 , as shown in Fig. 2.4.



Fig. 2.4

The result of a Dehn surgery on each L , L' and L'' is denoted by Q , Q' and Q'' . For $1 \leq \mu \leq 5$ and $1 \leq \nu \leq 3$, each N_μ , N'_μ and N''_ν denotes a solid torus by which we have replaced each $N(k_\mu)$, $N(k'_\mu)$ and $N(k''_\nu)$. Then, using the method in [15], we can show that Q is homeomorphic to Q' by a homeomorphism which takes each N_μ onto N'_μ . Furthermore there exists a homeomorphism ψ from Q' onto Q'' such that $\psi N'_1 = N''_1$, $\psi N'_3 = N''_2$ and $\psi N'_5 = N''_3$. Since we may consider Q'' as a Seifert fiber space having a core of each N''_μ as a fiber, the proof is completed.

Let $\mu_1 = I_1(2\alpha, \beta) + 1$ and $\mu_2 = I_2(2\alpha, \beta) + 1$. Then, since $N(2\alpha, \beta)$ is the minimum number of genus of non-orientable surfaces which can be embedded in $L(2\alpha, \beta)$, by [3], we have

Proposition 2.4. *The minimum number λ of the genus of non-orientable*

surfaces which can be embedded in $L(2\alpha, \beta)$, is 3, if and only if $\alpha=4\mu_1\mu_2-1$ and $\beta=4\mu_1\mu_2-2\mu_1-1$.

3. System of curves on F_3 . From now on we restrict ourselves to the case that $\lambda=3$. Let a^* , b^* , c^* and e_{c^*} be oriented simple closed curves and an arc on F_3 , as shown in Fig. 3.1. Then we have $\{e_1 a^* e_1^{-1}\} = z_1 z_2$, $\{e_2 b^* e_2^{-1}\} = z_2 z_3$ and $\{e_{c^*} c^* e_{c^*}^{-1}\} = z_1 z_2 z_3$ in $\pi_1(F_3, p)$, where $\{c\}$ denotes the element of $\pi_1(F_3, p)$ represented by a p -based loop c . Note that $N(a^* \cup b^*)$ is an orientable surface of genus 1 and $F - N(a^* \cup b^*)$ is a Möbius band having c^* as a center-line.

For every essential simple closed curve c on F_3 , there exists a homeomorphism ρ from F_3 onto itself which takes c onto either c^* , c_1 , a^* , $\partial N(c^*)$ or $\partial N(c_1)$. We say that c is of type I, II, III, IV or V, according as $\rho(c)$ coincides with c^* , c_1 , a^* , $\partial N(c^*)$ or $\partial N(c_1)$.

Since an autohomeomorphism of $N(a^* \cup b^*)$ can be extended to F_3 , there exists a homomorphism from the homeotopy group $\mathcal{H}(N(a^* \cup b^*))$ of $N(a^* \cup b^*)$ into $\mathcal{H}(F_3)$. According to [2], the homomorphism is an isomorphism. More precisely,

Proposition 3.1. *Let $GL(2, \mathbb{Z})$ be the group of all invertible matrices over \mathbb{Z} . Then $GL(2, \mathbb{Z})$ is isomorphic to $\mathcal{H}(F_3)$ by an isomorphism which maps each matrix $\begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{pmatrix}$ to an isotopy class of an autohomeomorphism ρ such that $\rho a^* \sim \alpha_{11} a^* + \alpha_{12} b^*$ and $\rho b^* \sim \alpha_{21} a^* + \alpha_{22} b^*$ on F_3 .*

It follows from the above proposition that every simple closed curve of type I on F_3 is ambient isotopic to c^* or $-c^*$ on F_3 .

By a_1^* , b_1^* , a_2^* and b_2^* , we denote simple closed curves on T_2 such that $\pi^{-1}(a^*) = a_1^* \cup b_1^*$, $\pi^{-1}(b^*) = b_1^* \cup a_2^*$, $\pi^*(\{\tilde{e}_1 a_1^* \tilde{e}_1^{-1}\}) = z_1 z_2$ and $\pi^*(\{\tilde{e}_2 b_1^* \tilde{e}_2^{-1}\}) = z_2 z_3$ [Fig. 3.1].

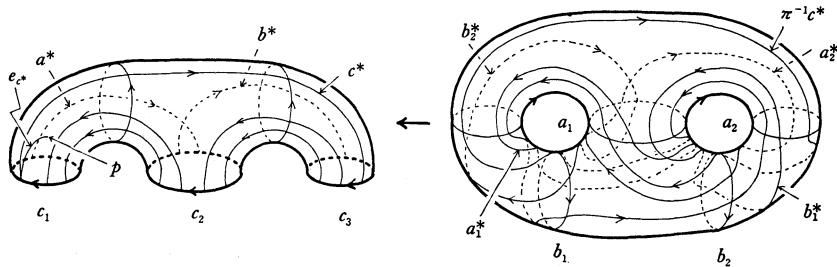


Fig. 3.1

Then the homology classes $[a_1^*]$, $[b_1^*]$, $[a_2^*]$ and $[b_2^*]$ form a basis of $H_1(T_2)$. The lifting of an autohomeomorphism ρ of F_3 whose isotopy class corresponds to

$\begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{pmatrix}$ induces an automorphism $\tilde{\rho}^*$ such that

$$\begin{pmatrix} \tilde{\rho}^*[a_1^*] \\ \tilde{\rho}^*[b_1^*] \\ \tilde{\rho}^*[a_2^*] \\ \tilde{\rho}^*[b_2^*] \end{pmatrix} = \begin{pmatrix} \alpha_{11} & \alpha_{12} & 0 & 0 \\ \alpha_{21} & \alpha_{22} & 0 & 0 \\ 0 & 0 & \alpha_{22} & \alpha_{21} \\ 0 & 0 & \alpha_{12} & \alpha_{11} \end{pmatrix} \begin{pmatrix} [a_1^*] \\ [b_1^*] \\ [a_2^*] \\ [b_2^*] \end{pmatrix}$$

or

$$\begin{pmatrix} \tilde{\rho}^*[a_1'] \\ \tilde{\rho}^*[b_1'] \\ \tilde{\rho}^*[a_2'] \\ \tilde{\rho}^*[b_2'] \end{pmatrix} = \begin{pmatrix} 0 & 0 & \alpha_{12} & \alpha_{11} \\ 0 & 0 & \alpha_{22} & \alpha_{21} \\ \alpha_{21} & \alpha_{22} & 0 & 0 \\ \alpha_{11} & \alpha_{12} & 0 & 0 \end{pmatrix} \begin{pmatrix} [a_1'] \\ [b_1'] \\ [a_2'] \\ [b_2'] \end{pmatrix} \text{ in } H_1(T_2).$$

We have an another basis $\{[a_1'], [b_1], [a_2'], [b_2]\}$ of $H_1(T_2)$ defined in §2. In this paper it is convenient to use the basis $\{[a_1'], [b_1], [a_2'], [b_2]\}$. We now find the matrix associated with $\tilde{\rho}^*$ with respect to $\{[a_1'], [b_1], [a_2'], [b_2]\}$.

Lemma 3.2. *Let ρ be a homeomorphism from F_3 onto itself whose isotopy class corresponds to $\begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{pmatrix}$. Then*

$$\begin{pmatrix} \tilde{\rho}^*[a_1'] \\ \tilde{\rho}^*[b_1] \\ \tilde{\rho}^*[a_2'] \\ \tilde{\rho}^*[b_2] \end{pmatrix} = \begin{pmatrix} \alpha_{11} & \mu_1\alpha_{11} - \alpha_{12} - \mu_1\alpha_{22} & \alpha_{12} & \mu_2\alpha_{12} + \mu_1\alpha_{21} \\ 0 & \alpha_{22} & 0 & -\alpha_{21} \\ \alpha_{21} & \mu_2\alpha_{12} + \mu_1\alpha_{21} & \alpha_{22} & -\mu_2\alpha_{11} - \alpha_{21} + \mu_2\alpha_{22} \\ 0 & -\alpha_{12} & 0 & \alpha_{11} \end{pmatrix} \begin{pmatrix} [a_1'] \\ [b_1] \\ [a_2'] \\ [b_2] \end{pmatrix}$$

or

$$\begin{pmatrix} \tilde{\rho}^*[a_1'] \\ \tilde{\rho}^*[b_1] \\ \tilde{\rho}^*[a_2'] \\ \tilde{\rho}^*[b_2] \end{pmatrix} = \begin{pmatrix} -\alpha_{11} & -\mu_1\alpha_{11} - \mu_1\alpha_{22} & -\alpha_{12} & \alpha_{11} - \mu_2\alpha_{12} + \mu_1\alpha_{21} \\ 0 & \alpha_{22} & 0 & -\alpha_{21} \\ -\alpha_{21} & \mu_2\alpha_{12} - \mu_1\alpha_{21} + \alpha_{22} & -\alpha_{22} & -\mu_2\alpha_{11} - \mu_2\alpha_{22} \\ 0 & -\alpha_{12} & 0 & \alpha_{11} \end{pmatrix} \begin{pmatrix} [a_1'] \\ [b_1] \\ [a_2'] \\ [b_2] \end{pmatrix},$$

where $\mu_1 = I_1(2\alpha, \beta) + 1$ and $\mu_2 = I_2(2\alpha, \beta) + 1$.

Proof. First we will find the matrix associated with the change of bases. Since $\pi^*(x_1) = z_2 z_1^{-1}$, $\pi^*(y_1) = z_1^2$, $\pi^*(x_2) = z_3 z_2^{-1}$ and $\pi^*(y_2) = z_2 z_1^2 z_2$, we can show that $z_1 z_2 = \pi^*(y_1^{-1} x_1^{-1} y_2)$ and $z_2 z_3 = \pi^*(x_2^{-1} y_2^{-1} x_1 y_1 x_1^{-1} y_1^{-1})$. Hence we have $a_1^* \sim a_1 - b_1 + b_2$ and $b_1^* \sim -a_2 - b_2$. The covering transformation of π takes a_1^* and b_1^* onto b_2^* and a_2^* , respectively. Thus, by using the fact that $z_1^{-1} z_1 z_2 z_1 = \pi^*(x_1 y_1)$ and $z_1^{-1} z_2 z_3 z_1 = \pi^*(y_1^{-2} x_1^{-1} y_2 x_2 x_1 y_1)$, we obtain $a_2^* \sim -b_1 + a_2 + b_2$ and $b_2^* \sim a_1 + b_1$. Since $a_1' \sim a_1 - (\mu_1 - 1)b_1$ and $a_2' \sim a_2 - (\mu_2 - 1)b_2$,

$$\begin{pmatrix} [a_1^*] \\ [b_1^*] \\ [a_2^*] \\ [b_2^*] \end{pmatrix} = \begin{pmatrix} -1 & -\mu_1 & 0 & 1 \\ 0 & 0 & -1 & -\mu_2 \\ 0 & -1 & 1 & \mu_2 \\ 1 & \mu_1 & 0 & 0 \end{pmatrix} \begin{pmatrix} [a'_1] \\ [b_1] \\ [a'_2] \\ [b_2] \end{pmatrix},$$

Using the above equation, we can compute the matrix associated with $\tilde{\rho}^*$ with respect to $\{[a'_1], [b_1], [a'_2], [b_2]\}$.

4. Invariant subspace. The purpose of this section is to prove

Lemma 4.1. *Every involution of $L(2\alpha, \beta)$ is equivalent to φ which has one of the following properties:*

- (1) $\varphi F_3 \cap F_3$ consists of three curves of type II.
- (2) $\varphi F_3 \cap F_3$ consists of a curve of type I.

Assertion A. *Let F be an incompressible surface in $L(2\alpha, \beta)$ such that $F \cap F_3$ consists of simple closed curves. Then each component of $F \cap V_2$ is orientable.*

Proof. Suppose that $F \cap V_2$ is non-orientable. Let $\tilde{L}(2\alpha, \beta)$ denote the orientable double covering of $L(2\alpha, \beta)$. Then $\tilde{L}(2\alpha, \beta)$ can be considered as the union of two copies of V_2 and the double covering of $M(F_3)$. Hence the lifting \tilde{F}_3 of F_3 is orientable, but the lifting \tilde{F} of F is non-orientable. Since F is isotopic to F_3 in $L(2\alpha, \beta)$ by [13], \tilde{F} is isotopic to \tilde{F}_3 in $\tilde{L}(2\alpha, \beta)$. This contradicts the fact that \tilde{F}_3 is orientable.

Let φ_0 be an involution of $L(2\alpha, \beta)$. Then, by [10], we may suppose that $\varphi_0 F_3$ is transverse with respect to F_3 , i.e., $M(c) \subset \varphi_0 F_3$ for each curve c in $\varphi_0 F_3 \cap F_3$. It follows from [12] that φ_0 is equivalent to φ_1 such that $\varphi_1 F_3 \cap F_3$ consists of essential simple closed curves on $\varphi_1 F_3$ and F_3 .

Using Assertion A, we can divide our consideration into the following three cases:

Case 1: $\varphi_1 F_3 \cap F_3$ contains three curves of type II on $\varphi_1 F_3$.

Case 2: $\varphi_1 F_3 \cap F_3$ contains a curve of type I on $\varphi_1 F_3$.

Case 3: $\varphi_1 F_3 \cap F_3$ contains precisely one curve of type II on $\varphi_1 F_3$.

In the rest of this section we will give the proof of Lemma 4.1 for each case.

Case 1. In this case each curve of $\varphi_1 F_3 \cap F_3$ is of either type II or type V. Suppose that $\varphi_1 F_3 \cap F_3$ contains a curve of type V on $\varphi_1 F_3$. Let c be a simple closed curve of type V on $\varphi_1 F_3$ which bounds a Möbius band B on $\varphi_1 F_3$ such that $B \cap F_3$ consists of c and a centerline c' of B . Then c' is of type II on $\varphi_1 F_3$. On F_3 , c is two-sided, so c is of type V. Hence c also bounds a Möbius band B' on F_3 .

We now show that B' contains c' . Since c' and c are of type II and V on F_3 , respectively, there exists an autohomeomorphism ρ of F_3 such that $\rho c' = c_1$

and $\rho c = \partial N(c_\mu)$, $\mu = 1, 2$ or 3 . An annulus $B \cap V_2$ has the boundaries k_1 and k_2 such that $\pi k_1 = c'$ and $\pi k = c$. If we suppose that $B' \supset c'$, then $\rho c = \partial N(c_2)$ or $\partial N(c_3)$. Hence, in order to show that $B' \supset c'$, it suffices to prove that $k_1 \not\sim \tilde{\rho}^{-1}c_2, -\tilde{\rho}^{-1}c_3, \tilde{\rho}^{-1}c_3$ and $-\tilde{\rho}^{-1}c_3$ in V_2 , where $\tilde{\rho}$ denotes the lifting of ρ . Let $\begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{pmatrix}$ be a matrix in $GL(2, \mathbb{Z})$ corresponding to the isotopy class of ρ^{-1} . Then it follows from Lemma 3.2 that

$$\tilde{\rho}^{-1}\tilde{c}_1 \sim \alpha_{22}b_1 - \alpha_{21}b_2, \quad \tilde{\rho}^{-1}\tilde{c}_2 \sim -(\alpha_{22} + \alpha_{21})b_1 + (\alpha_{21} + \alpha_{11})b_2$$

and

$$\tilde{\rho}^{-1}\tilde{c}_3 \sim -\alpha_{12}b_1 + \alpha_{11}b_2 \text{ in } T_2.$$

Since $\alpha_{11}\alpha_{22} - \alpha_{12}\alpha_{21} = \pm 1$, it can be easily shown that $k_1 = \tilde{\rho}^{-1}\tilde{c}_1 \not\sim \tilde{\rho}^{-1}\tilde{c}_2, -\tilde{\rho}^{-1}\tilde{c}_3$, $\tilde{\rho}^{-1}\tilde{c}_3$ and $-\tilde{\rho}^{-1}\tilde{c}_3$ in V_2 . Let F'_3 be the surface obtained by deforming $F_3 - B' \cup B$ slightly keeping the exterior of $N(B)$ fixed until it intersects B in c' [Fig. 4.1].

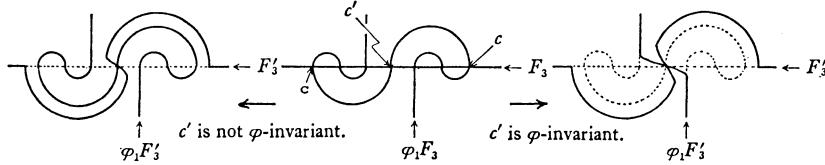


Fig. 4.1

Then $\varphi_1 F'_3 \cap F'_3$ has fewer components than $\varphi_1 F_3 \cap F_3$. Since we can deform F'_3 onto F_3 by an ambient isotopy, we obtain an involution φ_2 such that $\varphi_2 F_3 \cup F_3$ is isotopic to $\varphi_1 F'_3 \cup F'_3$ in $L(2\alpha, \beta)$. Repeating these procedures, we can show that φ_1 is equivalent to φ such that $\varphi F_3 \cap F_3$ consists of three curves of type II on φF_3 and F_3 .

Case 2. In this case each curve of $\varphi_1 F_3 \cap F_3$ is of either type I, type III or type IV.

Assertion B. *Let k_1 and k_2 be simple closed curves on T_2 such that πk_1 is of type I or IV, and πk_2 is of type III. Then k_1 is not homologous to εk_2 , for $\varepsilon = 1$ and -1 , in V_2 .*

Proof. Let ρ be an autohomeomorphism of F_3 such that $\rho \pi k_1$ coincides with c^* or $\partial N(c^*)$, and $\rho \pi k_2 = a^*$. By $\begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{pmatrix}$ we denote a matrix in $GL(2, \mathbb{Z})$ corresponding to the isotopy class of ρ^{-1} . Then, by using Lemma 3.4, k_2 or $-k_2$ is homologous to either

$$-\alpha_{11}a'_1 - \mu_1\alpha_{11}b_1 - \alpha_{12}a'_2 + (\alpha_{11} - \mu_2\alpha_{12})b_2$$

or

$$\alpha_{11}a'_1 + (\mu_1\alpha_{11} - \alpha_{12})b_1 + \alpha_{12}a'_2 + \mu_2\alpha_{12}b_2 \text{ on } T_2.$$

Suppose that $k_1 \sim \varepsilon k_2$ in V_2 for $\varepsilon = 1$ or -1 . Since $k_1 \sim 0$ on T_2 , one of the following systems of equations holds.

$$\begin{cases} \mu_1\alpha_{11} = 0, \\ \alpha_{11} - \mu_2\alpha_{12} = 0. \end{cases} \quad \begin{cases} \mu_1\alpha_{11} - \alpha_{12} = 0, \\ \mu_2\alpha_{12} = 0. \end{cases}$$

Using $\mu_1\mu_2 \neq 0$, we can show that it is impossible. This completes the proof.

Now we return to the proof for Case 2. Without loss of generality, we may assume that $\varphi_1 F_3 \cap F_3$ contains c^* . Suppose that there exists a curve of type IV on $\varphi_1 F_3$ in $\varphi_1 F_3 \cap F_3$. Let c be a simple closed curve of type IV on $\varphi_1 F_3$ which bounds a Möbius band B such that $B \cap F_3 = c \cup c^*$. Since $B \cap V_2$ is an annulus, it follows from Assertion B that c is of type IV on F_3 . Hence c bounds a Möbius band B' on F_3 . Let F'_3 denote the surface obtained by deforming $F_3 - B' \cup B$ slightly so that it is disjoint from B . Then, as is similar to Case 1 [Fig. 4.1], $\varphi_1 F'_3 \cap F'_3$ contains fewer curves of type IV on $\varphi_1 F'_3$ than $\varphi_1 F_3 \cap F_3$. Repeating these procedures, we can show that φ_1 is equivalent to φ_2 such that $\varphi_2 F_3 \cap F_3$ does not contain a curve of type IV on $\varphi_2 F_3$ and F_3 .

Suppose that $\varphi_2 F_3 \cap F_3$ contains at least two curves of type III on $\varphi_2 F_3$. Then there exists an annulus A on $\varphi_2 F_3$ such that $A \cap F_3 = \partial A$. Let A' be an annulus on F_3 which bounds ∂A . Deforming $F_3 - A' \cup A$ slightly until it is disjoint from A , we obtain A' such that $\varphi_2 F'_3 \cap F'_3$ has fewer components than $\varphi_2 F_3 \cap F_3$. Hence we can find an involution φ which is equivalent to φ_2 such that $\varphi F_3 \cap F_3$ consists of c^* and at most one curve of type III on φF_3 . If $\varphi F_3 \cap F_3$ contains a curve c of type III, then c is φ -invariant. Since any two-sided curve in $\varphi F_3 \cap F_3$ is not φ -invariant [12], the proof is completed.

Case 3. We will show that this case can not occur except for $\mu_1\mu_2 = -2$.

Assertion C. Suppose that $\mu_1\mu_2 \neq -2$. Let l_1 and l_2 be disjoint simple closed curves on T_2 such that πl_1 is of type II or V, and πl_2 is of type III on F_3 . Then l_1 is not homologous to εl_2 , for $\varepsilon = 1$ and -1 , in V_2 .

Proof. Let ρ be an autohomeomorphism of F_3 such that $\rho \pi l_1$ coincides with $\partial N(c_1)$ or c_1 and $\rho \pi l_2 = b^*$. By $\begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{pmatrix}$ we denote a matrix corresponding to ρ^{-1} . Then, by Lemma 3.2, l_1 is homologous to $\alpha_{22}b_1 - \alpha_{21}b_2$ and l_2 is homologous to either

$$\varepsilon(-\alpha_{21}a'_1 - \mu_1\alpha_{21}b_1 - \alpha_{22}a'_2 + (\alpha_{21} - \mu_2\alpha_{22})b_2)$$

or

$$\varepsilon(\alpha_{21}a'_1 + (\mu_1\alpha_{21} - \alpha_{22})b_1 + \alpha_{22}a'_2 + \mu_2\alpha_{22}b_2), \text{ for } \varepsilon = 1 \text{ or } -1, \text{ on } T_2.$$

If we assume that $l_1 \sim \varepsilon l_2$ in V_2 , for $\varepsilon = 1$ or -1 , one of the following systems of equations holds.

$$\begin{cases} \alpha_{22} - \varepsilon \mu_1 \alpha_{21} = 0, \\ -\alpha_{21} - \varepsilon (\alpha_{21} - \mu_2 \alpha_{22}) = 0. \end{cases} \quad \begin{cases} \alpha_{22} + \varepsilon (\mu_1 \alpha_{21} - \alpha_{22}) = 0, \\ -\alpha_{21} + \varepsilon \mu_2 \alpha_{22} = 0. \end{cases}$$

Each of the above systems does not hold except for $\varepsilon = 1$ and $\mu_1 \mu_2 = -2$. Hence the proof is completed.

By making use of Assertion C and the same method as in the proof for Case 1, we can show that φ_1 is equivalent to φ_2 such that $\varphi_2 F_3 \cap F_3$ does not contain a curve of type V . Let B be a Möbius band in $\varphi_2 F_3$ such that B intersects F_3 in ∂B and a centerline of B . Then ∂B is of type III on F_3 . If $\mu_1 \mu_2 \neq -2$, this contradicts Assertion C.

5. Orbit space. In this section we will complete the proof of the following main theorem.

Theorem 5.1. *Let μ_1 and μ_2 be integers such that $\mu_1 \mu_2 \neq 0$ and $\mu_1 \mu_2 \neq -2$. Then the orbit space of a fixed point free involution on $L(8\mu_1 \mu_2 - 2, 4\mu_1 \mu_2 - 2\mu_1 - 1)$ is homeomorphic to a Seifert fiber space.*

By Lemma 4.1, we can divide the proof into the following two cases:

Case 1: $\varphi F_3 \cap F_3$ consists of three curves of type II on φF_3 and F_3 .

Case 2: $\varphi F_3 \cap F_3 = c^*$.

Case 1. To prove Theorem 5.1 for Case 1, we need the following lemma which can be shown easily.

Lemma 5.2. *Let A be an annulus properly embedded in V_2 such that A is incompressible and ∂A bounds an annulus A' on T_2 . Then $A \cup A'$ bounds a solid torus U in V_2 . Furthermore A is parallel to A' , if and only if the inclusion from A' into U induces an isomorphism from $H_1(A')$ onto $H_1(U)$.*

Let G_1 and G_2 be 2-punctured disks obtained by cutting T_2 along $\varphi F_3 \cap T_2$. First we will show that $G = \varphi F_3 \cap V_2$ is parallel to G_1 and G_2 . Each G , G_1 and G_2 is incompressible in V_2 . Hence we can deform D_1 and D_2 so that $G \cap (D_1 \cup D_2)$ consists of arcs, where D_1 and D_2 are meridian disks of V_2 , as in §2. Since V_2 is irreducible, we can construct a system $\{D'_1, D'_2\}$ of meridian disks of V_2 such that each curve $G \cap (D'_1 \cup D'_2)$ is not parallel to ∂G in G .

From the fact that G is incompressible, it follows that $G \cap D'_\mu \neq \emptyset$, for $\mu = 1, 2$. Suppose that each of the innermost curves of $G \cap (D'_1 \cup D'_2)$ on $D'_1 \cup D'_2$ connects two points in the same component of ∂G . Then there exists a disk Δ on G such that each $l_1 = \Delta \cap D'_1$ and $l_2 = \Delta \cap D'_2$ is an arc in $\partial \Delta$ and $\partial \Delta - \{l_1 \cup l_2\} \subset \partial G$.

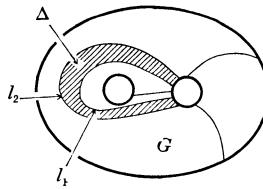


Fig. 5.1

For $\mu=1, 2$, l_μ separates D'_μ into two disks $\nabla_{\mu 1}$ and $\nabla_{\mu 2}$. Among $\nabla_{1\mu} \cup \Delta \cup \nabla_{2\nu}$, $\mu, \nu=1, 2$, there exists at least one disk D'_1 such that $\partial D'_1$ is not homologous to zero and ∂D_2 in T_2 . Deforming D'_1 slightly, we obtain a system $\{D''_1, D''_2\}$ of V_2 such that $G \cap (D''_1 \cup D''_2)$ has fewer components than $G \cap (D'_1 \cup D'_2)$. Hence we can construct a system $\{D''_1, D''_2\}$ of meridian disks of V_2 such that at least one innermost curve b of $G \cap (D''_1 \cup D''_2)$ in $D''_1 \cup D''_2$ connects two points in distinct components of ∂G .

Assume that $b \subset D''_1$. Let Δ_1 be a disk in D''_1 such that $\Delta_1 \cap G = b$ and $c = \partial \Delta_1 - \overset{\circ}{b}$ is contained in $\partial D''_1$. Furthermore we assume that $c \subset G_1$. Cutting G and G_1 along b and c , we obtain annuli A and A' . It can be shown easily that A is incompressible. Applying Lemma 5.2 to A , we can show that the union of A , A' and two copies Δ'_1 and Δ''_1 of Δ_1 bounds a solid torus U of genus 1. Thus $G \cup G_1$ bounds a solid torus U' of genus 2.

Let Δ_2 be a meridian disk of U such that $\partial \Delta_2 \subset A \cup A'$. Then Δ_1 and Δ_2 form a system of meridian disks of U' . Note that each $\Delta_1 \cap G$ and $\Delta_1 \cap G_1$ is a single arc connecting distinct components k_1 and k_2 of $\partial G = \partial G_1$.

Suppose that G is not parallel to G_1 . Then $A \cup \Delta'_1 \cup \Delta''_1$ is not parallel to A' . Thus, by Lemma 5.2, we have $|Sc(k_3, \partial \Delta_2)| > 1$, where $k_3 = \partial G - (k_1 \cup k_2)$ and $Sc(k_3, \partial \Delta_2)$ denotes the intersection number of k_3 with $\partial \Delta_2$ in $G \cup G_1$. Since k_1 and k_3 generate $H_1(G_1)$, the homomorphism Ψ from $H_1(G_1)$ into $H_1(U')$ induced by the inclusion is not onto.

From Lemma 3.1 and the fact that $\tilde{c}_1 \sim b_1$ and $\tilde{c}_3 \sim -b_2$, it follows that there exists a matrix $\begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{pmatrix}$ in $GL(2, \mathbb{Z})$ such that $k_1 \sim \alpha_{22}b_1 - \alpha_{21}b_2$ and $k_2 \sim \alpha_{12}b_1 - \alpha_{11}b_2$ on T_2 . Since $\alpha_{11}\alpha_{22} - \alpha_{12}\alpha_{21} = \pm 1$, the inclusion from G_1 into V_2 induces an isomorphism from $H_1(G_1)$ onto $H_1(V_2)$. This contradicts the fact that Ψ is not onto. Thus G is parallel to G_1 .

Since $\varphi M(F_3) \cup M(F_3)$ is φ -invariant, φ takes $U'' = \overline{(U' - \varphi M(F_3))}$ onto U'' or $\overline{(V_2 - (\varphi M(F_3) \cup U''))}$. Using the fact that a solid torus of genus 2 does not admit a free involution, we have $\varphi U'' = \overline{(V_2 - (\varphi M(F_3) \cup U''))}$. Then G is parallel to G_2 .

From this, it follows that $L(2\alpha, \beta) - \overset{\circ}{N}(\varphi F_3 \cap F_3)$ is homeomorphic to the product of a 2-punctured disk and a circle. Hence we may consider $L(2\alpha, \beta)$ as a Seifert fiber space having each curve of $\varphi F_3 \cap F_3$ as a fiber. By [5], we

can show that φ maps each fiber onto a fiber. Therefore the orbit space of φ is also a Seifert fiber space.

Case 2. By Corollary 2.3, we may consider $L(2\alpha, \beta) - N(c_1 \cup c_3)$ as a Seifert fiber space. Hence, in order to complete the proof, it suffices to show that there exists a φ -invariant link $k_1 \cup k_2$ in $L(2\alpha, \beta)$ which is ambient isotopic to $c_1 \cup c_3$.

Let $G = V_2 \cap \varphi F_3$. Then we have $\partial G = \pi^{-1}c^*$. Cutting T_2 along ∂G , we obtain G_1 and G_2 where G_μ contains a_μ^* and b_μ^* , $\mu = 1, 2$. Furthermore G separates V_2 into U_1 and U_2 such that $\partial U_\mu = G_\mu \cup G$, $\mu = 1, 2$. Let c be a simple closed curve on T_2 as shown in Fig. 5.2. Then c bound a disk D in V_2 . Since $\pi^{-1}c^* \cap \partial D$ consists of four points, we can deform D so that it intersects G in two arcs. Each $D \cap G_\mu$ separates G_μ into a disk G'_μ and an annulus G''_μ . The union $G'_1 \cup D \cup G'_2$ is an orientable surface of genus 1. See Fig. 5.2. Let G_3 be a surface obtained by pushing $G'_1 \cup D \cup G'_2$ into V_2 so that $G_3 \cap T_2 = \partial G_3$.

First we will show that G is ambient isotopic to G_3 in V_2 . Let V' and V'' be solid tori in V_2 such that $\partial V' = G'_1 \cup D \cup G'_2$ and $\partial V'' = G''_1 \cup D \cup G''_2$. Suppose that $U_1 \cap D$ consists of two disks Δ_1 and Δ_2 . Then $G' = G \cap V'$ is a disk and $G'' = G \cap V''$ is an annulus. Obviously, G' is parallel to G'_1 . According to [16], G'' is parallel to $G''_1 \cup \Delta_1 \cup \Delta_2$ or $G''_2 \cup \Delta_0$, where $\Delta_0 = \overline{(D - (\Delta_1 \cup \Delta_2))}$. If G'' is parallel to $G''_1 \cup \Delta_1 \cup \Delta_2$, G is parallel to G_1 . If G' is parallel to $G''_2 \cup \Delta_0$, G is ambient isotopic to G_3 . Similarly, we can show that G is parallel to G_2 or is ambient isotopic to G_3 , for the case that $U_2 \cup D$ is disconnected.

Suppose that G is parallel to G_1 . Then G is parallel to G_2 . Since each $\partial D_\nu \cap \partial G$, $\nu = 1, 2$, consists of $|\mu_\nu|$ points, G_1 is parallel to G_2 , if and only if $|\mu_1\mu_2| = 1$. Thus G is ambient isotopic to G_3 .

We take oriented simple closed curves f and g on $G'_1 \cup D \cup G'_2$ so that each f and g is a centerline of an annulus $G'_\mu \cup D$, $\mu = 1, 2$, and $f \cap g$ is a single point, as shown in Fig. 5.2.

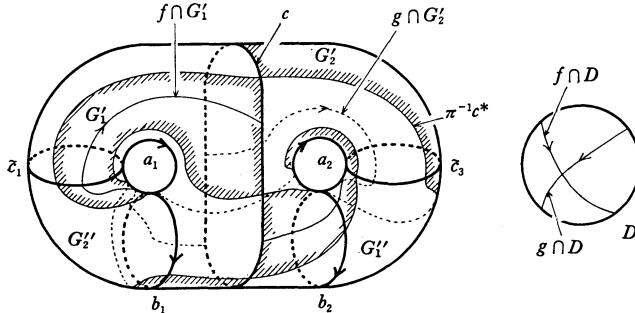


Fig. 5.2

Let f^* and g^* denote simple closed curves on G which is parallel to f and g , respectively. Since each f^* and g^* is of type III on $G \subset \varphi F_3$, there exists a matrix $\begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} \in GL(2, \mathbb{Z})$ such that

$$(1) \quad \varphi a^* \sim \alpha_{11} f^* + \alpha_{12} g^* \text{ and } \varphi b^* \sim \alpha_{21} f^* + \alpha_{22} g^* \text{ in } \varphi F_3.$$

The union $\varphi F_3 \cup F_3$ separates $L(2\alpha, \beta)$ into solid tori U'_1 and U'_2 such that $U'_\mu \cap V_2 = U_\mu$, $\mu = 1, 2$. Let \hat{b}_1 and \hat{b}_2 be simple closed curves obtained by pushing b_1 into U_2 and b_2 into U_1 , respectively. Since G is ambient isotopic to G_3 , $\{[f^*], [\hat{b}_2]\}$ is a basis of $H_1(U'_1)$ and $\{[g^*], [\hat{b}_1]\}$ is a basis of $H_1(U'_2)$. It can be shown that

$$(2) \quad f^* \sim \mu_1 \hat{b}_1 \text{ in } U'_2 \text{ and } g^* \sim \mu_2 \hat{b}_2 \text{ in } U'_1.$$

By the argument in the proof of Lemma 3.2, we have

$$\begin{aligned} Sc(a_1^*, b_1) &= -1, \quad Sc(a_1^*, a_2') = 1, \quad Sc(b_1^*, b_1) = 0, \quad Sc(b_1^*, a_2') = \mu_2, \\ Sc(a_2^*, a_1') &= -1, \quad Sc(a_2^*, b_2) = 1, \quad Sc(b_2^*, a_1') = \mu_1 \text{ and } Sc(b_2^*, b_2) = 0. \end{aligned}$$

From this and the fact that $\pi^{-1}a^* = a_1^* \cup b_1^*$ and $\pi^{-1}b^* = b_1^* \cup a_2^*$, it follows that

$$(3) \quad a^* \sim -f^* + \hat{b}_2 \text{ and } b^* \sim -\mu_2 \hat{b}_2 \text{ in } U'_1,$$

$$(4) \quad a^* \sim g^* - \hat{b}_1 \text{ and } b^* \sim -\mu_1 \hat{b}_1 \text{ in } U'_2.$$

In U'_1 , $b^* + b^* \sim 0$ and $\mu_2(a^* + f^*) + b^* \sim 0$, by (2) and (3). Using (1), (3), (4) and the fact that $\varphi U'_1 = U'_2$, we can show that

$$(5) \quad \begin{aligned} \varphi b^* + \varphi g^* &\sim \alpha_{21} f^* + \alpha_{22} g^* - \varepsilon \alpha_{21} a^* + \varepsilon \alpha_{11} b^* \\ &\sim (\alpha_{22} + \varepsilon \alpha_{11}) g^* + (\mu_1 \alpha_{21} - \varepsilon \alpha_{11} - \varepsilon \mu_1 \alpha_{21}) b^* \sim 0 \end{aligned}$$

and

$$(6) \quad \begin{aligned} \mu_2(\varphi a^* + \varphi f^*) + \varphi b^* &\sim \mu_2(\alpha_{11} f^* + \alpha_{12} g^* + \varepsilon \alpha_{22} a^* - \varepsilon \alpha_{12} b^*) + \alpha_{21} f^* + \alpha_{22} g^* \\ &\sim (\varepsilon \mu_2 \alpha_{12} + \varepsilon \mu_1 \mu_2 \alpha_{22} + \mu_1 \mu_2 \alpha_{21} + \mu_1 \alpha_{21}) b^* + (-\varepsilon \mu_2 \alpha_{12} + \mu_2 \alpha_{12} + \alpha_{22}) g^* \\ &\sim 0, \text{ in } U'_2, \end{aligned}$$

where $\varepsilon = \alpha_{11} \alpha_{23} - \alpha_{12} \alpha_{21}$.

It is not difficult to show that (5) and (6) does not hold at the same time except for the case that $\varepsilon = 1$, $\alpha_{11} = \alpha_{22} = 0$, $\alpha_{12} \alpha_{21} = -1$ and $\mu_1 = \mu_2$. Thus we obtain $\varphi f^* \sim \pm b^*$ and $\varphi g^* \sim \mp a^*$ on F_3 .

Let $k = G'_2 \cap c_3$ [Fig. 5.2]. Then g intersects k in a single point and $k \cap f = \emptyset$. Let k^* be an arc on G which is parallel to k . Joining the end points of k^* by a vertical line in $\varphi F_3 \cap M(F_3)$, we obtain a one-sided simple closed

curve k_1 on φF_3 , which is ambient isotopic to c_3 in $L(2\alpha, \beta)$. Each $k_1 \cap c^*$ and $k_1 \cap g^*$ consists of a point and $k_1 \cap f^* = \emptyset$. Thus, since c^* is φ -invariant, $\varphi f^* \sim \pm b^*$ and $\varphi g^* \sim \mp a^*$ in F_3 , we can show that $k_2 = \varphi k_1$ is homotopic to c_1 in F_3 . Therefore a link $k_1 \cup k_2$ is ambient isotopic to $c_1 \cup c_3$ in $L(2\alpha, \beta)$, and we have proved Theorem 5.1.

References

- [1] K. Asano: *Homeomorphisms of prism manifolds*, Yokohama Math. J. **26** (1978), 19–25.
- [2] J.S. Birman and D.R.J. Chillingworth: *On the homeotopy group of a non-orientable surface*, Proc. Cambridge Philos. Soc. **71** (1972), 437–448.
- [3] G.E. Bredon and J.W. Woods: *Non-orientable surfaces in orientable 3-manifolds*, Invent. Math. **7** (1969), 83–110.
- [4] J. Hempel: *One-sided incompressible surfaces in 3-manifolds*, Lecture Notes in Math. 438, Springer-Verlag, 1974, 251–258.
- [5] C. McA. Gordon and W. Heil: *Cyclic normal subgroups of fundamental groups of 3-manifolds*, Topology **14** (1975), 305–309.
- [6] F. Hirzebruch, W.P. Neumann, and S.S. Koh: *Differential manifolds and quadratic forms*, M. Dekker, 1971.
- [7] P.K. Kim: *Some 3-manifolds which admit Klein bottles*, Trans. Amer. Math. Soc. **244** (1978), 299–312.
- [8] S. Kinoshita: *On Fox property of a surface in a 3-manifold*, Duke Math. J. **33** (1966), 791–794.
- [9] G. Livesay: *Fixed point free involutions on the 3-sphere*, Ann. of Math. **72** (1960), 603–611.
- [10] P.K.M. Rice: *Free actions of Z_4 on S^3* , Duke Math. J. **36** (1969), 749–751.
- [11] G.X. Ritter: *Free Z_8 actions on S^3* , Trans. Amer. Math. Soc. **181** (1973), 195–212.
- [12] J.H. Rubinstein: *On 3-manifolds that have finite fundamental group and contain Klein bottles*, Trans. Amer. Math. Soc. **251** (1979), 129–137.
- [13] ———: *One-sided Heegaard splittings of 3-manifolds*, Pacific J. Math. **76** (1979), 165–175.
- [14] ———: *Free actions of some finite groups on S^3* , Math. Ann. **240** (1979), 165–175.
- [15] D. Rolfsen: *Knots and links*, Publish or Perish Inc., 1976.
- [16] H. Schubert: *Konten und Vollringe*, Acta Math. **90** (1953), 131–286.

Faculty of General Education
Kinki University
Higashi-Osaka 577, Japan

